83

ОСОБЕННОСТИ ДЕТОНАЦИИ ПРЕССОВАННЫХ ЗАРЯДОВ ОКТОГЕНА

М. Ф. Гогуля, М. А. Бражников, А. Ю. Долгобородов

Институт химической физики им. Н. Н. Семенова РАН, 117977 Москва

Приведены результаты измерений профилей давления на фронте ударных волн в бромоформе при детонации зарядов октогена диаметром 40 мм и длиной 22 ÷ 110 мм. Начальная плотность зарядов 1,81 г/см³. Во всех проведенных опытах зафиксирован монотонный спад давления, химпик не наблюдался. С увеличением длины заряда максимальные значения давления сначала растут, а затем падают. Анализ результатов измерений давления показывает, что при данных размерах зарядов и используемой системе инициирования процесс детонации октогена протекает в нестационарном режиме.

Для описания процесса детонации в конденсированных взрывчатых веществах (BB) часто используется классическая модель стационарной детонации Зельдовича — Неймана — Дёринга (ЗНД). Согласно этой модели детонационная волна состоит из стационарной зоны повышенных давлений, в которой происходит химическое превращение исходного BB в продукты детонации, и нестационарной зоны расширения продуктов детонации — тейлоровской волны разрежения. Зоны разделены звуковой плоскостью Чепмена — Жуге. При этом спад давления во второй зоне, в отличие от первой, зависит от длины заряда.

Однако такая модель описывает реальный детонационный процесс лишь в первом приближении и в общем случае может оказаться некорректной [1]. Для создания более совершенных моделей необходимо изучение процессов инициирования и выхода на стационарный режим детонации в реальных ВВ. В экспериментальном плане для этого нужно исследовать динамику изменения параметров детонации в зависимости от условий инициирования, диаметра и длины заряда. К таким параметрам относятся скорость детонации, скорость контактной границы с инертной средой, профили давления или массовой скорости. Характер их изменения в зависимости от длины заряда позволяет судить о стационарности процесса.

В настоящей работе исследовался процесс распространения детонационной волны в октогене при различных длинах зарядов.

Заряды изготавливали путем холодного прессования полидисперсного порошка октогена (средний размер кристаллов 200 ÷ 300 мкм) и имели начальную плотность $\rho_0 = 1.81 \text{ г/см}^3$. Диаметр зарядов 40 мм, длина $L = 22 \div 110$ мм. Инициирование осуществлялось генератором плоского фронта из флегматизированного гексогена через промежуточную таблетку гексогена высотой 10 мм ($\rho_0 = 1.68 \text{ г/см}^3$).

О характере изменения давления продуктов детонации в зависимости от длины заряда можно судить по изменению давления во времени на фронте ударной волны (УВ) в инертном веществе, контактирующем с зарядом ВВ. Такие измерения проводились с использованием индикаторной методики [2, 3]. Методика основана на экспериментально установленной для ряда изначально прозрачных веществ (индикаторов) зависимости изменения интенсивности излучения фронта УВ от давления. Изменение давления на фронте УВ в индикаторе однозначно связано с изменением давления на контактной границе индикатор — продукты детонации, которое, в свою очередь, определяется профилем давления в продуктах детонации. В настоящей работе в качестве индикатора использовался бромоформ, для которого зависимость яркостной температуры фронта УВ от давления линейная [3]. Яркостная температура рассматривается в данном случае как мера интенсивности излучения. При давлении $p \approx 10$ ГПа бромоформ начинает терять прозрачность. Пирометрические измерения показывают, что время нарастания регистрируемого сигнала при p = 11.5 ГПа составляет ≈ 150 нс, а при p = 13 ГПа оно сравнимо с разрешающей способностью установки [3]. Диапазон давлений, измеряемых в ходе настоящей работы, лежал выше 20 ГПа, а использова-

Рис. 1. Ударные адиабаты: 1 — бромоформ [3]; 2, 3 — октоген с $\rho_{00} =$ 1,891 [4] и 1,81 г/см³ соответственно

ние двухканального оптического пирометра гарантировало временно́е разрешение регистрации не хуже 10 нс. Погрешность определения давления в индикаторе составляла ≈ 3 %.

