УДК 517.958.532

ФИЛЬТРАЦИЯ ЖИДКОСТИ В НЕОГРАНИЧЕННОМ ПЛАСТЕ С НАКЛОННЫМ ВОДОУПОРОМ

Е. В. Губкина, В. Н. Монахов*

Горно-Алтайский государственный университет, 659700 Горно-Алтайск * Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск

В работах П. Я. Полубариновой-Кочиной, С. Н. Нумерова и других авторов большое внимание уделено изучению задач фильтрации тяжелой несжимаемой жидкости в наклонных водоносных пластах. Поэтому в данной работе наряду с общей задачей фильтрации с произвольными полигональными непроницаемыми стенками пласта рассматриваются классические схемы фильтрации жидкости на наклонных водоупорах. При этом решаются прямые задачи о физических и геометрических параметрах фильтрационных потоков жидкости.

Ключевые слова: фильтрация жидкости, аналитическая функция, априорные оценки, разрешимость, локальная единственность.

1. ОБЩАЯ ЗАДАЧА ФИЛЬТРАЦИИ

Начнем рассмотрение с изученной в работе [1] общей задачи фильтрации жидкости в неограниченном пористом слое, предполагая, что углы $-\alpha_s \pi$ и $-\alpha_m \pi$ в вершинах $z_s = \infty$ и $z_m = \infty$ полигона P, составленных бесконечными звеньями P_k^* , P_{k+1}^* , k = s, m, произвольны, т. е. $\alpha_s \neq 0$, $\alpha_m \neq 0$ (рис. 1).

Область фильтрации D ограничена свободной (неизвестной) границей L и заданным полигоном P, состоящим из проницаемых стенок пласта P^1 , P^3 , примыкающей к ним непроницаемой кровли пласта $(P_0^1 \cup P_0^3)$, $P_0^k \cap P^k = z_0^k$, k = 1, 3 и непроницаемого основания пласта P^2 .

Рис. 1

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 02-01-00645), Министерства образования Российской Федерации (грант № Е00-4.065) и в рамках программы "Университеты России" (код проекта 04.01.038).

Направим ось x противоположно вектору ускорения силы тяжести и положим z = x + iy. Обозначим через z_k $(k = \overline{0, n+1})$ вершины полигона P, через $\alpha_k \pi$ углы при них и через $l_k = |z_k - z_{k-1}|$ длины конечных звеньев полигона P. Точки z_0^k , k = 1, 3 также являются вершинами полигона P: $z_0^1 = z_{s_0}$, $0 < s_0 < s$, $z_0^3 = z_{m_0}$, $m < m_0 < m$.

являются вершинами полигона $P: z_0^1 = z_{s_0}, 0 < s_0 < s, z_0^3 = z_{m_0}, m < m_0 < m.$ Пусть $z_s = P_0^1 \cap P^2$ и $z_m = P^2 \cap P_0^3$ (0 < s < m < n + 1) — точки, лежащие на бесконечности соответственно вверх и вниз по потоку ($z_m = z_s = \infty$).

На каждом из бесконечных звеньев P_s, P_{s+1} с концами в точках $(z_{s-1}, z_s), (z_s, z_{s+1})$ и звеньев P_m, P_{m+1} с концами $(z_{m-1}, z_m), (z_m, z_{m+1})$ зафиксируем по две конечные точки $(z_{s-1}^*, z_s^*), (z_{s+1}^*, z_{s+2}^*)$ и $(z_{m-1}^*, z_m^*), (z_{m+1}^*, z_{m+2}^*)$, включив их в число вершин P с углами при них, равными π .

В области D ищется аналитическая функция $w(z) = \varphi + i\psi$ (z = x + iy) — комплексный потенциал фильтрации.

В плоскости комплексного потенциала $w = \varphi + i\psi$ области фильтрации D соответствует полоса с уступами D^* , ограниченная прямыми $\psi = \text{const}$, $\varphi = \text{const}$: $\{-\infty < \varphi < \infty, \psi = 0\} \equiv w(P^2)$ (образ водоупора P^2); $\{\varphi < \varphi_{s_0}, \psi = Q_s\} \equiv w(P_0^1)$; $\{\varphi = \varphi_0, Q_s^- < \psi < Q_s^+\} \equiv w(P^1)$; $\{\varphi_0 < \varphi < \varphi_{n+1}, \psi = Q_0\} \equiv w(L)$; $\{\varphi = \varphi_{n+1}, Q_m^- < \psi < Q_m^+\} \equiv w(P^3)$; $\{\varphi_{n+1} < \varphi, \psi = Q_m\} \equiv w(P_0^3)$. Здесь $\varphi_k = \text{Re } w_k$ — заданные величины напоров; $Q_j^- = \min(Q_0, Q_j), Q_j^+ = \max(Q_0, Q_j), j = s, m$; Q_0, Q_s, Q_m — искомые величины расходов под плотиной (Q_0) , в верхней (Q_s) и нижней (Q_m) бесконечных вершинах z_s, z_m пористого слоя. Заданная схема фильтрационного потока определяет величину углов $\gamma_j \pi$ в конечных вершинах $w_j \in \partial D^*, j = 0, n+1, s-1, m+1$, равных $\pi/2$ или $3\pi/2$. При этом должны выполняться условия

$$\gamma_0 + \gamma_{s-1} = \gamma_{n+1} + \gamma_{m+1} = 2,$$

которые, в частности, определяют соотношения между искомыми расходами Q_0, Q_s, Q_m . Например, при $\gamma_0 = 1/2$ имеем $Q_0 > Q_s$, а при $\gamma_0 = 3/2 - Q_0 < Q_s$. Другие виды областей D^* рассматриваются в следующих пунктах.

