2011. Том 52, № 6

Ноябрь – декабрь

C. 1197 – 1202

УДК 544.353.3:544.353.21:536.44:539.2:615.273

МОЛЕКУЛЯРНЫЕ ХАРАКТЕРИСТИКИ И АНТИОКСИДАНТНАЯ АКТИВНОСТЬ ПОЛИЭТИЛЕНГЛИКОЛЕЙ, МОДИФИЦИРОВАННЫХ ПРОСТРАНСТВЕННО-ЗАТРУДНЕННЫМИ ФЕНОЛАМИ

© 2011 Л.А. Добрун¹*, Е.Л. Кузякина¹, О.В. Ракитина², О.Ю. Сергеева², М.Е. Михайлова¹, Н.С. Домнина², А.В. Лезов¹

¹Санкт-Петербургский государственный университет, физический факультет ²Санкт-Петербургский государственный университет, химический факультет

Статья поступила 17 мая 2011 г.

Химической модификацией полиэтиленгликолей антиоксидантами из класса пространственно-затрудненных фенолов получены водорастворимые конъюгаты, отличающиеся по структуре присоединенного антиоксиданта и по молекулярной массе. Включение гидрофобных концевых групп в состав молекул полиэтиленгликоля приводит к понижению нижней критической температуры смешения раствора по сравнению с исходным полимером. Методами вискозиметрии и рассеяния света в разбавленных растворах определены молекулярно-массовые характеристики полимеров и гидродинамические радиусы единичных молекул конъюгатов. В водных растворах конъюгатов массовая доля единичных молекул превышает 95 %. Агрегаты представляют собой частицы мицеллярного типа, ядро которых образовано гидрофобными фрагментами пространственнозатрудненных фенолов. Показано, что антирадикальная активность антиоксидантов 3-(3-*трет*-бутил-4-гидрокси-5-метилфенил)-пропионовой кислоты и 3-(3,5-ди-*трет*бутил-4-гидроксифенил)-пропионовой кислоты на их основе существенно возрастает.

Ключевые слова: конъюгат, антиоксидант, динамическое рассеяние света, вискозиметрия, агрегирование, антирадикальная активность.

введение

Одним из активно развивающихся в настоящее время подходов к дизайну новых лекарственных средств является создание "гибридных" препаратов, в которых сочетаются химические фрагменты, обеспечивающие разную специфическую активность. Преимуществами гибридных структур или конъюгатов могут быть повышение эффективности биологически активного соединения, возможность его адресной доставки в защищаемой биосистеме, корректировка растворимости и снижение уровня токсичности [1, 2].

Примером реализации такого подхода является создание нового класса гибридных макромолекулярных антиоксидантов (ГМАО), представляющих собой продукты модификации гидрофильных полимеров различными антиоксидантами [3]. К настоящему времени получены и подробно исследованы молекулярные и антиоксидантные характеристики ГМАО на основе декстрана и поливинилового спирта с использованием производных пространственно-затрудненных фенолов (ПЗФ). Обнаружено, что антирадикальная активность ПЗФ резко возрастает при присоединении их к основной цепи полимера [3—6]. В этой связи поиск полимеров, которые могли бы служить основой ГМАО, представляет значительный интерес.

^{*} E-mail: fleur-de-lyse@mail.ru

Круг полимеров, которые могли бы служить основой новых ГМАО, ограничен жестким требованием к их растворимости в воде. Особое место в ряду таких полимеров занимают полиэтиленгликоли (ПЭГ), обладающие высокой биосовместимостью, отсутствием токсичности и иммуногенности, что способствует их широкому применению в качестве основы плазмозаменителей, ингредиентов мазей и таблеток.

