2012. Том 53, № 4

Июль – август

C. 751 – 757

УДК 548.737:541.49

Посвящается юбилею академика Ф.А. Кузнецова

КРИСТАЛЛИЧЕСКИЕ СТРУКТУРЫ 1,1,1-ТРИФТОР-4-ГИДРОКСИ-4-ФЕНИЛ-БУТ-3-ЕН-2-ОНА, 2,2,6,6-ТЕТРАМЕТИЛ-3-ГИДРОКСИ-ГЕПТ-3-ЕН-5-ОНА, 2,2,6,6-ТЕТРАМЕТИЛ-3-МЕТИЛАМИНО-ГЕПТ-3-ЕН-5-ОНА И ИССЛЕДОВАНИЕ СПОСОБНОСТИ ЭТИХ ЛИГАНДОВ К КОМПЛЕКСООБРАЗОВАНИЮ С МЕТАЛЛАМИ

П.А. Стабников, Л.Г. Булушева, Н.И. Алферова, А.И. Смоленцев, И.А. Корольков, Н.В. Первухина, И.А. Байдина

Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, e-mail: stabnik@niic.nsc.ru

Статья поступила 12 июля 2010 г.

С доработки — 30 ноября 2011 г.

Определены кристаллические структуры (дифрактометр Bruker Nonius X8 Арех с 4К ССD детектором, λ Мо K_{α} , графитовый монохроматор, *T* 150 К и 293 К) двух β-дикетонов: F₃CC(O)CH₂C(O)Ph (1) (пр. гр. *P*2₁/*c*, *a* = 7,0713(3), *b* = 11,5190(6), *c* = 11,3602(6) Å, β = 99,405(2)°, *V* = 912,90(8) Å³, *Z* = 4), (CH₃)₃CC(O)CH₂C(O)C(CH₃)₃ (2) (пр. гр. *Pbca*, *a* = 11,5536(8), *b* = 11,5796(10), *c* = 17,2523(13) Å, *V* = 2308,1(3) Å³, *Z* = 8) и кетоимина (CH₃)₃CC(NCH₃)CH₂C(O)C(CH₃)₃ (3) (пр. гр. *I*4₁/*a*, *a* = 18,7687(6), *b* = 18,7687(6), *c* = 14,5182(6) Å, *V* = 5114,2(3) Å³, *Z* = 16). Все структуры молекулярного типа, построенные из изолированных молекул, объединенных ван-дер-ваальсовыми взаимодействиями. Проведены расчеты энергии замещения атома водорода в свободных лигандах на атом Na квантово-химическим гибридным методом B3LYP. Успешный синтез хелатов Na(I) с лигандами 1, 2 и безрезультатные попытки синтеза комплекса с лигандом 3 согласуются с результатами расчетов. Геометрическим моделированием комплекса меди(II) с лигандом 3 установлено перекрывание CH₃-групп, затрудняющее хелатообразование.

Ключевые слова: β-дикетоны, кристаллическая структура, упаковка молекул, хелатообразование.

Комплексы металлов с β-дикетонами и их азотзамещенными аналогами обладают летучестью, т.е. способностью переходить в газовую фазу без разрушения молекул при небольшом нагревании. Благодаря этому свойству β-дикетонаты металлов широко используются для получения металлических и оксидных покрытий (метод MO CVD [1, 2]). Практическое применение способствовало всестороннему исследованию данных комплексов металлов, в том числе и строению их кристаллов, что отражено в КБСД (Cambridge Crystallographic Data Centre). Однако, если комплексы металлов в КБСД представлены широко, то строение исходных лигандов изучено в меньшей степени. Данные о строении лигандов необходимы как для понимания химических превращений, происходящих при комплексообразовании, так и процессов разрушения молекул при термической деструкции соединений. Структуры некоторых β-дикетонов, найденные в КБСД, приведены в табл. 1 [3—7]. Структурные исследования 1,1,1-трифтор-4-гидрокси-4фенил-бут-3-ен-2-она (Hbtf, 1), 2,2,6,6-тетраметил-3-гидрокси-гепт-3-ен-5-она (Hdpm, 2) и 2,2,6,6-тетраметил-3-метиламино-гепт-3-ен-5-она (Hmi-dpm, 3) отсутствуют. Настоящая ра-