В соответствии с геометрией областей D и D^* представления для производных конформных отображений $z: E \to D, w: E \to D^*$ ($E: \operatorname{Im} \zeta > 0$) принимают вид [1, 2]

$$\frac{dz}{d\zeta} = \frac{\Pi(\zeta)}{\pi i} \int_{|t|>1} \frac{|\Pi_0(t)| \, dt}{\Pi(t)(t-\zeta)}, \quad \Pi(\zeta) = \prod_{k=0}^{n+1} (\zeta-t_k)^{\beta_k}, \quad \frac{dw}{d\zeta} = \prod_{j=0}^5 (\zeta-\tau_j)^{\gamma_j-1}. \tag{1}$$

Здесь $\beta_k = \alpha_k - 1$, $\alpha_k \pi$ — внутренние углы в вершинах и концах z_k , $k = \overline{0, n+1}$ полигона P($z_s = z_m = \infty$, $\alpha_s \leq 0$, $\alpha_m \leq 0$, $0 \leq s < m \leq n+1$); t_k — прообразы $z_k = z(t_k)$; τ_j — прообразы вершин $w_j = w(\tau_j)$ полигона ∂D^* , совпадающие с частью из t_k ; $\gamma_j = 1/2$, 3/2 при $j \neq s, m$ и $\gamma_s = \gamma_m = 0$. Зафиксируем постоянные $t_0 = -1$ и $t_{n+1} = 1$.

2. СИСТЕМА УРАВНЕНИЙ ДЛЯ ПАРАМЕТРОВ

Если в представлении (1) произвольно зафиксировать вектор $T = (t_1, t_2, \ldots, t_n) \in \mathbb{R}^n$ неизвестных постоянных t_k $(k = \overline{1, n})$, то соответствующее ему отображение $z = z(\zeta, T)$, $z: E \to D(T)$ переводит отрезок [-1, 1] в полигон P(T) со сторонами, параллельными сторонам заданного полигона P. Составим систему уравнений относительно вектора T, решение которой обеспечивает равенство P(T) = P.

Положим $z_0 = 0$ и зададим длины $l_k = |z_k - z_{k-1}|$ конечных звеньев полигона P:

$$l_k = \int_{t_{k-1}}^{t_k} |\Pi(t)| \, |M(t)| \, dt \qquad (k = \overline{1, n}, \ k \neq s, m).$$
⁽²⁾

Поскольку на полигоне $P^1 \cup P_0^1$ фиксирована точка $z_0 = 0$, соответствующие условия (2) полностью задают его положение. Аналогично, чтобы зафиксировать положение полигонов P^2 и $P^3 \cup P_0^3$, зададим на них координаты точек z_{s+1} и z_{m+1} . Так как из граничного условия на прообразе свободной границы имеем

$$|x(t_{n+1}) - x(t_0)| = |\varphi_{n+1} - \varphi_0| = H \quad (|\ln H| \le N < \infty),$$

то величина $|x(t_{n+1})| = |\operatorname{Re} z_{n+1}| = H$ задана. Поэтому для определения положения полигонов P^2 и $P^3 \cup P_0^3$ достаточно, чтобы выполнялись следующие уравнения:

$$l_{s} + il_{s+1} = \int_{t_{s-1}}^{t_{s+1}} \frac{dz}{d\zeta} d\zeta, \qquad l_{m} = \operatorname{Im} \int_{t_{0}}^{t_{n+1}} \frac{dz}{d\zeta} d\zeta.$$
(3)

Положим $u_k = t_k - t_{k-1}$ $(k = \overline{1, n+1})$ и введем вектор $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$, через который вектор $T = (t_1, \ldots, t_n) \in \mathbb{R}^n$ однозначно определяется. Тогда вектор $u \in \mathbb{R}^n$ является решением функционального уравнения

$$l = g(u, \alpha),\tag{4}$$

где l_k , $l = (l_1, \ldots, l_n)$ представляются в форме (2) или (3); $\alpha = (\alpha_0, \ldots, \alpha_{n+1})$. По формулам (4) каждому фиксированному вектору $u = (u_1, \ldots, u_n)$, $u_k \neq 0$ отвечает полигон P(u), совпадающий с P только при выполнении (4) с заданными l_k , соответствующими P. При этом полигоны P(u), вообще говоря, неоднолистны, и некоторые из их звеньев могут иметь внешнее самопересечение. Чтобы учесть такую возможность, введем некоторые определения. Проведем из точек z_0 и z_{n+1} бесконечные звенья $P_0 = \{z: \text{Re } z = 0, \text{Im } z < 0\}$ и $P_{n+2} = \{z: |\text{Re } z| = H, \text{Im } z < \text{Im } z_{n+1}\}$, заменяющие неизвестную кривую L, и составим многоугольник $\overline{P} = P \cup P_0 \cup P_{n+2}$.

Назовем вектор $p = (l, \alpha) \in \mathbb{R}^{2n+1}$ геометрической характеристикой полигона P (многоугольника \overline{P}) и подчиним (l, α) следующим условиям:

$$0 < \delta \leqslant \alpha_k \leqslant 2, \quad k \neq s, m, \quad |\ln l_k| \leqslant \delta^{-1} \quad (k = \overline{1, n}), -1/2 + \delta \leqslant (\alpha_s, \alpha_m) \leqslant 0, \quad 1/2 \leqslant \alpha_0 \leqslant 3/2 - \delta, \quad \alpha_{n+1} = 1.$$
(5)

Условие (5) на угол откоса $\alpha_0 \pi$ в точке $z_0 = 0$ и равенство $\alpha_{n+1} = 1$ обеспечивают ограниченность $M(\zeta)$ в (1) при Im $\zeta > 0$.

Пусть для любой кривой $P_{ij} \subset D_0, \ \partial D_0 = \bar{P}$ с концами на несоседних звеньях $(P_i, P_j) \in \bar{P}$ выполняются неравенства

$$|P_{ij}| \ge \delta > 0, \qquad |i-j| \ge 2. \tag{6}$$

Если область D_0 невырождена, то производная конформного отображения $Z: E \to D_0$ должна представляться в виде

$$\frac{dZ}{d\zeta} = C\Pi(\zeta), \quad C = \text{const}, \quad Z: E \to D_0.$$
(7)

Полигоны P (многоугольники \overline{P}), для которых выполняются предположения (5)–(7), будем называть простыми и класс простых полигонов обозначать через $G(\delta)$ ($P \subset G(\delta)$ или $p = (l, \alpha) \in G(\delta)$).

Простые полигоны $P \subset G(\delta)$ и соответствующие им многоугольники \bar{P} , вообще говоря, неоднолистны и допускают внешние самопересечения несоседних звеньев, т. е. P и \bar{P} могут лежать на римановых поверхностях нулевого рода.