В настоящей работе методами рассеяния света и вискозиметрии изучено поведение водных растворов конъюгатов, полученных модификацией полиэтиленгликолей отличающимися по химической структуре и антиоксидантной активности ПЗФ. Установлено влияние молекулярной массы ПЭГ и химической структуры *орто*-заместителей в молекулах ПЗФ на размеры и конформацию молекул конъюгатов. Определена массовая доля агрегатов в растворах, измерена антирадикальная активность конъюгатов и их низкомолекулярных аналогов в водно-органической среде.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Водорастворимые конъюгаты получены химической модификацией ПЭГ антиоксидантами из класса ПЗФ по методу, описанному в работе [7]. Для модификации использованы: 3-(3*трет*-бутил-4-гидрокси-5-метилфенил)-пропионовая кислота (ПЗФ1) и 3-(3,5-ди-*трет*-бутил-4-гидроксифенил)-пропионовая кислота (ПЗФ2), синтезированные в Институте биохимической физики им. Н.М. Эмануэля РАН.

Для синтеза использовали ПЭГ фирмы "Fluka" со средневязкостной молекулярной массой *M*_n = 3400 (ПЭГ1); 3900 (ПЭГ2); 6800 (ПЭГ3) и 21600 Да (ПЭГ4) (табл. 1).

Количество введенных в полимерную цепь ПЗФ определяли по данным УФ спектров с использованием удельных коэффициентов экстинкции соответствующих модельных соединений [8]. Для всех исследованных конъюгатов полученные значения согласуются с вычисленными по M_{η} с учетом замещения двух концевых групп полимера (рис. 1, табл. 2).

Растворы ПЭГ и конъюгатов готовили при комнатной температуре в воде. Вязкость растворов полимеров η измеряли в вискозиметре Уббелоде с диаметром капилляра 0,8 мм при 25 °C.

Для определения гидродинамического радиуса R_h молекул ПЭГ и конъюгатов применяли метод динамического рассеяния света [9]. Измерения проводили при температурах от 15 до 40 °C в диапазоне углов рассеяния θ от 25 до 130° на установке "PhotoCor Complex" (Россия), снабженной коррелятором реального времени "PhotoCor-FC" и одномодовым гелий-неоновым

```
Таблица 1
```

1				1		-		-
Образец	[η], дл/г	$M_{\eta}, \times 10^{-3}$	$D_{01} \times 10^7$, cm ² /c	$D_{02} \times 10^7$, cm ² /c	п	R_{h1} , нм	R_{h2} , нм	<i>X</i> ₂ , %
ПЭГ1	0,09	3,4	14,0		77	1,8		
ПЭГ1—ПЗФ2* ПЭГ2	0,10	3,9	_	3,30	88	_	5,8	_
ПЭГ2—ПЗФ2	0,04	_	12,4	4,58		2,0	5,3	1
ПЭГ3	0,15	6,8	10,0		154	2,3		—
ПЭГ3—ПЗФ1	0,15		11,5	2,90	—	2,1	8,4	2
ПЭГ3—ПЗФ2	0,12		10,4	3,20	—	2,3	7,6	2
ПЭГ4	0,35	21,6	4,9		491	5,0		
ΠЭΓ4—Π3Φ1	0,46		5,1	1,38	—	4,8	18,0	5
ПЭГ4—ПЗФ2	0,30		4,9	0,84	—	5,0	30,0	1

Гидродинамические и молекулярно-массовые характеристики ПЭГ и конъюгатов в воде

^{*} Измерения проведены при 15 °С.

Рис. 1. Структурные формулы конъюгатов, содержащих концевые группы ПЗФ1 (1) и ПЗФ2 (2)

лазером с длиной волны $\lambda_0 = 632,8$ нм. Функции распределения $\Psi(\tau)$ по временам релаксации $\tau = 1/Dq^2$ получали с помощью программы DynaLS из автокорреляционных функций интенсивности рассеянного света. Зависимости обратного времени релаксации $1/\tau$ от квадрата вектора рассеяния $q = \frac{4\pi n_0}{\lambda_0} \sin(\theta/2)$ для ПЭГ и конъюгатов аппроксимировали прямыми, проходящими

через начало координат, что свидетельствует о диффузионном характере наблюдаемых процессов. Коэффициент поступательной диффузии D находили из наклона этих зависимостей. Поправки на температурные зависимости показателя преломления n_0 и вязкости η_0 воды учитывали, используя данные, приведенные в [10].