[©] Стабников П.А., Булушева Л.Г., Алферова Н.И., Смоленцев А.И., Корольков И.А., Первухина Н.В., Байдина И.А., 2012

Таблица 1

Лиганд и ссылка	Код в КБСД	Год	Пр. гр., Z	а	<i>b</i> , β	С	R	<i>Т</i> , К
Haa [3]	LIWPIQ	1998	Pnma, 4	8,396	15,984	4,066	4,81	110
	LOWPIQ01	1998	Pnma, 4	8,463	16,031	4,146	6,45	210
$[Bi(dpm)_3]_2 \cdot Hdpm [4]$	YIJYEV	1993	<i>C</i> 2/ <i>c</i> , 8	43,396	20,455, 104,27	18,499	3,85	207
NC-dpm [5]	HAKTIX	2004	$P2_1/c, 4$	9,957	20,405, 91,30	5,980	5,3	100
I-dpm [6]	KUGPUX	1992	$P2_1/c, 4$	9,188	14,229, 104,74	10,628	3,9	250
Hdbm [7]	DBEZLM05	1997	Pbca, 8	8,749	10,840	24,427	6,49	283

Структурные данные для исследованнных β-дикетонов

бота посвящена исследованию строения кристаллов, квантово-химическим расчетам и моделированию хелатообразования этих лигандов.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Лиганды Hbtf и Hdpm были приобретены в фирмах "Merck" и "Дальсиб". Синтез Hmi-dpm проводили аминированием Hdpm газообразным NH₂CH₃ в присутствии TiCl₄, так же, как это описано для синтеза 2,2,6,6-тетраметил-3-амино-3-гептен-5-она (**Hi-dpm**, **4**) в работе [8]. Hmi-dpm — белый порошок, не растворимый в воде и растворимый в органических растворителях. Температуры плавления лигандов (°C), установленные на столике Боэтиуса: **1** — 148, **2** — 19, **3** — 40. Результаты элементного анализа на C, H, N, F получены на Carlo-Erba 1106 (Italy). Для **1** найдено, %: C 55,5, H 3,2, F 26,4. Для C₇H₇O₂F₃ рассчитано, %: C 55,6, H 3,3, F 26,4. Для **2** найдено, %: C 71,8, H 10,8. Для C₁₁H₂₀O₂ рассчитано, %: C 71,7, H 10,9. Для **3** найдено, %: C 73,2, H 11,6, N 7,2. Для C₁₂H₂₃ON рассчитано, %: C 73,0, H 11,8, N 7,1.

ИК спектры образцов снимали на Фурье-спектрофотометре SCIMITAR FTS 2000 в области 375—4000 см⁻¹. Образцы готовили в виде таблеток с KBr. Результаты приведены на рис. 1. Некоторые частоты колебаний для этих лигандов следующие:

1 (cm⁻¹) v_{O-H} 3493, 3400; v_{C-H} 3122, 3078; $v_{C=O}$ 1617, 1580; v_{C-F} 1312, 1289, 1255; δ_{C-F} 773, 900.

2 $(cM^{-1}) v_{O-H} 3445; v_{C-H} 2967, 2902, 2872; v_{C=O} 1605.$

3 (cm⁻¹) ν_{O-H} 3406; ν_{N-H} 3210; ν_{C-H} 2964, 2901, 2875; $\nu_{C=O}$ 1604, 1572; δ_{N-H} 1524; ν_{C-N} 1203.

4 (cm⁻¹) ν_{N-H} 3406, 3347, 3175; ν_{C-H} 2967, 2907, 2868; $\nu_{C=0}$ 1633, 1596; δ_{N-H} 1525; ν_{C-N} 1216.

