УДК 665.64:547.83 DOI: 10.15372/KhUR2020225

Азотистые основания смол битуминозной нефти Ашальчинского месторождения Татарстана и их превращения при термической обработке

Н. Н. ГЕРАСИМОВА, Т. А. САГАЧЕНКО, Р. С. МИН, Т. В. ФЕДОРОВА

Институт химии нефти СО РАН, Томск (Россия) E-mail: dm@ipc.tsc.ru

Аннотация

С использованием комплекса аналитических методов (элементный и функциональный анализы, определение молекулярных масс, спектроскопия ЯМР ¹Н, структурно-групповой анализ и газовая хромато-массспектрометрия) изучены состав и строение азотистых оснований смолистых компонентов битуминозной нефти Ашальчинского месторождения Татарстана до и после их термической обработки (450 °C, инертная среда, 30 мин). Установлено, что азотистые основания исходных смол и полученных после термической обработки "вторичных" мальтенов представлены высоко- и низкомолекулярными соединениями. В обоих случаях преобладают высокомолекулярные основания, доля которых во "вторичных" мальтенах существенно ниже. Преобразованные основания характеризуются меньшими значениями средних молекулярных масс, что связано с протеканием при термическом воздействии реакций деструкции алкильных и нафтеновых фрагментов, приводящих к изменению их структуры и образованию более низкомолекулярных соединений. По данным структурно-группового анализа, усредненные молекулы значительной части высокомолекулярных оснований "вторичных" мальтенов более ароматичны за счет снижения числа нафтеновых циклов и числа парафиновых углеродных атомов в составе их структурных блоков. Низкомолекулярные основания "вторичных" мальтенов отличаются от низкомолекулярных оснований исходных смол большим числом нафтеновых циклов в структурных блоках их усредненных молекул. Среди основных соединений исходных смол и "вторичных" мальтенов присутствуют алкилзамещенные хинолины, бензохинолины, нафтохинолины, нафто[2,1,8-def]хинолины, тиофенохинолины, бензотиофенохинолины, максимум в распределении которых приходится на алкилбензохинолины. Для оснований "вторичных" мальтенов характерно более высокое относительное содержание алкилхинолинов и алкилтиофенохинолинов, а также повышенная доля структур с меньшим числом атомов углерода в алкильных заместителях.

Ключевые слова: смолы, азотистые основания, термическая обработка, содержание, состав

введение

В последние десятилетия в нефтяной отрасли России наблюдается резкое сокращение запасов легких и средних нефтей. В связи с этим в разработку активно вовлекаются нетрадиционные источники углеводородов, в частности природные битумы, значительная часть месторождений которых сосредоточена на территории Татарстана. Ашальчинское месторождение битуминозной нефти характеризуется крупными балансовыми (10 248 тыс. т) и извлекаемыми (3669 тыс. т) запасами и в настоящее время находится в промышленной разработке. Одна из особенностей битуминозных нефтей – высокое содержание смолисто-асфальтеновых компонентов, в составе которых на долю смол приходится более 70 % [1, 2]. В структуре смолистых веществ сосредоточена большая часть определяемых в нефтях гетероатомов, что значительно осложняет переработку сверхтяжелых нефтей существующими технологиями [3]. Поэтому одним из условий, необходимых для разработки эффективных технических решений рационального использования битуминозных нефтей, является накопление информации о структурных преобразованиях смолистых компонентов в высокотемпературных процессах. Особого внимания заслуживают данные о термических превращениях азотистых оснований (AO) смол, так как эти соединения негативно влияют на эффективность каталитических процессов нефтепереработки и качество нефтепродуктов [4].

В данной работе приведены результаты сравнительного изучения состава АО исходных и термообработанных смол битуминозной нефти Ашальчинского месторождения Татарстана.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовался образец битуминозной нефти с содержанием смол – 18.4 мас. %, основного азота (N_{och}) – 0.12 мас. %.

Смолы выделяли из деасфальтенизированной нефти методом жидкостно-адсорбционной хроматографии на активированном силикагеле АСК, используя для их десорбции смесь бензола с этанолом (50 : 50 по объему) после предварительного извлечения компонентов масел смесью *и*-гексана с бензолом в объемном соотношении 70 : 30 [5]. Содержание N_{осн} в исходных смолах битуминозной нефти составляло 0.44 мас. %, следовательно, на их долю приходилось 67.4 отн. % АО нефти.