3. АПРИОРНЫЕ ОЦЕНКИ И ЛОКАЛЬНАЯ ЕДИНСТВЕННОСТЬ РЕШЕНИЯ

Теорема 1 (об априорных оценках). Пусть уравнение (4) при $(l, \alpha) \in G(\delta)$ имеет решение $u = (u_1, \ldots, u_n) \in \mathbb{R}^n$, $u_k > 0$. Тогда выполняется следующее включение (априорные оценки):

$$u \in \Omega = \{ u: 0 < \varepsilon(\delta) \leqslant u_k, \ k = \overline{1, n} \}.$$
(8)

Доказательство оценок (8) начнем с установления их справедливости для параметров τ_k конформного отображения $w: E \to D^*$:

$$|\tau_{j+1} - \tau_j| \ge \varepsilon > 0, \quad j = \overline{0,5} \ (\tau_6 = \tau_0). \tag{9}$$

Неравенства (9) обеспечивают невырожденность области D^* и доказываются методом экстремальных длин семейств кривых [3].

Рассмотрим область фильтрации D (рис. 1) как "четырехсторонник" с вершинами $z_0, z_{n+1}, z_0^1, z_0^3, z_{m+1}^*$ и отобразим конформно область D^* на прямоугольник Ω во вспомогательной плоскости W ($W: D^* \to \Omega$) с вершинами $W_k = W(w_k), w_k = \{w_0, w_{n+1}, w_0^1, w_0^3\}$.

Отметим прежде всего, что модуль "четырехсторонника" $D \pmod{D}$ с парой противоположных "сторон" L и $\Gamma = (P^2 \cup P_0^1 \cup P_0^3)$ в силу конформности отображения W = W(z), $W: D^* \to \Omega$ равен модулю прямоугольника Ω . Для оценки mod D достаточно определить экстремальную длину $\lambda(\omega)$ семейства кривых $\{\omega\}$, соединяющих L и Γ . Наряду с $\{\omega\}$ рассмотрим семейство кривых $\{\omega^*\}$, соединяющих "стороны" $P_0 \cup P_{n+2}$ и Γ многоугольника \bar{P} , $D \subset D(\bar{P})$ (P_0 и P_{n+2} — лучи, выходящие из точек z_0 и z_{n+1}). Из точки z_{n+1} проведем отрезок прямой $x = x_{n+1}$ до возможного его пересечения с $P^1 \cup \Gamma$ в точке $z_* \in (P^1 \cup \Gamma)$ (если пересечения нет, то $z_* = \infty$).

Положим $L_* = \{x = x_{n+1}, y_{n+1} < y < \bar{y}\}, P_*^1 = \{x = x_{n+1}, \bar{y} < y < y_*\}, \bar{y} = (y_* - y_{n+1})/2$. Полученную область обозначим через $D_* \subset D$.

Если $z_* \in P^1$, то в качестве стороны, противоположной L_* , берется $\Gamma_* = \Gamma$. При $z_* \in \Gamma$ $\Gamma_* = \Gamma \setminus l_*$, где $l_* \subset P_0^1$ — часть звена P_0^1 от точки z_* до точки z_0^1 .

Рассмотрим семейство кривых $\{\omega_*\}$, соединяющих Γ_* и L_* в области $D_* \subset D$. Модули $\lambda(\omega)$, $\lambda(\omega^*)$ и $\lambda(\omega_*)$ этих семейств связаны соотношениями

$$0 < \lambda(\omega_*) \leq \lambda(\omega) = \mod D = \mod D^* < \lambda(\omega^*) < \infty.$$

В силу того, что "четырехсторонники" D_* и $D(\bar{P})$ фиксированы, величины $\lambda(\omega_*)$ и $\lambda(\omega^*)$ могут быть найдены явно. Из полученных оценок для $\lambda(\omega)$ следует невырожденность полигона ∂D^* и тем самым справедливость оценок (9).

Для доказательства оценок (8) для остальных $u_k = t_k - t_{k-1}$ $(k = \overline{1, n})$ предположим противное, а именно, что часть из u_k может стремиться к нулю, т. е. соответствующие им постоянные t_k сближаются: $|t_{k+1} - t_k| \to 0$. Пусть пока в число сближающихся параметров t_k не входят $t_0 = -1$ и $t_{n+1} = 1$, т. е. сближаются t_k , $1 \leq i \leq k \leq j \leq n$. Постоянные $t_s = \tau_2$ и $t_m = \tau_3$ в силу (9) не могут одновременно входить в число сближающихся параметров. Поэтому рассмотрим случай, когда $z_j \neq \infty$ (не исключается возможность $z_i = \infty$), представляя $l_j = |z_j - z_{j-1}|$ в форме

$$l_j = \int_{t_j}^{t_{j+1}} \prod_{k=i}^j |t - t_k|^{\beta_k} |M_j(t)| dt \quad (\beta_k = \alpha_k - 1, \ k = \overline{0, n+1}).$$

Здесь $|M_j(t)| = |\Pi_j(t)| |M(t)| \neq 0, \infty$ при $t \in [t_j, t_{j+1}); |\Pi_j(t)| = \prod_{k=0}^{i-1} |t - t_k|^{\beta_k} \prod_{k=j+1}^{n+1} |t - t_k|^{\beta_k}.$

Отнесем в Σ' все $\beta_k < 0$, а в Σ'' все $\beta_k \ge 0$, $k = \overline{i, j}$ и положим $\nu = -\Sigma' \beta_k$, $\mu = \Sigma'' \beta_k$. Предположения: $\mu - \nu + 1 \le 0$, $(t_j - t_i) \to 0$, $1 \le i < j \le n$.