Гидродинамический радиус частиц *R_h* рассчитывали по формуле Эйнштейна—Стокса [11]

$$R_h = \frac{kT}{6\pi\eta_0 D}.$$
(1)

Функции распределения $\Psi(\tau)$ являются взвешенными по интенсивности рассеянного света, поэтому в полидисперсной системе вес каждого пика ω_i зависит не только от концентрации частиц в растворе, но и от их гидродинамического радиуса R_{hi} . Чтобы оценить массовую долю частиц каждого размера в растворе использовали формулу [7]

$$X_{i} = (\omega_{i} / R_{hi}^{3}) / \left(\sum_{i} (\omega_{i} / R_{hi}^{3}) \right).$$

$$\tag{2}$$

Антирадикальную активность конъюгатов определяли путем расчета константы скорости их взаимодействия *К* со свободным радикалом 2,2-дифенил-1-пикрилгидразилом (ДФПГ) в смеси вода—этанол (1:1 об.).

Таблица 2

Константы скорости	і реакции анти	оксидантов с ДФП	Г в смеси вода—этанол
--------------------	----------------	------------------	-----------------------

Образац	Содержание ПЗФ	V THOT O		
Образец	по УФ спектрам	теоретически по M_{η}	л, л/моль.с	
П0 क 1			4.0+0.1	
Π3Φ1			$4,8\pm0,1$	
ПЗФ2			3,4±0,1	
ΠЭΓ1—Π3Φ1	11,7	11,4	84,2±0,9	
ПЭГ1—ПЗФ2	13,5	13,3	15,7±0,8	
ПЭГ2—ПЗФ1	9,7	10,1	76,1±1,9	
ПЭГ2—ПЗФ2	11,0	11,8		
ПЭГ3—ПЗФ1	5,7	6,1	79,4±1,7	
ПЭГ3—ПЗФ2	7,1	7,1	$11,5\pm0,7$	
ΠЭΓ4—Π3Φ1	2,1	2,0	83,7±0,9	
ПЭГ4—ПЗФ2	2,7	2,5	11,4±0,7	
Декстран—ПЗФ2	9,0	_	12,5±0,8	

Кинетику взаимодействия антиоксидантов с ДФПГ исследовали на спектрофотометре СФ-56 (Россия) по изменению во времени оптической плотности раствора при 520 нм. Реакцию проводили до степени конверсии свободного радикала не более 20 % [3].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В работах [12, 13] было установлено, что растворимость ПЭГ в воде ухудшается при повышении температуры раствора, т.е. полимер имеет нижнюю критическую температуру смешения (НКТС). Для ПЭГ с молекулярной массой $M = 5 \cdot 10^3$ Да НКТС оказывается выше 100 °С, при увеличении M полимера до $5 \cdot 10^6$ Да НКТС понижается до 20 °С [12]. Термодинамическое поведение ПЭГ может оказывать существенное влияние на возможность его практического использования для создания ГМАО. Поэтому были проведены измерения зависимостей интенсивности рассеянного света и гидродинамического радиуса R_h частиц конъюгатов в водных растворах при разных температурах.

При нагревании растворов конъюгатов ПЭГ1—ПЗФ2 и ПЭГ2—ПЗФ2 с концентрацией c = 3,5 г/дл до температур 22 и 37 °С соответственно наблюдали постепенное увеличение интенсивности рассеянного света и гидродинамического радиуса рассеивающих частиц. При достижении этих температур происходило помутнение растворов, сопровождавшееся дальнейшим ростом интенсивности рассеянного света и размеров частиц. Через некоторое время в растворах конъюгатов ПЭГ1—ПЗФ2 и ПЭГ2—ПЗФ2 наблюдали выпадение осадка. Интенсивность рассеянного света и размеров частиц. Через некоторое время в растворах конъюгатов ПЭГ1—ПЗФ2 и ПЭГ2—ПЗФ2 наблюдали выпадение осадка. Интенсивность рассеянного света и гидродинамический радиус исходных полимеров ПЭГ1 и ПЭГ2 не менялись в интервале температур от 15 до 40 °С. Такое поведение системы полимер—растворитель указывает на то, что конъюгаты в воде имеют НКТС, которая существенно ниже, чем у ПЭГ с близкой молекулярной массой.