При выборе индикатора для исследования детонации прессованных зарядов октогена определяющее значение имело согласованность их ударных импедансов. Для расчета ударной адиабаты октогена с начальной плотностью $\rho_{00}=1,81$ г/см 3 использовалась зависимость скорости УВ(D)от массовой скорости uпри плотности 1,891 г/см³ [4]. Скорость УВ в пористых образцах $(D_{\text{пор}})$ рассчитывалась по модели работы [5] в предположении, что конечное состояние находится на изоэнтропе сплошного образца в точке пересечения с лучом $\rho_{00}D_{\text{пор}}$. Результаты расчета, а также исходная ударная адиабата октогена, экстраполированная в область высоких давлений, приведены вместе с адиабатой бромоформа [3] на рис. 1. Видно, что ударная адиабата бромоформа в координатах p, u практически совпадает с ударной адиабатой октогена исследуемой плотности.

В опытах регистрировалась интенсивность излучения фронта УВ в индикаторе, который помещался на исследуемый заряд. Толщина слоя бромоформа составляла ≈ 20 мм. Излучение фиксировалось из центральной части заряда через диафрагму диаметром 5 мм. При детонации октогена излучение детонационного комплекса начинает фиксироваться до его выхода на торец заряда [6, 7]. Чтобы экранировать это излучение, торцевую поверхность заряда закрашивали тонким слоем черного лака толщиной менее 0,05 мм.

Профиль давления на фронте УВ в бромоформе от инициирующей системы был получен в предварительных опытах. Инициирующий импульс на контактной границе с индикатором имел треугольный профиль с максимальным давлением 34 ГПа, при этом за время 0,6 мкс давление спадало до 20 ГПа. Так как ударная адиабата октогена практически совпадает с ударной адиабатой бромоформа, то импульс с такими же характеристиками инициировал исследуемые заряды октогена.

При относительно сильном ударноволновом инициировании систем на основе октогена (20 ÷ 30 ГПа), например состава PBX-9404, глубина возбуждения детонации менее 1 мм [8]. Следовательно, при использованной в настоящей работе системе инициирования уже при длине заряда $L \ge 20$ мм можно было ожидать стационарное распространение детонации. В рамках модели ЗНД на профиле давления должен был фиксироваться химпик. При стационарности процесса можно было ожидать регистрацию одного и того же максимального давления; влияние длины заряда сказывалось бы только на спаде давления в тейлоровской волне разрежения.

Полученные в настоящей работе данные не укладываются в схему модели ЗНД. На рис. 2 приведены кривые изменения давления на фронте УВ в бромоформе, контактирующем с зарядами октогена разной длины. (Для удобства сравнения каждая последующая кривая формально сдвинута на 0,5 мкс; для заряда длиной 44 мм приведены два профиля, полученные в различных опытах.) Во всех проведенных опытах зарегистрирована относительно большая длительность передних фронтов (от 20 до 75 нс), характер спада давления монотонный, химпик не наблюдался. Максимальные значения давления, регистрируемые в бромоформе для зарядов различной длины с учетом относительной погрешности 3 % приведены на рис. 3. (Различие значений давления, полученных в опытах при одной длине заряда, составляло ≈ 1.7 %.) С увеличением длины заряда максимальные давления сначала растут, а затем падают. Полученные значения при пере-

Рис. 2. Изменение давления на фронте ударной волны в бромоформе: *L*, мм: 1 — 22, 2 — 44, 3 — 66, 4 — 88, 5 — 110

счете на давление в продуктах детонации превосходят давления Чемпена — Жуге для октогена, приведенные, например, в [1, 9]. Таким образом, можно прийти к выводу, что при данной схеме проведения экспериментов для зарядов октогена длиной до 110 мм стационарный детонационный процесс не реализуется в полной мере.

Качественно похожие результаты были получены для агатированных зарядов октогена с $\rho_0 = 1,87$ г/см³ и гексогена с $\rho_0 = 1,78$ г/см³ [9]. Дискретным методом лазерного измерения волновых скоростей определялись скорости УВ в стопке плексигласовых пластин в зависимости от пройденного расстояния при различных длинах зарядов, максимальная длина не превосходила диаметра заряда (60 мм). Инициирование производилось баратоловым генератором плоской волны.

Полученные результаты, по мнению авторов [9], показывают, что химическое превращение происходит во фронте УВ (отсутствует химпик), это приводит к «завалу» ударного фронта, а формирование детонационной волны проходит через стадию пересжатия, степень которой уменьшается по мере увеличения длины заряда. С этими выводами можно согласиться с одним уточнением. Дополнительный анализ данных [9] показывает, что давле-

Рис. 3. Зависимость максимального давления на фронте ударной волны в бромоформе от длины заряда октогена

ние пересжатой детонации вначале увеличивается, а затем начинает падать по мере увеличения длины заряда. Авторы [9] связывают максимальные давления с эффектами пересжатия на стадии формирования детонационной волны, которые могут реализоваться в гомогенной системе при недостаточно мощном инициировании. Таким образом модель образования детонационной волны в этом случае может быть подобна схеме [10] при инициировании детонации в жидких ВВ. Однако пористость агатированных зарядов октогена составляла ≈ 2 %, а в наших опытах ≈ 5 %. Вряд ли при такой пористости можно рассматривать образец как гомогенный. Кроме того, в настоящей работе использовалась достаточно мощная система инициирования.