По условию t_{j+1} и t_j не сближаются, следовательно, существует $\varepsilon > 0$ такое, что $\varepsilon + t_j < t_{j+1}$. Поскольку $|M_j(t)| \ge a \ne 0, t \in [t_j, t_j + \varepsilon); t - t_j \le t - t_k \le t - t_i$, то

$$l_j = \int_{t_j}^{t_{j+1}} \left| \frac{dz}{dt} \right| dt \ge \int_{t_j}^{t_j + \varepsilon} \left| \frac{dz}{dt} \right| dt \ge a \int_{t_j}^{t_j + \varepsilon} (t - t_i)^{-\nu} (t - t_j)^{\mu} dt.$$

В последнем интеграле сделаем замену переменных, полагая $t = rs + t_j$. Тогда

$$l_j \ge ar^{\mu-\nu+1} \int_0^{\varepsilon/r} s^\mu (1+s)^{-\nu} \, ds \to \infty \quad \text{при} \quad r = (t_j - t_i) \to 0,$$

что противоречит условиям (5).

Если $\mu - \nu + 1 = 0$, то аналогично получим

$$l_j \ge a \int_0^{\varepsilon/r} s^{\mu-\nu} \left(1 + \frac{1}{s}\right)^{-\nu} ds \ge 2^{-\nu} a \int_1^{\varepsilon/r} \frac{ds}{s} \to \infty \quad \text{при} \quad r \to 0$$

Предположения: $\mu - \nu + 1 > 0, (t_j - t_i) \rightarrow 0, 1 \leq i < j \leq n.$

Построим в верхней полуплоскости Im $\zeta > 0$ полуокружность K_r радиуса $r = t_j - t_i$ с центром в точке $\zeta_0 = (t_j + t_i)/2$, выбирая r настолько малым, чтобы выполнялись неравенства $t_i - r/2 > t_{i+1}$, $t_j + r/2 < t_{j+1}$. Имеем

$$|M_j(\zeta)| \leq A < \infty, \quad \zeta \in K_r; \qquad r/2 \leq |\zeta - t_k| \leq 2r, \quad \zeta \in K_r, \quad k = \overline{i, j}.$$

Рассмотрим кривую $\Lambda_r = F(K_r) \subset D$, $F: E \to D$ с концами на звеньях P_{i-1} и P_{j+1} полигона P. При $r \to 0$ длина $|\Lambda_r|$ стремится к нулю, а тем самым и $l_k \to 0$, $k = \overline{i, j}$:

$$|\Lambda_r| = \left| \int\limits_{K_r} \frac{dz}{d\zeta} \, d\zeta \right| \leqslant \pi r A |\Pi'(\zeta)| \, |\Pi''(\zeta)| \leqslant A \pi r (2r)^{\mu} \left(\frac{r}{2}\right)^{-\nu} \to 0.$$

Здесь в $\Pi' = \Pi'(\zeta - t_k)^{\beta_k}$ входят только степени $\beta_k < 0$, а в Π'' — все $\beta_k > 0$, $k = \overline{i, j}$. Таким образом, предположение о том, что $r = (t_j - t_i) \to 0$, неверно, т. е. найдется такое $\varepsilon > 0$, для которого $(t_j - t_i) \ge \varepsilon > 0$.

Аналогично рассматривается случай $z_j = \infty$, $z_i \neq \infty$, только при $\mu - \nu + 1 \leq 0$ нужно взять сторону $l_i = |z_i - z_{i-1}|$.

Итак, осталось рассмотреть случай, когда в число сближающихся t_k входит один из параметров t_0, t_{n+1} , например $t_0 = -1$, т. е. $(t_j - t_0) \rightarrow 0$. Отметим, что 0 < j < m, так как согласно (9) $t_m - t_s \ge \varepsilon > 0$. Положим

$$M_0(\zeta) = (\zeta - t_0)^{\alpha_0 - 1/2 + \gamma} \Pi_*(\zeta) M(\zeta), \qquad \Pi_0(\zeta) = \prod_{k=1}^j (\zeta - t_k)^{\beta_k} (\zeta - t_0)^{\bar{\beta}_0},$$

где $\Pi_*(\zeta) = \Pi(\zeta)\Pi_0^{-1}(\zeta)$; $\gamma_0 = 0$ при $\alpha_0 > 1/2$ и $0 < \gamma_0 \ll 1$ при $\alpha_0 = 1/2$; $\bar{\beta}_0 = -1/2 - \gamma_0$ (черта над β_0 далее опускается).

Отнесем в Σ' все $\beta_k < 0$ и в Σ'' все $\beta_k \ge 0, \ k = \overline{0, j} \ (\beta_0 = \overline{\beta}_0)$ и обозначим $\nu = -\Sigma' \beta_k, \mu = \Sigma'' \beta_k.$

Предположения: $\mu - \nu + 1 \leq 0, (t_j - t_0) \rightarrow 0, 1 \leq j \leq m - 1.$

Согласно выбору $\bar{\beta}_0 = -1/2 - \gamma_0$ имеем $M(t_0) \neq 0, \infty$, поэтому включение t_0 в число сближающихся параметров в рассматриваемом случае не осложняет доказательство.

Предположения: $\mu - \nu + 1 > 0, (t_j - t_0) \rightarrow 0, 1 \leq j \leq m - 1.$

Аналогично случаю $r = (t_j - t_i) \rightarrow 0, t \ge 1$ устанавливается, что $|\Lambda_r| = |F(K_r)| \rightarrow 0$ при $r \rightarrow 0$, где $K_r = \{\zeta: \operatorname{Im} \zeta > 0, |\zeta - t_0 - r/2| = r\}, F: E \rightarrow D.$

Так как образ $z_*(r)$ точки $t_0 - r/2 = t_*(r) \in K_r$ лежит на свободной границе L, то дополнительно нужно доказать, что $z_* = F[t_*(r)] \to 0$ при $r \to 0$ ($F(t_0) = 0$). Учитывая, j

что $\sum_{k=0}^{J} \beta_k = \mu - \nu > -1$, получим

$$|F(t_*)| = \left| \int_{t_*}^{t_0} \Pi_0(t) M_0(t) \, dt \right| \le \max |M_0| \int_{t_*}^{t_0} \prod_{k=0}^j |t - t_k|^{\beta_k} \, dt \to 0$$

при $r \to 0$. Итак, $l_k \to 0$ при $r \to 0, k = \overline{1, j}$.

Окончательно установлено, что если $r = (t_j - t_i) \to 0$, то $|\ln l_k| \to \infty$, т. е. возникает противоречие с условием (5) простого полигона *P*. Теорема доказана.