Для анализа влияния молекулярной массы и размеров молекул ПЭГ на свойства конъюгатов были выполнены измерения вязкости и динамического рассеяния света их водных растворов.

На рис. 2 представлены зависимости приведенной вязкости $\eta_{np} = (\eta - \eta_0)/\eta_0 c$ от концентрации раствора c для ПЭГ и конъюгатов. Все зависимости аппроксимировали прямыми линиями, из экстраполяции которых к бесконечному разбавлению определяли характеристическую вязкость [η] полимеров, а из наклона — постоянную Хаггинса k'. Постоянная Хаггинса конъюгатов оказалась выше, чем k' для ПЭГ. Это показывает, что термодинамическое качество воды как растворителя для конъюгатов хуже, чем для ПЭГ.

Молекулярную массу ПЭГ M_{η} рассчитывали по уравнению Марка—Куна—Хаувинка $[\eta] = 2, 4 \times 10^{-4} M_{\eta}^{0,73}$ [14]. Полученные значения $[\eta], M_{\eta}$ и степени полимеризации ПЭГ $n = M_{\eta}/M_0$, где $M_0 = 44$ — молекулярная масса повторяющегося звена ПЭГ, приведены в табл. 1.

Характеристическая вязкость [η] коньюгатов, содержащих ПЗФ2, меньше, чем у соответствующих ПЭГ (см. табл. 1). Принимая во внимание, что [η] определяется отношением куба размеров макромолекул к молекулярной массе полимера, ее изменение может быть вызвано как возрастанием M, так и вариацией размеров макромолекул за счет присоединения ПЗФ [11].

Кроме того, на величину характеристической вязкости может оказывать влияние и присутствие агрегатов в растворах. Необходимо отметить, что замена $\Pi 3\Phi 2$ на $\Pi 3\Phi 1$ в полимере вызывает повышение [η] (см. табл. 1).

Гидродинамический радиус R_h молекул ПЭГ и конъюгатов определяли по данным динамического рассеяния света. Функции распределения $\Psi(\tau)$ для всех исследован-

Рис. 2. Зависимость приведенной вязкости η_{np} от концентрации *с* для ПЭГ1 (1), ПЭГ2 (2), ПЭГ3 (3), ПЭГ3—ПЗФ2 (4), ПЭГ3—ПЗФ1 (5), ПЭГ4 (6) и ПЭГ4—ПЗФ2 (7) в воде

Рис. 3. Функции распределения по времени релаксации τ для ПЭГ4 при *c* = 1,9 г/дл, θ = 60° (*1*) и ПЭГ4—ПЗФ2 при *c* = 2,0 г/дл, θ = 60° (*2*)

Рис. 4. Зависимость коэффициентов диффузии *D*₁ для ПЭГ4 (*1*), ПЭГ4—ПЗФ2 (*2*), ПЭГ3 (*4*) и ПЭГ3—ПЗФ1 (*5*) и *D*₂ для ПЭГ4—ПЗФ2 (*3*) и ПЭГ3—ПЗФ1 (*6*) от концентрации *с* в воде

ных ПЭГ имели один пик, что указывает на присутствие в растворе частиц одного размера. В отличие от исходных ПЭГ, функции $\Psi(\tau)$ конъюгатов имели два пика, которые соответствовали частицам разного размера (рис. 3). Значения D_{01} и D_{02} для ПЭГ и конъюгатов получали экстраполяцией концентрационных зависимостей коэффициентов поступательной диффузии к бесконечному разбавлению (рис. 4). Полученные значения D_{01} и D_{02} , а также гидродинамические радиусы частиц R_{h1} и R_{h2} , рассчитанные по уравнению (1) при значении $\eta_0 = 0,894$ сП при 25 °C и 1,14 сП при 15 °C [10], приведены в табл. 1.