Взаимодействие лигандов с металлическим натрием. Эксперименты проводили в сухом диоксане. В четыре пробирки поместили по 0,013 г Na, прилили по ~5 мл диоксана и добавили ~ по 0,2 г Hbtf, Hdpm, Hi-dpm и Hmi-dpm (лиганды взяты с двойным избытком). При комнатной температуре выделение водорода отмечено в пробирке с Hbtf. При нагревании пробирок до

0 500 1000 1500 2000 2500 3000 3500 4000 Волновое число

40 °C выделение водорода стало заметно и в пробирке с Нdpm. При нагревании до 80 °C в этих пробирках реакция растворения Na усилилась, и стало заметно взаимодействие Na с Hi-dpm. При этой температуре Na с Hmi-dpm не реагировал. При нагревании последней пробирки до кипения диоксана (~101 °C) выделения водорода не наблюдали. После нагревания пробирок при 80 °C в течение 1 ч их

Рис. 1. ИК спектры исследуемых лигандов

Таблица 2

Соединение	1	2	3
Формула	$C_{10}H_7F_3O_2$	$C_{11}H_{20}O_2$	$C_{12}H_{23}ON$
Молекулярный вес	216,2	184,3	197,3
Температура, К	150(2)	150(2)	293(2)
Длина волны, Å	0,71073	0,71073	0,71073
Сингония	Моноклинная	Ромбическая	Тетрагональная
Простр. группа	$P2_{1}/c$	Pbca	$I4_1/a$
Параметры ячейки <i>a</i> , <i>b</i> , <i>c</i> , Å; β, град.	7,0713(3), 11,5190(6), 11,3602(6); 99,405(2)	11,5536(8), 11,5796(10), 17,2523(13)	18,7687(6), 18,7687(6), 14,5182(6)
$V, Å^3$	912,90(8)	2308,1(3)	5114,2(3)
Ζ	4	8	16
$d_{\rm выч}, \Gamma/{\rm cm}^3$	1,573	1,061	1,025
μ, мм ⁻¹	0,148	0,071	0,064
Размер кристалла, мм	0,22×0,12×0,06	0,34×0,28×0,22	0,24×0,20×0,22
Область съемки θ, град.	2,54—27,57	2,36—26,40	3,07—27,11
<i>I_{hkl}</i> измеренных	6908	15358	18850
$I_{hkl} > 2\sigma_I$	2103 [$R_{\rm int} = 0,0191$]	2362 [$R_{int} = 0,0257$]	2808 [$R_{\rm int} = 0,0297$]
GOOF для F_{hkl}^2	1,054	1,068	1,061
$R(I > 2\sigma_I)$	$R_1 = 0,0344, \ wR_2 = 0,0936$	$R_1 = 0,0396, \ wR_2 = 0,1054$	$R_1 = 0,0566, \ wR_2 = 0,1508$
<i>R</i> (<i>I_{hkl}</i> изм.)	$R_1 = 0,0439, wR_2 = 0,0985$	$R_1 = 0,0514, \ wR_2 = 0,1100$	$R_1 = 0,0732, \ wR_2 = 0,1579$

Кристаллографические данные и условия дифракционного эксперимента для соединений 1, 2 и 3

охлаждали до комнатной температуры. В пробирках с Hbtf и Hdpm натрий полностью прореагировал. В пробирке с Hi-dpm натрий растворился наполовину, а в пробирке с Hmi-dpm вес натрия остался без изменения.

Взаимодействие лигандов с Cu(OH)₂. Свежеприготовленный Cu(OH)₂ получали в смеси вода—ацетон (1:1) взаимодействием неорганической соли меди(II) и NaOH. Осадок Cu(OH)₂ отделяли на фильтре и промывали ацетоном. Осадок помещали в четыре выпарные чашки, в каждую из которых прибавляли по 0,2 г Hbtf, Hdpm, Hi-dpm и Hmi-dpm. (В каждой чашке был ~1,5-кратный избыток Cu(OH)₂.) Взаимодействие должно было проходить по реакции:

$$Cu(OH)_2 + 2HL \rightarrow Cu(L)_2 + H_2O.$$

По изменению цвета смеси было установлено образование $Cu(btf)_2$ и $Cu(dpm)_2$. Взаимодействия лигандов Hi-dpm и Hmi-dpm с $Cu(OH)_2$ не наблюдали. Однако через сутки при образовании сухого остатка было установлено образование $Cu(i-dpm)_2$, но Hmi-dpm с $Cu(OH)_2$ так и не прореагировал.