Теорема 2 (о локальной единственности). Если решение уравнения (4) существует, то $g(u, \alpha) \in C^2[\Omega \times G]$ и это решение локально единственно, т. е.

$$\frac{Dg(u,\alpha)}{Du} = \{g_{ij}\} \neq 0, \infty, \qquad g_{ij} = \frac{\partial g_i}{\partial u_j}, \qquad (u,\alpha) \in (\Omega \times G).$$
(10)

Доказательство. Дифференцируемость $l_k = g_k(u, \alpha)$ по аргументам при представлении их в форме (2) установлена в [4], а для представления (3) она легко проверяется непосредственно.

Доказательство соотношения (10) проводится по схеме, предложенной в [4]. Вычислим вариацию $\delta l = \delta g(u, \alpha)$ вектора $l \in \mathbb{R}^n$ через вариацию δu искомого решения $u \in \mathbb{R}^n$ при фиксированном $\alpha \in G(\delta)$: $\delta l = (Dg/Du)\delta u$. Пусть $\delta u \neq 0$, при $\delta l = 0$ вычислим δz :

$$\delta z = \int_{-1}^{\zeta} \Pi(\zeta) \Omega(\zeta, \delta u) \, d\zeta, \quad \Omega = \sum_{k} \left[(1 - \alpha_k) (\zeta - t_k)^{-1} M(\zeta) + \frac{\partial M}{\partial t_k} \right] \delta t_k.$$

Легко проверить, что $d\delta z/d\zeta$ удовлетворяет краевой задаче

$$\arg \frac{d\delta z}{dt} = \gamma_k \pi, \quad t \in [t_k, t_{k+1}]; \qquad \arg \frac{d\delta z}{dt} = 0, \quad |t| \ge 1.$$

Следовательно,

$$\delta z = \prod_{k=0}^{n+1} (\zeta - t_k)^{\alpha_k - \varepsilon_k} Q_p(\zeta), \qquad Q_p = \sum_{k=0}^p c_k \zeta^k,$$

причем $\varepsilon_k = 0$ при $\delta t_k = 0$ и $\varepsilon_k = 1$ при $\delta t \neq 0$. Сравнивая полученное решение δz краевой задачи с δz , вычисленным выше в окрестности $\zeta = \infty$, получим $Q_p \equiv 0$ и тем самым $\delta z = 0$. Тогда из представления для δz находим $\Omega(\zeta) \equiv 0$, откуда $\delta u_k = 0$, из чего следуют соотношения (10). Теорема доказана.

4. НАЧАЛЬНЫЙ ПОЛИГОН

Рассмотрим полигон $P_* = \bigcup_{k=1}^3 P_*^k$: $P_*^1 = \{z: x = 0, y > 0\}, P_*^3 = \{z: x = -H, y < y_n\},$ $P_*^2 = \{z: z = -H_1, -\infty < y < \infty\}, H_1 > H.$ В точке $z_k, k = 0, n+1$ углы $\alpha_k \pi = \pi$, а в точке z_n угол $\alpha_n \pi = 2\pi$. Тогда в (1) имеем

$$\Pi(\zeta) = [(\zeta - \tau_2)(\zeta - \tau_3)]^{-1}(\zeta - t_n), \qquad |\Pi_0| = \prod_{k=1}^4 |t - \tau_k|^{-1/2}$$

Зафиксируем $\tau_1 = -1, \tau_2 = 0$ и $\tau_4 = 1$ и будем отыскивать τ_3 из уравнения

$$H = \int_{0}^{\tau_3} [(1 - t^2)(\tau_3 - t)t]^{-1/2} dt.$$

Произведем в интеграле замену переменных $t = \tau_3(1 - \sigma)$:

$$H = \int_{0}^{1} [1 - \tau_{3}^{2}(1 - \sigma)^{2}]^{-1/2} [\sigma(1 - \sigma)]^{-1/2} d\sigma \equiv U(\tau_{3}).$$

По построению $dU/d\tau_3 > 0, U(0) = \int_0^1 [\sigma(1-\sigma)]^{-1/2} d\sigma \equiv H_0, U(1) = \infty.$ Зафиксируем

 $H > H_0$. Тогда из уравнения $H = U(\tau_3)$ однозначно определится постоянная τ_3 , $\tau_2 = 0 < \tau_3 < 1 = \tau_4$.

Представим теперь заданную величину $H_2 = H_1 - H > 0$ в виде

$$H_2 = \pi \left| \frac{dz}{d\zeta} (\zeta - \tau_3) \right|_{\zeta = \tau_3}, \quad H_2 = \pi \tau_3^{-1} (t_n - \tau_3) |M(\tau_3)| \equiv X(t_n) \quad (M(\tau_3) = \varphi(t_n)).$$

Имеем $dX/dt_n > 0$, $X(\tau_3) = 0$, $X(\tau_4) = \infty$. Поэтому уравнение $H_2 = X(t_n)$ однозначно разрешимо относительно t_n и $\tau_3 < t_n < \tau_4$. Таким образом, конформное отображение $z = F_*(\zeta), F_*: E \to D_0, \partial D_0 = P_0 \cup L_*$ однозначно определено.

Зафиксируем произвольно точки t_k , $t_0 = -1 < \overline{t_1} < \ldots < t_s = \tau_2 < \ldots < t_m = \tau_3 < \ldots < t_{n+1} = 1$ и найдем их образы $z_k = F_*(t_k)$, $k = \overline{0, n+1}$. По точкам z_k составим систему уравнений (2), (3), по построению однозначно разрешимую ($\alpha_k = 0$, $k = \overline{1, n-1}$).

5. ОДНОЗНАЧНАЯ РАЗРЕШИМОСТЬ УРАВНЕНИЯ $l = g(u, \alpha)$

Теорема 3 (существования и единственности). Уравнение (4), соответствующее простому полигону $P \subset G(\delta)$, а с ним и исходная задача теории фильтрации однозначно разрешимы.