На нестационарность процесса распространения детонации также указывают и результаты, полученные на флегматизированных зарядах гексогена с $\rho_0 = 1,60 \text{ г/см}^3$ [11]. Измерения манганиновыми датчиками на базах от 40,2 до 120,6 мм (при постоянной скорости детонации) не дают одинаковых профилей давления. Использованная система инициирования создавала давление в ВВ 18 ГПа, при этом глубина возбуждения детонации составляла менее 2 мм [11].

Крайне интересными представляются данные для гексогена и тэна [12], полученные методом, аналогичным нашему, с использованием в качестве индикатора хлороформа. Если для зарядов гексогена с пористостью $4 \div 7 \%$ опыты показали наличие химпика, то для агатированных зарядов, как и в работе [9], он не регистрируется. По мнению авторов [12], это может быть связано с недостаточным временным разрешением современных экспериментальных методик, и с особенностями процесса детонации в агатированных образцах. Для тэна химпик обнаруживается при незначительном уменьшении начальной плотности зарядов (от 1,75 до 1,74 г/см³). Данные показали тенденцию роста зоны химической реакции с увеличением плотности зарядов, с одной стороны, и резкое (на порядок) уменьшение этой зоны при переходе к агатированным зарядам, с другой. Проведение сравнительного анализа экспериментальных результатов [12] с полученными в настоящей работе затруднено из-за отсутствия информации о влиянии (кроме отличия самих ВВ) исходных размеров частиц ВВ и систем инициирования на процесс детонации. Вполне вероятно, что именно это определяет наблюдаемые различия в структуре детонационной волны. Выяснение этого вопроса требует проведения дальнейших исследований.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (код проекта 97-03-32000).

ЛИТЕРАТУРА

- Мейдер Ч. Численное моделирование детонации. М.: Мир, 1985.
- Воскобойников И. М., Гогуля М. Ф. Свечение ударного фронта вблизи границы с детонирующим зарядом // Хим. физика. 1984. Т. 3, N^o 7. C. 1036–1041.
- Гогуля М. Ф., Долгобородов А. Ю. Индикаторный метод исследования ударных и детонационных волн // Хим. физика. 1994. Т. 13, № 12. С. 118–127.

- LASL Shock Hugoniot Date / S. P. Marsh (Ed). Berkeley: Univ. of California Press, 1980. P. 596.
- Thouvenin J. Effect of a shock wave on a porous solid // Proc. 4th Symp. (Intern.) on Detonation, NOL, ONR, October 12–15, 1965, White Oak. P. 258–265.
- Gogulya M. F., Brazhnikov M. A. Radiation of condensed explosives and its interpretation (temperature measurements) // Proc. 10th Intern. Symp. on Detonation, Boston-1993. Office of Naval Research, 1995. P. 542–548.
- Гогуля М. Ф., Бражников М. А. Температуры продуктов детонации конденсированных взрывчатых веществ. І. Твердые ВВ // Хим. физика. 1994. Т. 13, № 1. С. 52–63.
- 8. Ramsay J. B. and Popolato A. Analysis of shock wave and initiation data for solid explosives // Proc. 4th Symp. (Intern.) on Detonation, NOL, ONR, October 12–15, 1965, White Oak. P. 233–238.
- Ашаев В. К., Доронин Г. С., Левин А. Д. О структуре детонационного фронта в конденсированных ВВ // Физика горения и взрыва. 1988. Т. 24, № 1. С. 95–99.
- Chaiken R. F. Comments on hypervelocity wave phenomena in condensed explosives // J. Chem. Phys. 1960. V. 33, № 3. P. 760–762.
- Бордзиловский С. А., Караханов С. М. Исследование ударного инициирования флегматизированного гексогена // Физика горения и взрыва. 1995. Т. 31, № 3. С. 110–117.
- Lubyatnsky S. N., Loboiko B. G. Density effect on detonation reaction zone length in solid explosives // Shock Compression of Condensed Matter — 1997 / S. C. Schmidt, D. P. Dandekar, J. W. Forbes (Eds). American Inst. of Physics AIP Conference Proc. 429, Woodbury. New York, 1998. P. 743–747.

Поступила в редакцию 11/V 1999 г., в окончательном варианте — 1/X 1999 г.