Степень полимеризации *n* исследованных ПЭГ достаточно велика (см. табл. 1). Это позволяет считать, что макромолекулы ПЭГ находятся в конформации статистического клубка, гидродинамический радиус R_{hT} которого в Θ -условиях можно рассчитать по формуле $R_{hT} = 0,271\sqrt{nA\lambda}$ [7]. При вычислении R_{hT} были использованы значения длины сегмента Куна *A* и проекции повторяющегося звена на направление цепи λ , взятые из работ [7, 11]. Рассчитанные значения $R_{hT} = 2,0, 2,5$ и 5,3 нм для ПЭГ1, ПЭГ3 и ПЭГ4 в пределах погрешности эксперимента совпадают с измеренными (см. табл. 1).

Гидродинамический радиус конъюгатов R_{h1} , содержащих ПЗФ1 и ПЗФ2, в пределах погрешности опыта совпадает с R_{h1} молекул соответствующего ПЭГ, а их массовая доля в растворе превышает 95 %. Частицы конъюгатов с радиусом R_{h2} отсутствуют в растворах исходных ПЭГ (см. табл. 1). Можно предположить, что они являются агрегатами единичных молекул конъюгатов, формирование которых вызвано притяжением между гидрофобными концевыми группами ПЗФ. Агрегаты стабилизируются в растворе гидрофильными участками ПЭГ [7]. Массовая доля X_2 агрегатов в растворе варьируется от 1 до 5 % в зависимости от химической строения ПЗФ (см. табл. 1).

Полученные молекулярные характеристики коньюгатов можно сопоставить с результатами исследований водных растворов конъюгатов декстран—ПЗФ2 и поливиниловый спирт—ПЗФ2 [4, 7]. В растворах этих соединений также были зафиксированы единичные молекулы и агрегаты, доля которых не превышала 1 %. В отличие от конъюгатов ПЭГ—ПЗФ2 размеры единичных молекул декстран—ПЗФ2 и поливиниловый спирт—ПЗФ2 зависели от доли гидрофобных антиоксидантных групп в полимерной цепи.

Переходя к обсуждению влияния химического строения ПЗФ в конъюгатах на их антирадикальную активность, следует остановиться на механизме участия ПЗФ в радикальных реакциях. Начальный акт такой реакции связан с отрывом атома водорода от гидроксильной группы фенола с образованием феноксильного радикала. Стабильность образующихся феноксильных радикалов зависит от величины пространственного экранирования реакционного центра и степени делокализации неспаренного электрона по сопряженной системе связей радикала. Наличие в молекулах ПЗФ2 в *орто*-положениях объемных *трет*-бутильных групп приводит не только к эффективному экранированию радикального центра, но и к уменьшению сопряжения и дестабилизации образующегося феноксильного радикала. Замена *трет*-бутильной группы на метильную заметно не сказывается на экранировании, но при этом слабее влияет на сопряжение [15]. Именно это и является причиной того, что ПЗФ1, имеющий в *орто*-положениях метильную и *трет*-бутильную группы, обладает несколько большей антирадикальной активностью, о чем свидетельствует сопоставление значений констант скорости реакции ДФПГ с ПЗФ1 и ПЗФ2 в смеси вода—этанол (см. табл. 2).

Присоединение ПЗФ к концевым группам ПЭГ приводит к резкому увеличению константы скорости их реакции с ДФПГ по сравнению с соответствующими индивидуальными ПЗФ (см. табл. 2). Следует отметить, что различие в значениях констант скорости реакции *К* для ПЗФ1 и ПЗФ2 становится существенно больше после их присоединения к ПЭГ. Причина большей эффективности конъюгатов связана с наличием гидратной оболочки вокруг гидрофильной цепи полимера, в которой происходит эта реакция [16]. Гидратная оболочка любого гидрофильного полимера, в том числе и ПЭГ, обладает повышенной по сравнению с объемной водой ионизирующей способностью, что и определяет высокую скорость радикальной реакции в растворах обоих конъюгатов.