Доказательство теоремы в силу теорем 1, 2 следует из сходимости метода непрерывности [4, с. 122]. Для применения этого метода соединим вершины построенного в п. 4 начального полигона P_* с соответствующими вершинами исходного полигона P гладкими непересекающимися кривыми S_k , $k = \overline{0, n+1}$. Произвольно выбирая точки $z_k(S_k)$ на этих кривых и соединяя их между собой отрезками прямых, получим семейство полигонов $\{P(S)\}, S = (S_0, \ldots, S_{n+1})$ с внутренними углами $\alpha_k \pi$ и длинами сторон $l_k, k = \overline{0, n+1}$ $(l_k$ при k = s, s+1, m определяются формулами (3)). По построению $P(S) \in G(\delta)$. Далее метод непрерывности заключается в последовательном доказательстве однозначной

Рис. 3

разрешимости уравнения (4) с помощью теоремы о неявных функциях для непрерывно деформируемых вдоль S полигонов P(S) начиная с P_* . В силу теоремы единственности для начального полигона она сохранится и для всех полигонов P(S) включая исходный полигон P[4, c. 122, 123]. Теорема доказана.

Ниже рассмотрено несколько частных задач.

6. ФИЛЬТРАЦИОННЫЙ ПОТОК ГРУНТОВЫХ ВОД ПО НАКЛОННОМУ ВОДОУПОРУ ПОД ГОРИЗОНТАЛЬНОЙ ДРЕНОЙ

Схема фильтрации приведена на рис. 2, взятом из [5, с. 231]. Глубины и расходы потока вверх и вниз по течению равны соответственно h, Q и h_1, Q_1 . Области D^* комплексного потенциала $\omega = \varphi + i\psi$ изображены на рис. 3, соответствие граничных точек конформных отображений $Z: E \to D$ и $\omega: E \to D^*$ указано на рис. 2 (t_j — прообразы точек $M_j, j = \overline{0, 6}$).

В данной работе сохранены принятые в монографии [5, с. 231–239] обозначения переменных, связанные с переменными z и w формулами Z = -iz, $\omega = kw$ (k — коэффициент проницаемости).

В зависимости от положения точки разветвления потока M_0 , в которой скорость течения равна нулю, рассмотрим три схемы течения, описанные в [5, с. 233–239].

1. Всесторонний приток жидкости к дрене (расход $Q > Q_1$, точка разветвления M_0 лежит на правой ветви свободной границы M_5M_4) (см. рис. 2; 3,*a*).

2. Фильтрационный поток жидкости из дрены (канала) в грунт ($M_0 \in M_6 M_1, Q < Q_1$) (см. рис. 2; 3, δ).

3. В верхней части дрены приток грунтовых вод, в нижней просачивание из дрены в грунт (M_0 лежит на дрене M_3M_2 , $Q > Q_1$) (см. рис. 2; 3,6).

Предполагается, что в схемах течения 1, 3 на дрене имеются точки M_2 , M_3 с углами при них, равными 2π (см. рис. 2). Зафиксируем постоянные $t_6 = 0, t_2 = 1$ и $t_0^m, m = 1, 2, 3$ (индекс *m* соответствует схеме течения), полагая $t_0^2 = -1, t_0^3 = (t_2 - t_3)/2, t_0^1 = (t_4 - t_5)/2.$ Функции $d\omega^m/d\zeta, \omega^m : E \to D_m^*$ и $dZ^m/d\zeta, Z^m : E \to D$ представляются в виде

$$\frac{d\omega^m}{d\zeta} = K(\zeta - t_0^m)[(\zeta - t_6)(\zeta - t_5)]^{-1}(\zeta - t_4)^{-1/2} = \Pi_0^m(\zeta),$$
$$\frac{dZ^m}{d\zeta} = -\frac{\Pi(\zeta)}{\pi} \int_{\Omega} \frac{\sigma |\Pi_0^m(t)| \, dt}{\Pi(t)(t-\zeta)}, \quad \Pi = (\zeta - t_2)(\zeta - t_3)(\zeta - t_6)^{\alpha - 2}(\zeta - t_5)^{-1-\alpha}$$

где $\Omega = (-\infty, 0) \cup (t_5, t_4); K = K(Q_0, Q_1)$ — заданная постоянная [5, с. 233]; $\sigma = \text{sign} (dy/dt)$, $t \in \Omega$. Считая заданными глубины h_0^m и h_1^m вверх и вниз по течению, вычислим расходы Q_0^m и Q_1^m : $Q_j^m = Kh_j^m \sin(\alpha \pi) \cos(\alpha \pi), \ j = 0, 1$ [5, с. 234, 235]. В схемах 1, 3 $Q_0^m > Q_1^m$, m = 1, 3, а в схеме 2 $Q_0^2 < Q_1^2$ (см. рис. 3).

Постоянные t_3 , t_4 и t_5 определяются из следующей системы уравнений:

$$b_1 = \int_{t_4}^{\infty} \left| \frac{dZ^m}{dt} \right| dt, \quad \pi Q_j^m = |\Pi_0^m(\zeta)(\zeta - t_{6-j})|_{\zeta = t_{6-j}}, \quad j = 0, 1.$$
(11)

Здесь $b_1 = |Z(t_1) - Z(t_4)|$ — длина дренажа (см. рис. 2); расходы Q_j^m — заданные величины.

Теорема 4. Задачи 1–3 о фильтрации жидкости к дрене при наличии наклонного водоупора однозначно разрешимы, причем соответствующие им решения (t_3, t_4, t_5) системы уравнений (11) удовлетворяют неравенствам

$$t_k - t_{k+1} \ge \varepsilon > 0, \qquad k = 2, 3, 4, 5.$$
 (12)

Доказательство утверждений теоремы, как и ранее, следует из справедливости априорных оценок (12). Запишем подробно два последних уравнения (11):

$$\pi Q_0^m = K |t_6 - t_0^m| (t_5 - t_6)^{-1} (t_4 - t_6)^{-1/2}, \quad \pi Q_1^m = K |t_5 - t_0^m| (t_5 - t_6)^{-1} (t_4 - t_5)^{-1/2}.$$

Если $t_5 \to t_6 = 0$ или $t_4 \to t_5$, то $Q_j^m \to \infty, j = 0, 1$, что и доказывает неравенства (12) при k = 4, 5. Для доказательства остальных неравенств (12) так же, как в п. 3, рассмотрим несколько случаев.