Рентгеноструктурный анализ. Параметры элементарных ячеек и массивы экспериментальных отражений при 150 К для $C_{10}H_7F_3O_2$ (1), $C_{11}H_{20}O_2$ (2) и при 293 К для $C_{12}H_{23}ON$ (3) получены на автоматическом дифрактометре Bruker Nonius X8 Арех с 4К ССD-детектором по стандартной методике (λMoK_{α} , графитовый монохроматор). Поглощение учтено полуэмпирически, опираясь на интенсивности эквивалентных рефлексов (SADABS) [9]. Структуры расшифрованы прямым методом и уточнены полноматричным МНК по F^2 в анизотропном приближении для неводородных атомов с использованием комплекса программ SHELX97 [10]. Атомы водорода органических лигандов локализованы геометрически и уточнены в приближении жесткого тела. Кристаллографические данные и детали дифракционного эксперимента приведены в табл. 2. Структурные данные для $C_{10}H_7F_3O_2$ (1), $C_{11}H_{20}O_2$ (2) и $C_{12}H_{23}ON$ (3) депонированы в КБСД (ССDС 769663, ССDС 755632, ССDС 840627).

753

ОПИСАНИЕ КРИСТАЛЛИЧЕСКИХ СТРУКТУР

Структуры $C_{10}H_7F_3O_2$ (1), $C_{11}H_{20}O_2$ (2) и $C_{12}H_{23}ON$ (3) состоят из изолированных молекул, строение которых показано на рис. 2, *a*—*в* соответственно. Молекулы лигандов 1, 2 и 3, за исключением атомов CF₃- и CH₃-групп, практически плоские в пределах 0,06 Å, отклонения атомов Ph-кольца в лиганде 1 от среднеквадратичной плоскости не превышают 0,01 Å. В структуре 1 молекулы лиганда расположены слоями параллельно направлению [010] (рис. 3, *a*), а в структурах соединений 2 и 3 молекулы лигандов уложены вдоль оси *a* по паркетному мотиву (см. рис. 3, *б* и *в*). В молекуле лиганда 3 наблюдается разупорядочение одной из C(CH₃)₃-групп.

Таблица З

		-			· · · · · · · · · · · · · · · · · · ·	-	
Связь	d	Связь	d	Связь	d	Связь	d
	Соеди	нение 1			Соедин	ение 2	
C(1)—C(2)	1,398(2)	C(8)—C(7)	1,385(2)	O(1)—C(1)	1,327(1)	C(7)—C(6)	1,434(2)
C(1)—C(6)	1,398(2)	C(8)—C(9)	1,406(2)	O(2)—C(7)	1,256(2)	C(7)—C(8)	1,527(2)
C(1)—C(7)	1,470(2)	O(2)—C(9)	1,255(2)	C(1)—C(2)	1,515(2)	C(8)—C(10)	1,526(2)
C(2)—C(3)	1,385(2)	C(9)—C(10)	1,530(2)	C(1)—C(6)	1,365(2)	C(8)—C(11)	1,527(2)
C(3)—C(4)	1,384(2)	F(1)—C(10)	1,331(2)	C(2)—C(3)	1,533(2)	C(8)—C(9)	1,528(2)
C(5)—C(4)	1,390(2)	F(2)—C(10)	1,329(2)	C(2)—C(4)	1,535(2)	O(1)—H(1)	1,00
C(6)—C(5)	1,388(2)	F(3)—C(10)	1,331(2)	C(2)—C(5)	1,521(2)		
O(1)—C(7)	1,315(1)	O(1)—H(1)	0,882				
			Соеди	инение 3			
O(1)—C(1)	1,253(2)	C(1)—C(5)	1,540(2)	C(4)—C(41)	1,540(3)	C(5)—C(55)	1,475(5)
N(1)—C(2)	1,339(2)	C(2)—C(3)	1,392(2)	C(4)—C(42)	1,543(3)	C(5)—C(51)	1,533(7)
N(1)—C(6)	1,457(2)	C(2)—C(4)	1,538(2)	C(5)—C(53)	1,393(6)	C(5)—C(54)	1,668(6)
N(1)—H(1)	0,84(2)	C(3)—H(3)	0,95(2)	C(5)—C(56)	1,431(13)	C(5)—C(52)	1,669(7)
C(1)—C(3)	1,419(2)	C(4)—C(43)	1,529(3)				