Данные по антирадикальной активности ПЭГ—ПЗФ можно сравнить с результатами изучения конъюгатов на основе декстрана, который характеризуется большей по сравнению с ПЭГ гидрофильностью [3, 17]. В работе [3] было обнаружено, что константа скорости реакции ДФПГ с конъюгатами декстрана, молекулы которого содержат около 9 моль% ПЗФ2, резко возрастает при увеличении молекулярной массы полимера и достигает максимального значения при $M = 40 \cdot 10^3$ Да, которая близка к *К* для конъюгатов ПЭГ—ПЗФ2 независимо от их молекулярной массы (см. табл. 2).

Таким образом, исследования влияния молекулярных характеристик ПЭГ на антиоксидантные характеристики ГМАО показали, что константа скорости реакции *К* в пределах погрешности опыта не зависит от молекулярной массы ПЭГ и определяется химической структурой присоединенных ПЗФ (см. табл. 2). Наличие у ПЭГ1—ПЗФ2 и ПЭГ2—ПЗФ2 НКТС может ограничивать возможность использования ПЭГ1 и ПЭГ2 для создания ГМАО.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Химическая* и биологическая кинетика. Новые горизонты. Биологическая кинетика / Под. ред. Е.Б. Бурлакова. Том 2. М.: Химия, 2005.
- 2. Коршак В.В., Штильман М.И. Полимеры в процессах иммобилизации и модификации природных соединений. М.: Наука, 1984.
- 3. Арефьев Д.В., Белостоцкая И.С., Вольева В.Б. и др. // Изв. АН. Сер. хим. 2007. № 4. С. 751.
- 4. Филиппов С.К., Комолов А.С., Сергеева О.Ю. и др. // Высокомолекуляр. соединения. А. 2009. **51**, № 2. С. 209.
- 5. Filippov S., Lezov A., Sergeeva O. et al. // Eur. Polym. J. 2008. 44, N 10. P. 3361.
- 6. Domnina N.S., Arefiev D.V., Komarova E.A., Bilibin A.Yu. // Macromol. Symp. 1999. 144, N 1. P. 339.
- 7. Домнина Н.С., Сергеева О.Ю., Вильбицкая А.Н. и др. // Высокомолекуляр. соединения. А. 2010. **52**, № 9. Р. 1570.
- 8. Арефьев Д.В., Домнина Н.С., Комарова Е.А. и др. // Журн. прикл. химии. 1999. 72, № 4. С. 670.
- 9. Камминс Г., Пайкс Э. Спектроскопия оптического смешения. М.: Мир, 1978.
- 10. Рабинович В.А., Хавин З.Я. Краткий химический справочник. Л.: Химия, 1978.
- 11. Цветков В.Н., Эскин В.Е., Френкель С.Я. Структура макромолекул в растворах. М.: Наука, 1964.
- 12. Тагер А.А., Вишьков С.А., Андреева В.М., Секачева Т.В. // Высокомолекуляр. соединения. А. 1974. 16, № 1. С. 9.
- 13. *Malkolm G.N., Rowlinson J.S.* // Trans. Faraday Soc. 1957. 53. P. 921.
- 14. *Благодатских И.В., Васильева О.В., Быков С.В. и др.* // Высокомолекуляр. соединения. А. 2003. **45**, № 10. С. 1749.
- 15. *Ершов В.В., Никифоров Г.А., Володькин А.А.* Пространственно-затрудненные фенолы. М.: Химия, 1972.
- 16. Arefiev D.V., Domnina N.S., Komarova E.A., Bilibin A.Yu. // Eur. Polym. J. 2000. 36. P. 857.
- 17. Yasushi Maeda, Noriaki Tsukida, Hiromi Kitano et al. // J. Phys. Chem. 1993. 97. P. 13903.