Предположения: $t_2 - t_3 = r \rightarrow 0, t_3 - t_4 \ge \varepsilon > 0$. Тогда

$$b_1 \leqslant b = \int\limits_{t_3}^{t_2} \left| \frac{dZ^m}{dt} \right| dt = r^3 \int\limits_0^1 \Lambda(s, r) \, ds \to 0$$
 при $r \to 0.$

Здесь в интеграле произведена замена переменных $t = sr + t_3, s \in [0,1]$ и учтено, что $\int_{0}^{1} \Lambda(s,r) \, ds \leqslant N_0 < \infty.$ Предположения: $t_3 - t_4 = r \rightarrow 0, t_2 - t_3 \geqslant \varepsilon > 0$. Тогда

$$I \equiv \int_{t_5}^{t_4} \frac{\sigma |\Pi_0(t)| \, dt}{\Pi(t)(t-\zeta)} \to \infty \quad \text{прм} \quad r \to 0, \ s \in (-\infty,\infty),$$

Рис. 4

так как $|\Pi_0(t)| |\Pi^{-1}(t)| \leqslant K_1 |t_3 - t|^{-3/2}$ при $t_4 = t_3$. При этом

$$|z_* - z_2| = \int_{t_*}^{t_2} \left| \frac{dZ^m}{dt} \right| dt \to \infty \quad \text{при} \quad r \to 0, \ t_* \in [t_3, t_2).$$

В частности, для постоянной t_* , отвечающей точке $z_* = Z(t_*) = b_1$, лежащей на дренаже M_3M_2 , следует также, что $z_* = b_1 \to \infty$.

Предположение: $t_2 - t_4 = r \rightarrow 0$.

В данном случае также $I \to \infty$ и тем самым $z_* \to \infty$.

Полученные противоречия неравенству $|\ln b_1| < \infty$ доказывают оценки (12) при k = 2, 3. Теорема доказана.

Замечание 1. В монографии [5, с. 231–239] считалась заданной лишь длина дренажа b_1 , постоянные $t_6 = 0$ и $t_5 = 1$ фиксировались, а t_4 отыскивалась из первого уравнения (11). Наличие точек M_2 , M_3 с углами при них, равными 2π , не учитывалось, и тем самым отображение $Z: E \to D$ не зависело от постоянных t_2 и t_3 . Уравнение (11) относительно $t_4 > 0$ в [5] решалось численно. В прямой постановке задачи 1–3 решены здесь впервые.

Замечание 2. Аналогично рассматривается случай, когда в окрестности бесконечных точек M_5, M_6 ветви свободных границ, выходящих из M_1 и M_4 , могут приходить на непроницаемую кровлю пласта — отрезки прямых $M_5M_5^*$ и $M_6M_6^*$, параллельных водоупору M_6M_5 . При этом заданные отрезки прямых $M_5M_5^*, M_6M_6^*$ и водоупор M_6M_5 могут быть заменены на полигон P с вершинами $z_k, k = \overline{0, n+1}$, где $z_s = \infty$ соответствует точке M_6 , а $z_m = \infty, m > s$ — точке M_5 .

7. ФИЛЬТРАЦИОННЫЙ ПОТОК ЖИДКОСТИ ИЗ КАНАЛА НА НАКЛОННЫЙ ВОДОУПОР

Аналогичные задачи изучались в монографии [5, с. 147, 167], схемы области фильтрационных течений представлены на рис. 4.

7.1. Фильтрация жидкости из прямолинейного канала на горизонтальный водоприемник, находящийся над наклонным водоупором (рис. 4, a). В данной задаче дно канала $P_1 = \{z : x = 0, 0 < y < y_1\}$ и дренаж $P_5 = \{z : x = -H, y \in (y_4, y_5) \cup (y_6, y_5)\}$ являются эквипотенциалями, $\varphi = 0$ и $\varphi = H$ соответственно. Ось симметрии $P_2 = \{z : -H_1 = x_2 < x < 0, y = y_1 > 0\}$ и водоупор $P_3 = \{z : -\infty < x < -H_1, y - y_2 = (x + H_1) \operatorname{ctg}(\gamma \pi)\}$ есть линия тока $\psi = 0$, свободная граница L и кровля пласта $P_4 = \{z: x = -H, -\infty < y < y_4\}$ также являются линиями тока $\psi = Q$ и $\psi = Q_1 < Q, Q$ и Q_1 — искомые расходы жидкости.

В плоскости комплексного потенциала $w = \varphi + i\psi$ области $D, \ \partial D = L \cup P, \ P = \bigcup_{1}^{3} P_k$ отвечает полуполоса с уступом D^* с вершинами w_k и углами $\gamma_k \pi$ при них: $w_0 = iQ, \ w_1 = 0, \ w_2 = \varphi_2, \ w_3 = \infty, \ w_4 = H + i(Q - Q_1), \ w_5 = H + i\psi_5, \ w_6 = H + iQ; \ \gamma_0 = \gamma_1 = \gamma_6 = 1/2, \ \gamma_2 = \gamma_5 = 1, \ \gamma_3 = 0, \ \gamma_4 = 3/2.$

Производные $dw/d\zeta$, $w: E \to D^*$ и $dz/d\zeta$, $z: E \to D$ представляются в виде

$$\frac{dw}{d\zeta} = K e^{i\beta\pi} \prod_{k=0}^{6} (\zeta - t_k)^{\gamma_k - 1} \equiv \Pi_0(\zeta), \qquad \frac{dz}{d\zeta} = \Pi(\zeta) M(\zeta), \qquad (13)$$

$$\Pi = \prod_{k=0}^{6} (\zeta - t_k)^{\alpha_k - 1}, \qquad M = \frac{1}{\pi i} \int_{-1}^{1} \frac{|\Pi_0(t)| \, dt}{\Pi(t)(t - \zeta)},$$

где $\alpha_0 = \alpha_6 = 1$; $\alpha_1 = 1/2$; $\alpha_2 = 1/2 + \gamma$; $\alpha_3 = -\gamma$; $\alpha_4 = 1 - \gamma$; $\alpha_5 = 2$. Постоянные K = 1, $t_0 = 1, t_6 = -1, t_k = 1 + k, k = 4, 5$ фиксируются, а константы t_1, t_2, t_3 и $t^5 \in (t_4, t_5)$ отыскиваются из системы уравнений

$$l_{k} = \int_{t_{k-1}}^{t_{k}} \left| \frac{dz}{dt} \right| dt, \quad k = 1, 2; \qquad l = \int_{t_{4}}^{t^{5}} \left| \frac{dz}{dt} \right| dt, \quad H = \int_{-1}^{1} |\Pi_{0}(t)| dt.$$
(14)

Здесь величины H, l_1 , l_2 и l заданы: $H = |w_6 - w_0|$, $l_1 = |z_1 - z_0| = y_1$, $l_2 = |z_2 - z_1| = H_1$, длина дренажной щели $l = |z^5 - z_4|$; $y^5 \in (y_4, y_5)$ ($z^5 = z_6$). Отметим, что ординаты y_k точек z_k , k = 4, 5, 6 не фиксированы.