Термическую обработку смол проводили при 450 °C в инертной среде в течение 30 мин. Обоснование выбора условий процесса приведено в [6]. При термолизе смолистых компонентов образуются газообразные (1.1 мас. %), твердые коксоподобные (0.9 мас. %) и растворимые в бензоле (98.0 мас. %) продукты, которые представлены "вторичными" асфальтенами (22.9 мас. %) и мальтенами (75.1 мас. %) [5].

Выделение АО из гексановых растворов исходных смол и "вторичных" мальтенов осуществляли в соответствии с методикой, основанной на последовательном применении методов осаждения высокомолекулярных оснований газообразным HCl (К-1), доосаждения растворимых в углеводородной среде хлористоводородных солей высокомолекулярных АО с помощью диэтиламина (К-2) и экстракции низкомолекулярных АО уксуснокислым раствором серной кислоты (К-3) [6]. Высокомолекулярные основания К-2 отличаются от высокомолекулярных оснований К-1 более развитым алифатическим замещением ароматических ядер. Соединения К-1 для упрощения состава разделяли методом горячей экстракции *и*-гексаном на растворимые (К-1^{гр}) и нерастворимые (К-1^{гнр}) в нем компоненты.

Для сравнительной характеристики АО исходных смол и "вторичных" мальтенов использовали данные элементного и функционального анализов, измерения молекулярных масс (MM), спектроскопии ЯМР ¹Н, газовой хромато-массспектрометрии (ГХ-МС) и структурно-групповой анализ (СГА).

Определение массового содержания элементов (C, H, S, N) проводили с помощью автоматического анализатора Vario EL Cube (Elementar Analysensysteme GmbH, Германия). Содержание кислорода рассчитывали по разности между общим содержанием (100 %) и суммой определяемых элементов. Концентрацию основного азота (N_{осн}) определяли методом неводного потенциометрического титрования [7]. Средние MM измеряли методом криоскопии в бензоле [5].

Спектры ¹Н ЯМР записывали с использованием ЯМР-Фурье-спектрометре AVANCE AV 300 (Вruker, Германия), растворитель – дейтерохлороформ, внутренний стандарт – тетраметилсилан. По спектрам проводили расчет относительного содержания протонов в различных структурных фрагментах молекул: ароматических (H_a), у атома углерода алифатических заместителей в α -положении к ароматическим структурам (H_{α}), в метиленовых (H_{β}) и в концевых метильных группах (H_{ω}) [8].

На основе данных о распределении протонов, значений ММ и элементного состава рассчитывали средние структурные характеристики молекул АО образцов К-1^{гнр}, К-1^{гр}, К-2 и К-3 [9]. В ходе расчетов определены следующие параметры: $m_{\rm a}$ — число структурных блоков в усредненной молекуле; К°, К°, К°, К°, - общее число, число ароматических и нафтеновых циклов в структурном блоке соответственно; С* - общее число атомов углерода в структурном блоке; С_п^{*} – число атомов углерода в парафиновых фрагментах структурного блока; С_{*a*}^{*} – число атомов углерода, находящихся в α-положении к ароматическим ядрам; $C_{\!\scriptscriptstyle \gamma}^*$ – число атомов углерода в не связанных с ароматическими ядрами терминальных метильных группах.

Индивидуальный состав АО К-1^{гр}, К-2 и К-3 исследовали методом ГХ-МС с использованием

масс-спектрометра DFS (Thermo Scientific, США, энергия ионизирующих электронов 70 эВ, температура ионизационной камеры 270 °C, температура интерфейса 270 °C, температура инжектора 250 °C). Для хроматографического разделения использовали колонку DB-5MS длиной 30 м. диаметром 0.25 мм, с толщиной фазы DB-5MS -0.25 мкм. Газ-носитель - гелий при постоянном расходе 0.8 мл/мин. Программа термостата: начальная температура 80 °C (3 мин), подъем до 300 °С (4 °С/мин), выдержка при конечной температуре 30 мин. Сканирование масс-спектров осуществлялось каждую секунду в диапазоне масс до 500 а.е.м. Реконструкцию масс-хроматограмм соединений проводили с использованием характеристических ионов на основе хроматограмм по полному ионному току с помощью программы Xcalibur. Для идентификации индивидуальных соединений использовали компьютерную библиотеку масс-спектров NIST 02.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