Межатомные расстояния d (Å) для соединений 1, 2 и 3

Рис. 3.	Укладка	молекул	В	кристалле	Hbtf	(a)
	Hd	рт (б), Hı	ni-	dpm (<i>e</i>)		

Длины связей в лигандах 1, 2 и 3 (табл. 3) близки и хорошо согласуются с известными литературными данными [11]. Необходимо отметить, что расстояния О—С и N—С в лигандах 1, 2 и 3 отличаются на 0,060, 0,071 и 0,086 Å соответственно. Кроме того, в молекулах лигандов реализуются внутримолекулярные водородные связи О—Н...О (1,735 и 1,532 Å для 1 и 2 соответственно), N—H...O (1,904 Å для 3), за счет которых образуется плоский шестичленный псевдогетероцикл (HO₂C₃) в 1 и 2 и (HNC₃O) в 3. В структуре лиганда 3 можно также отметить межмолекулярные контакты С—Н...О (H...O 2,44 Å) (см. рис. 3, e).

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ

Квантово-химические расчеты Hbtf. Hdpm, Hi-dpm, Hmi-dpm и их комплексов с натрием проводились с целью объяснения различной реакционной способности лигандов при хелатообразовании. Исследованные соединения рассчитаны в приближении теории функционала плотности с использованием трехпараметрического гибридного функционала Беке [12] и корреляционного функционала Ли, Янга, Пара [13] (метод B3LYP) в рамках пакета квантово-химических программ Jaguar [14]. Атомные орбитали описывались базисным набором 6-31G**. Геометрию фрагментов оптимизировали аналитическим методом до величины градиента 5. ·10⁻⁴ ат. ед. Некоторые длины связей, полученные по результатам оптимизации молекул Hbtf, Hdpm, Hi-dpm, Hmi-dpm, приведены в табл. 4. Использована нумерация атомов, предложенная при структурных расшифров-

Таблица 4

Длины	связей и энера	(Å), получ гия (эВ) к	енные по р омплексооб	езультатам B3LY бразования лигандо	ГР расче 28 с нап	гта мол прием	екул,	
	n on p	(=)		<i>P</i>		T		

Длина связи	Hbtf	Hdpm	Hi-dpm	Hmi-dpm	Длина связи	Hbtf	Hdpm	Hi-dpm	Hmi-dpm
O(1)—C(7)	1.318	1.323	_		C(7)—C(1)	1.450	1.524	1.539	1.545
O(2)—C(9)	1,256	1,259	1,252	1,256	C(9)—C(10)	1,519	1,542	1,553	1,553
C(7)—C(8)	1,363	1,380	1,385	1,395	N—C(7)			1,347	1,352
C(9)—C(8)	1,453	1,438	1,440	1,435	E^{form} комплекса	0,41	0,75	1,25	1,57