Априорные оценки решений системы уравнений (14) $0 < \varepsilon \leq t_{k+1} - t_k, k = \overline{0,3}; 0 < \varepsilon \leq |t^5 - t_k|, k = 3, 4, 5$ устанавливаются так же, как в п. 3. Из этих оценок с использованием результатов работы [1] следует однозначная разрешимость исходной задачи.

7.2. Фильтрация жидкости из прямолинейного канала на наклонный водоупор. В случае горизонтального водоупора аналогичные задачи рассмотрены в [6, с. 308, 318, 331], а при его отсутствии — в [5, с. 167].

Дно канала $P_1 = \{z: x = 0, 0 < y < y_1\}$ является эквипотенциалью $\varphi = 0$, ось симметрии $P_2 = \{z: -H < x < 0, y = y_1\}$ и водоупор $P_3 = \{z: -\infty < x < -H, y - y_2 = (x + H) \operatorname{ctg}(\gamma \pi)\}$ есть линия тока $\psi = 0$, на свободной границе L имеем $\psi = Q$ — искомый расход жидкости.

Области фильтрации $D, \partial D = P \cup L, P = \bigcup_{1}^{3} P_k$ в плоскости $w = \varphi + i\psi$ соответствует

полуполоса D^* с вершинами w_k и углами $\gamma_k \pi$ при них: $w_0 = iQ, w_1 = 0, w_2 = H, w_3 = \infty, \gamma_0 = \gamma_1 = 1/2, \gamma_2 = 1, \gamma_3 = 0.$

Производные конформных отображений $w: E \to D^*$ и $z: E \to D$ представляются в форме (13), где произведения П и П₀ берутся в пределах от 0 до 3, причем $\alpha_0 = 1$, $\alpha_1 = 1/2, \alpha_2 = 1/2 + \gamma, \alpha_3 = 1 - \gamma$.

Константы $K = 1, t_0 = 1, t_3 = -1$ фиксируются, а t_1 и t_2 отыскиваются из следующей системы уравнений вида (14):

$$d_k = |z_k - z_{k-1}| = \int_{t_{k-1}}^{t_k} \left| \frac{dz}{dt} \right| dt, \quad k = 1, 2.$$

Априорные оценки $0 < \varepsilon \leq t_{k+1} - t_k \leq \varepsilon^{-1}$, k = 0, 1 и однозначная разрешимость задачи устанавливаются так же, как в пп. 3, 6.

Отметим, что в окрестности $|\zeta - t_3| \leq 1$ точки t_3 имеет место неравенство $|M(\zeta)(\zeta - t_3)^{1-\gamma}| \leq N < \infty$, откуда $|dz(\zeta - t_3)/d\zeta| \leq N_0 < \infty$, что соответствует нулевому углу ∂D в точке $z_3 = \infty$ (L и водоупор P_3 параллельны при $z \to \infty$).

7.3. Дно канала и водоупоры — произвольные полигональные границы. На рис. 4 представлен случай трапецеидального дна канала, рассмотренный в [5, с. 167–181] при отсутствии водоупора. Все построения в пп. 3, 6 справедливы и для этого случая. При этом вид производной $dw/d\zeta$ не меняется, а произведение $\Pi(\zeta)$ для области D, показанной на рис. 4, a, представляется в форме

$$\Pi(\zeta) = \prod_{k=2}^{6} (\zeta - t_k)^{\alpha_k - 1} \Pi_*(\zeta), \quad \Pi_* = \left(\frac{\zeta - t^1}{\zeta - t_0}\right)^{\alpha} (\zeta - t^2)^{-1/2} \quad (k = \overline{2, 6})$$

 $(\alpha_k$ те же, что в подп. 7.1), для области D на рис. 4, δ — в форме

$$\Pi(\zeta) = \prod_{k=2}^{3} (\zeta - t_k)^{\alpha_k - 1} \Pi_*(\zeta)$$

 $(\alpha_2, \alpha_3$ те же, что в подп. 7.2). Постоянные $t^k, k = 1, 2$ являются прообразами точек $z^k = z(t^k)$.

Более того, полученные в пп. 3–7 результаты справедливы и в том случае, когда дно канала и водоупоры имеют форму полигонов с конечным числом вершин.

ЛИТЕРАТУРА

- 1. Губкина Е. В., Монахов В. Н. Фильтрация жидкости со свободными границами в неограниченных областях // ПМТФ. 2000. Т. 41, № 5. С. 188–195.
- Губкина Е. В., Монахов В. Н. Прикладные контактные задачи фильтрации в пористых средах // Динамика сплошной среды: Сб. науч. тр. / РАН. Сиб. отд-ние. Ин-т гидродинамики. 2001. Вып. 118. С. 27–41.
- 3. Альфорс Л. Лекции по квазиконформным отображениям. М.: Мир, 1969.
- 4. **Монахов В. Н.** Краевые задачи со свободными границами для эллиптических систем уравнений. Новосибирск: Наука. Сиб. отд-ние, 1977.
- 5. Полубаринова-Кочина П. Я. Теория движения грунтовых вод. М.: Наука, 1977.
- 6. Полубаринова-Кочина П. Я., Пряжинская В. Г., Эмих В. Н. Математические методы в вопросах орошения. М.: Наука, 1969.

Поступила в редакцию 17/IV 2002 г., в окончательном варианте — 14/VI 2002 г.