"Вторичные" мальтены отличаются от исходных смол пониженной концентрацией N_{осн} (0.31 мас. %) и более низким суммарным содержанием концентратов высоко- и низкомолекулярных АО (23.4 против 37.5 мас. %) (табл. 1). Это связано с участием АО исходных смол в формировании коксоподобных продуктов и "вторичных" асфальтенов, образующихся в процессе термолиза нефтяного сырья [10–12]. Хотя большую часть оснований, выделенных из исходных смол и "вторичных" мальтенов, составляют высокомолекулярные соединения (К-1 + К-2), во "вторичных" мальтенах их массовая доля (22.3 мас. %) и доля связанного с ними N_{осн}

ТАБЛИЦА 1

Характеристика азотистых оснований исходных смол и "вторичных" мальтенов

(62.3 отн. %) ниже, чем в исходном образце (36.2 мас. % и 71.7 отн. % соответственно). При этом следует отметить, что количество соединений К-1 в процессе термолиза снижается (с 35.6 до 15.9 мас. %), а количество соединений К-2, напротив, возрастает практически в 10 раз. Источником высокомолекулярных оснований К-2 могут быть соединения К-1^{гнр}, преобладающие среди основных соединений К-1 исходных смол. В процессе термолиза их массовая доля и доля связанного с ними N_{осн} существенно снижаются. Для концентратов низкомолекулярных оснований К-3 исходных смол и "вторичных" мальтенов различия по выходу и относительному содержанию N_{осн} в структуре их оснований незначительны. Все образцы АО "вторичных" мальтенов имеют меньшие значения ММ, чем одноименные образцы АО исходных смол. Наблюдаемое снижение ММ обусловлено структурными изменениями основных соединений исходных смол в процессе термолиза.

По данным СГА, усредненные молекулы высокомолекулярных (К-1^{гнр}, К-1^{гр}, К-2) и низкомолекулярных (К-3) оснований "вторичных" мальтенов имеют меньшие размеры, чем усредненные молекулы соединений одноименных продуктов исходных смол. Это связано с уменьшением в их составе числа структурных блоков (т) и их средних габаритов, характеризующихся параметром С* (табл. 2). Для всех образцов АО "вторичных" мальтенов наблюдается снижение в средних структурных блоках общего числа алкильных атомов углерода (С^{*}_п). Среди C^*_{π} снижается количество углеродных атомов в метильных группах, удаленных от ароматического ядра (С^{*}_v), что свидетельствует об уменьшении числа и/или степени разветвленности заместителей. Более низкие значения параме-

Образец	Исходные смолы				"Вторичные" мальтены			
	ММ, а.е.м.	Выход образца, мас. %	Содержание N _{осн} в образце, мас. %	Доля N _{осн} смол, отн. %	ММ, а.е.м.	Выход образца, мас. %	Содержание N _{осн} в образце, мас. %	Доля N _{осн} смол, отн. %
К-1, в том числе:	833	35.6	0.87	70.4	626	15.9	0.87	44.6
$K-1^{rp}$	578	6.3	0.76	10.9	458	5.8	1.33	25.0
К-1 ^{гнр}	1072	29.3	0.89	59.5	920	10.1	0.61	19.6
К-2	636	0.6	0.99	1.3	507	6.4	0.86	17.7
К-3	383	1.3	2.06	6.2	317	1.1	2.10	7.2

Параметры	Образцы								
средних структурных блоков	Исходные смолы				"Вторичные" мальтены				
	К-1 ^{гнр}	$K-1^{rp}$	К-2	К-3	К-1 ^{гнр}	$K-1^{rp}$	K-2	К-3	
$m_{\rm a}$	2.3	1.6	1.7	1.4	2.1	1.5	1.5	1.1	
$\mathbb{K}^*_{\mathrm{o}}$	10.0	4.6	3.1	2.8	9.2	4.6	3.4	4.2	
$\mathbb{K}^*_{\mathrm{a}}$	2.8	2.1	2.3	1.7	2.7	2.1	2.1	1.3	
$\mathbb{K}_{_{\mathrm{H}}}^{*}$	7.2	2.5	0.8	1.1	6.5	2.5	1.3	2.9	
C*	32.6	24.5	24.5	18.8	29.7	23.4	21.6	18.0	
C^*_{π}	2.2	5.9	11.9	7.2	1.9	4.9	7.8	1.7	
C^*_{α}	5.2	3.9	3.9	4.4	4.6	4.0	3.5	3.4	
C*	2.2	2.3	2.5	1.8	1.9	1.8	1.8	1.7	