ках. Рассчитанные длины связей хорошо согласуются с экспериментальными значениями, что указывает на применимость используемого квантово-химического метода для исследования данного класса соединений. Из сопоставления данных, приведенных в табл. 4, видно, что длина связи O(2)—C(9) практически не зависит от типа заместителей в кольце и от противоположного хелатообразующего атома (кислород или азот). Длина связи C—N больше, чем длина связи C—O, и замещение атома водорода, связанного с азотом, на метильную группу приводит к ослаблению связи. Последовательное удлинение связи C(7)—C(8) в рассмотренном ряду молекул указывает на уменьшение π -электронного взаимодействия между этими атомами при замене фенильного фрагмента на *трет*-бутильную группу, атома кислорода на атом азота и водорода при атоме азота на метильную группу. Также в рассмотренном ряду молекул увеличивается расстояние между атомом углерода хелатного кольца и заместителем. При этом расстояние между атомами C(9)—C(8) практически не чувствительно к данным типам замены.

Энергию образования комплексов определяли следующим образом: $E^{\text{form}} = E^{\text{compl}} - E^{\text{lig}} - E^{\text{Na}} + E^{\text{H}}$, где E^{compl} и E^{lig} — полные энергии комплекса и лиганда; E^{Na} и E^{H} — энергии атома натрия и водорода, рассчитанные в том же базисе атомных орбиталей, что и энергии соединений. Полученные величины приведены в табл. 4. Энергия комплексообразования исследованных молекул с натрием имеет положительное значение, что указывает на эндотермичность процесса. То есть по результатам расчета для образования комплекса из лиганда и атома натрия в газовой фазе при температуре 0 К требуются затраты энергии. Эти затраты должны быть существенно меньше в условиях синтеза (температура — от комнатной до 101 °C). Увеличение энергии образования комплекса с натрием в ряду рассмотренных лигандов согласуется с экспериментально наблюдаемой тенденцией. Действительно, как нами было обнаружено, наиболее быстро протекает синтез натриевого комплекса с Hbtf, комплексообразование с Hdpm требует большей продолжительности, синтез с Hi-dpm получить не удается даже при нагревании реакционной смеси до 80 °C, а комплекс с Hmi-dpm получить не удается даже при нагревании реакционной смеси до температуры кипения диоксана.

МОДЕЛИРОВАНИЕ МОЛЕКУЛЯРНОГО СТРОЕНИЯ Cu(mi-dpm)₂

Полученные экспериментальные и расчетные данные свидетельствуют о существенном отличии лиганда Hmi-dpm от трех других. В связи с этим возникла необходимость объяснения того, почему не удается получить хелаты Na(I) и Cu(II) с лигандом **3**. Для этого мы решили в программе SHELXTL [9] провести моделирование гипотетического строения Cu(mi-dpm)₂, опирающееся на данные о строении молекул Cu(mi-aa)₂ [15] и Cu(i-dpm)₂ [8], показанные на рис. 4, *а* и *в* соответственно. Строение хелатных узлов в этих комплексах различно. Металло-

Puc. 4. Реальное строение молекулы $Cu(mi-aa)_2(a)$ и полученное геометрическим моделированием строение $Cu(mi-dpm)_2(6)$. Реальное строение молекулы $Cu(i-dpm)_2(6)$ и полученное геометрическим моделированием строение $Cu(i-dpm)_2(c)$

циклы в Cu(mi-aa)₂ развернуты относительно друг друга на ~47°, поэтому ближайшее окружение атома меди из четырех атомов кислорода и азота является промежуточным между квадратом и тетраэдром (см. рис. 4, *a*). Металлоциклы в Cu(i-dpm)₂ лежат в одной плоскости, и ближайшее окружение атома меди является квадратом (см. рис. 4, *b*). Задача моделирования заключалась в превращении концевых CH₃-групп в (C(CH₃)₃-группы в молекуле Cu(mi-aa)₂ и NH-групп в NCH₃-групп были удалены, а вместо них вставлены геометрически 6 атомов C на расстоянии 1,54 Å. После этого к этим атомам углерода были добавлены атомы водорода на расстоянии 1,0 Å. В молекуле Cu(i-dpm)₂ два атома водорода при атомах азота были удалены, а вместо них вставлены атомы водорода на расстоянии 1,0 Å. Строение молекулы Cu(mi-dpm)₂, полученное при превращении концевых CH₃-групп в (C(CH₃)₃-группы в молекуле Cu(mi-aa)₂ и превращении NH-групп в NCH₃-группы в молекуле Cu(i-dpm)₂ два атома водорода при атомах азота были добавлены атомы водорода на расстоянии 1,0 Å. Строение молекулы Cu(mi-dpm)₂, полученное при превращении концевых CH₃-групп в (C(CH₃)₃-группы в молекуле Cu(mi-aa)₂ и превращении NH-групп в NCH₃-группы в молекуле Cu(i-dpm)₂, показано на рис. 4, *б* и *г*. Из рис. 4 следует, что образование металлоциклов для Hmi-dpm должно осложняться внутрилигандным перекрыванием заместителей.