ТАБЛИЦА 2

Расчетные значения структурных параметров молекул азотистых оснований исходных смол и "вторичных" мальтенов

Примечание. m_a – число структурных блоков в усредненной молекуле; K_{a}^* , K_{a}^* , K_{a}^* – общее число, число ароматических и нафтеновых циклов в структурном блоке соответственно; С^{*} – общее число атомов углерода в структурном блоке; С^{*}_n – число атомов углерода в парафиновых фрагментах структурного блока; С^{*}_a – число атомов углерода, находящихся в α -положении к ароматическим ядрам; С^{*}_γ – число атомов углерода в не связанных с ароматическими ядрами терминальных метильных группах.

тра C^*_{α} указывают на уменьшение алифатического замещения ароматического ядра. Размеры полициклических структур (K^*_{o}) меняются неоднозначно. Так, для структурных блоков средних молекул оснований К-2 и К-3 наблюдается увеличение их размеров за счет развития нафтеновых фрагментов ($K^*_{\rm H}$). Общая цикличность структурных блоков средних молекул соединений К-1^{гр} остается постоянной, а общая цикличность структурных блоков средних молекул соединений К-1^{гнр} снижается. Это является дополнительным подтверждением участия высокомолекулярных оснований К-1^{гнр} в образовании соединений К-2 и К-3.

Анализ результатов ГХ-МС исследования образцов К-1^{гр}, К-2, К-3, выделенных из исходных смол и "вторичных" мальтенов, показал, что качественный состав определенных в них АО практически идентичен. В обоих типах смол они представлены алкилзамещенными хинолинами, бензохинолинами, нафтохинолинами, нафто[2,1,8-def]хинолинами, тиофенохинолинами, бензотиофенохинолинами, максимум в распределении которых приходится на алкилбензохинолины (табл. 3). Азотистые основания "вторичных" мальтенов отличаются более высоким относительным содержанием алкилхинолинов и алкилтиофенохинолинов. Можно полагать, что увеличение их доли в составе идентифицированных АО является следствием разрушения неразделяемой сложной смеси соединений, сконцен-

ТАБЛИЦА 3

Состав азотистых оснований исходных смол и "вторичных" мальтенов

Соединения	Содержание относительно идентифицированных структур, %			
	Исходные	"Вторичные"		
	СМОЛЫ	мальтены		
Алкилхинолины	0.1	18.8		
Алкилбензохинолины	68.5	45.2		
Алкилдибензохинолины	1.7	0.6		
Алкилазапирены	6.0	2.7		
Алкилтиофенохинолины	22.4	32.7		
Алкилбензотиофенохинолины	1.3	н/о		

Примечание. Н/о – не обнаружено

трированных в так называемом нафтеновом горбе [11, 13]. Он ярко проявляется в масс-хроматограммах соединений исходных смол, но практически отсутствует на масс-хроматограммах одноименных типов соединений термически преобразованного образца. В качестве примера на рис. 1 представлены масс-хроматограммы алкилбензохинолинов (C_x -БХ) К-1^{гр} исходных смол и "вторичных" мальтенов по ионам с соотношением m/z = 207, 221, 235, 249 и 263.

Азотистые основания "вторичных" мальтенов также отличаются повышенной долей низкомолекулярных гомологов среди всех идентифицированных типов соединений.

Рис. 1. Масс-хроматограммы С₂–С₆–бензохинолинов (БХ) К-1^{гр} по ионам с соотношением m/z = 207, 221, 235, 249, 263 исходных смол (*a*) и "вторичных" мальтенов (б).

ЗАКЛЮЧЕНИЕ

На основании результатов исследования состава АО исходных и термически преобразованных смол битуминозной нефти Ашальчинского месторождения, можно заключить, что АО исходных смол и "вторичных" мальтенов представлены высоко- и низкомолекулярными соединениями. В обоих образцах преобладают высокомолекулярные основания, доля которых во "вторичных" мальтенах существенно ниже. Азотистые основания преобразованных смол характеризуются меньшими значениями средних ММ, чем одноименные продукты исходных смол, что связано с протеканием при термолизе реакций деструкции алкильных и нафтеновых фрагментов, приводящих к изменению структуры АО.

Для обоих образцов наблюдается одинаковый набор оснований, представленных алкилпроизводными хинолина, бензохинолина, нафтохинолина, нафто[2,1,8-def]хинолина, тиофенохинолина, бензотиофенохинолина, максимум в распределении которых приходится на алкилбензохинолины. Особенностью состава АО "вторичных" мальтенов является более высокое относительное содержание алкилхинолинов и алкилтиофенохинолинов. Это свидетельствует о наличии в исходных смолах таких структур в связанной форме, сконцентрированных в так называемом нафтеновом горбе. Для термически преобразованных структур АО характерна более высокая доля в их составе низкомолекулярных гомологов.

Полученные результаты имеют значение для углубления знаний о химической природе смол тяжелых нефтяных систем и прогнозирования состава дистиллятных фракций, получаемых в процессе термической переработки битуминозной нефти.

Работа выполнена в рамках государственного задания ИХН СО РАН (проект V.46.2.2), финансируемого Министерством науки и высшего образования Российской Федерации.

СПИСОК ЛИТЕРАТУРЫ

- 1 Сагаченко Т. А., Сергун В. П., Чешкова Т. В., Коваленко Е. Ю., Мин Р. С. Химическая природа масляных и смолисто-асфальтеновых компонентов природного битума Ашальчинского месторождения Татарстана // Химия твердого топлива. 2015. № 6. С. 12–18.
- 2 Гуссамов И. И., Петров С. М., Ибрагимова Д. А., Каюкова Г. П., Башкирцева Н. Ю. Компонентный и углеводородный состав битуминозной нефти Ашальчинского месторождения // Вестн. Казан. технол. ун-та. 2014. Т. 17, № 10. С. 207-211.
- 3 Свириденко Н. Н., Кривцов Е. Б., Головко А. К. Изменение структуры молекул смол и асфальтенов природного битума в процессе термокрекинга // Химия уст. разв. 2018. Т. 26, № 2. С. 193–201.
- 4 Prado G. H. C., Rao Y., de Klerk A. Nitrogen removal from oil: A review // Energy & Fuels. 2017. Vol. 31, No. 1. P. 14-36.
- 5 Современные методы исследования нефтей (Справочнометодическое пособие) / под ред. А. И. Богомолова, М. Б. Темянко, Л. И. Хотынцевой. Л.: Недра, 1984. 431 с.

- 6 Герасимова Н. Н., Мин Р. С., Сагаченко Т. А. Термические превращения азотсодержащих оснований смол тяжелой нефти Усинского месторождения // Химия уст. разв. 2018. Т. 26, № 1. С. 13–18.
- 7 Okuno I., Latham D. R., Haines W. E. Type analysis of nitrogen in petroleum using nonaqueous potentiometric titration and lithium aluminum hydride reduction // Anal. Chem. 1965. Vol. 37, No. 1. P. 54-57.
- 8 Fergoug T., Bouhadda Y. Determination of Hassi Messaoud asphaltene aromatic structure from H-1 & C-13 NMR analysis // Fuel. 2014. Vol. 115, No. 1. P. 521-526.
- 9 Головко А. К., Камьянов В. Ф., Огородников В. Д. Высокомолекулярные гетероатомные компоненты нефтей Тима-

но-Печорского нефтегазоносного бассейна // Геология и геофизика. 2012. Т. 53, № 12. С. 1786–1795.

- 10 Speight J. G. Thermal transformations of asphaltenes // Petrol. Chem. 1989. Vol. 29, No. 4. P. 253-261.
- 11 Антипенко В. Р. Термические превращения высокосернистого природного асфальтита: Геохимические и технологические аспекты. Новосибирск: Наука, 2013. 184 с.
- 12 Alshareef A. H., Scherer A., Stryker J. M. Thermal cracking of substituted cholestane-benzoquinoline asphaltene model compounds (Conference paper) // Energy & Fuels. 2012. Vol. 26, No. 6. P. 3592–3603.
- 13 Воробьева Н. С., Петров Ал. А. "Неразделяемая" смесь углеводородов нефти // Нефтехимия. 2003. Т. 43, № 1. С. 3–6.