Моделирование показало, что при образовании металлоциклов Hmi-dpm с Cu(II) должно наблюдаться внутрилигандное перекрывание атомов метильной группы при азоте и атомов одной из метильных групп в заместителе независимо от разворота металлоциклов относительно друг друга. Другими словами, из-за стерических осложнений затруднено образование металлоцикла для лиганда Hmi-dpm, а следовательно, и комплекса Cu(mi-dpm)₂. Вероятно, аналогичными стерическими осложнениями можно объяснить неудачи в попытке синтезировать Nami-dpm в отличие от получения Naptf, Nadpm и Nai-dpm при взаимодействии металлического натрия с этими лигандами.

Следует отметить, что к тому времени, когда были готовы гранки данной работы, нам удалось синтезировать Cu(mi-dpm)₂ в кипящем толуоле при взаимодействии Cu(OCH₃)₂ с лигандом **3** в токе сухого азота. Комплекс очищен сублимацией. Cu(mi-dpm)₂ — зеленого цвета, $T_{nn} = 152-153$ °C.

Работа выполнена при поддержке гранта Российского фонда фундаментальных исследований № 11-03-00197а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Грибов Б.Г., Домрачев Г.А., Жук Б.В. и др. Осаждение пленок и покрытий разложением металлорганических соединений. – М.: Наука, 1981.
- The chemistry of metal CVD / Eds. T. Kodas, M. Hampden-Smith. Weinhem. New York—Basel— Cambridge—Tokyo: VCH, 1994.
- 3. Boese R., Antipin M.Yu., Blaser D., Lyssenko K.A. // J. Phys. Chem. B. 1998. 102. P. 8654 8660.
- 4. Фукин Г.К., Писаревский А.П., Яновский А.И., Стручков Ю.Т. // Журн. неорган. химии. 1993. **38**. С. 1205 1211.
- 5. Belot J.A., Clark J., Cowan J.A. et al. // J. Phys. Chem. B. 2004. 108. P. 6922 6926.
- 6. Sans-Lenain S., Reynes A., Gleizes A. // Acta Crystallogr., Cryst. Struct. Commun. 1992. 48. P. 1788.
- 7. Ozturk S., Akkurt M., Ide S. // Z. Kristallogr. 1997. 212. S. 808.
- 8. Stabnikov P.A., Zharkova G.I., Baidina I.A. et al. // Polyhedron. 2007. 26. P. 4445 4450.
- Bruker AXS Inc. (2004). APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11) and SHELXTL (Version 2008/1). Bruker Advanced X-ray Solutions. – Madison, Wisconsin, USA.
- 10. Sheldrick G.M. SHELX97 Release 97-2. University of Göttingen, Germany, 1998.
- 11. Allen F.H., Kennard O., Watson D.G. // J. Chem. Soc., Perkin Trans. 1987. P. S1 S19.
- 12. Becke A.D. // J. Chem. Phys. 1993. 98, N 7. P. 5648 5652.
- 13. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. 37, N 2. P. 785 789.
- 14. Jaguar, version 7.8. Schrödinger, LLC, New York, 2011.
- 15. Байдина И.А., Стабников П.А., Васильев А.Д. и др. // Журн. структур. химии. 2004. **45**, № 4. С. 706 712.