УДК 539.17 + 523.12

О НЕЙТРОННО-ДЕЛИТЕЛЬНОЙ ВОЛНЕ

А. П. Ершов, В. Ф. Анисичкин

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Hoвосибирск, ers@hydro.nsc.ru

Рассматривается динамика развития нейтронно-делительной волны Л. П. Феоктистова. Оценивается возможность этого процесса в естественных условиях, а именно в недрах планет. Ключевые слова: деление ядер, нейтроны, цепная реакция, диффузионное горение, геофизика.

В работе [1] Л. П. Феоктистовым показана возможность организации самораспространяющейся волны нейтронного деления в материале, неспособном в обычных условиях к цепной реакции (как ²³⁸U). Например, если полупространство, заполненное ураном, облучать нейтронами, вблизи поверхности будет накапливаться плутоний. Со временем может быть достигнута критичность, и начнется реакция. Последующие слои урана улавливают нейтроны, вылетающие из зоны реакции; в них также растет концентрация плутония. При определенных условиях возникнет стационарная волна, не зависящая от деталей инициирования, во фронте которой уран будет перерабатываться в плутоний за счет нейтронов деления. Скорость волны порядка L/τ , где $L \approx 5 \, \mathrm{cm} - \mathrm{диффузионная} \, \mathrm{длина} \, \mathrm{поглощения}$ нейтрона, $\tau = 2.3/\ln 2 = 3.3$ сут — время образования плутония из 239 U. В работах [1, 2] среда из урана (или урановый цилиндр диаметром ≈ 1 м) используется как наглядный геометрический образ реактора-размножителя на быстрых нейтронах, обладающего внутренней безопасностью за счет большого времени τ подготовки топлива и не требующего промежуточной операции выделения плутония.

Одновременно в [3, 4] была высказана гипотеза о концентрации актиноидов глубоко в
недрах планет в ходе гравитационной дифференциации их вещества. Независимо и более основательно эта идея была разработана в [5, 6].
Как известно, земная кора обогащена ураном
и торием по сравнению с мантией, что считают результатом перехода этих элементов в расплав при разогреве первичного вещества Земли с последующим выносом более легких жид-

ких фракций на поверхность. Однако существуют соединения, для которых более естественно обратное направление перемещения. Например, оксид урана UO₂ плотнее вещества мантии и внешнего ядра и более тугоплавкий. При достаточно низкой растворимости UO2 в расплавах мантии и ядра (на что указывают данные [6]) следует ожидать выпадения частиц оксида урана на поверхность внутреннего (твердого) ядра Земли, радиус которого ≈ 1200 км. Сейчас оксид урана, тем более в смеси с жидким железом, инертен, но в прошлом, когда доля ²³⁵U была выше, цепная реакция представляется естественным следствием указанной гипотезы. Сказанное относится и к ряду других соединений урана (UN, UC). В [5] впервые рассматривались возможность ядерного взрыва части такого «месторождения», например, после удара крупного астероида, и планетарные последствия подобного события. В работах [6, 7] приведены экспериментальные и расчетные обоснования гипотезы и обсуждались некоторые другие возможности ядерного энерговыделения (сравнительно медленное выгорание, поддерживаемое осаждением новых порций горючего, реакция, связанная с распространением внутренней гравитационной волны уровня двухфазного слоя «оксид урана — жидкий металл», и ядерная детонация).

Очевидно, что наличие слоя концентрированного урана сообщило бы концепции нейтронно-делительной волны некоторую буквальность. Поскольку в такой волне (после начального поджигания) в принципе мог бы реагировать современный естественный и даже обедненный уран с выделением значительной энергии, несомненна важность оценки реальной возможности волнового режима. В данной работе рассмотрены характеристики таких волн и их возможные проявления.

Работа частично поддержана интеграционным проектом СО РАН № 97-24 «Изучение возможности взрывного энерговыделения в недрах планет».

ОСНОВНЫЕ УРАВНЕНИЯ

Задачу о возбуждении и распространении нейтронно-делительной волны рассмотрим в рамках приближений, принятых в [1]. В частности, сечения захвата нейтронов для всех веществ, кроме кислорода и железа, считаются равными сечению σ_a для 238 U. Для железа сечение поглощения приблизительно на порядок меньше, а поглощение ядрами кислорода не учитывается. Уравнения [1] для наших целей удобно записать в следующем виде:

$$\varepsilon \frac{\partial n}{\partial t} = \frac{\partial^2 n}{\partial x^2} - n \left(1 - \frac{n_{\text{Pu}}}{n_{cr}} \right),$$

$$\frac{\partial n_8}{\partial t} = -n (n_8 - n_{\text{Pu}} - n_9),$$
(1)

$$\frac{\partial n_9}{\partial t} = n(n_8 - n_9) - n_9, \quad \frac{\partial n_{\text{Pu}}}{\partial t} = n_9 - n \frac{n_{\text{Pu}}}{\gamma}.$$

Здесь время t и координата x измеряются в единицах τ и L соответственно; n_8 , $n_{\rm Pu}$, n_9 — безразмерные концентрации $^{238}{
m U}$, $^{239}{
m Pu}$ и $^{239}{
m Np}$ (в исходном состоянии $n_8 + n_{Pu} = 1$); n — плотность нейтронов в единицах $(\sigma_a v \tau)^{-1}$, v — характерная скорость нейтронов; n_{cr} — критическая концентрация плутония; $\gamma = \sigma_a/(\sigma_a +$ σ_f), σ_f — сечение деления ²³⁹ Pu, так что равновесная концентрация плутония (при которой достигается баланс накопления и выжигания Pu нейтронами) $\tilde{n} = \gamma n_8$. Необходимое условие распространения волны $\tilde{n} > n_{cr}$; тогда критические условия могут достигаться в процессе накопления плутония. Другими словами, в волне должен происходить переход через критическую концентрацию плутония снизу. Для этого требуется, чтобы критическая концентрация была достаточно мала, во всяком случае меньше равновесной.

Значение коэффициента $\varepsilon = \lambda_a/(v\tau)$, где λ_a — длина поглощения, невелико (для быстрых нейтронов — порядка 10^{-12}), так что производную по времени в первом уравнении (1) можно опустить. Это значит, что диффузия протекает значительно быстрее кинетики. В работе [1] решается стационарная задача — система обыкновенных дифференциальных уравнений. Для наших целей, однако, удобнее сохранить нестационарную форму (1), что позволяет проследить за формированием волны и оценить ее устойчивость. Диффузионное уравнение решалось по неявной схеме методом

прогонки. В расчетах значение ε брали достаточно малым, чтобы членом $\varepsilon \partial n/\partial t$ можно было пренебречь по сравнению с другими и в то же время сохранить численную устойчивость схемы. Практически удовлетворительные результаты получались при $\varepsilon=0{,}001$, но большинство расчетов проведено при $\varepsilon=0{,}0001$. При этом диффузия все еще остается самым быстрым процессом, с запасом в 3-4 порядка.

В рамках данной постановки присутствие кислорода и железа влияет только на параметры модели, в основном на критическую концентрацию n_{cr} (γ не зависит от разбавления). В расчетах критическая концентрация варьировалась.

Наиболее грубое предположение модели одногрупповая трактовка нейтронов. До некоторой степени «отрегулировать» отнесение расчетов к реальным системам можно, используя для оценки n_{cr} более детальную многогрупповую схему. Критическая доля $^{239}{\rm Pu}$ в $^{238}{\rm U}$ при бесконечных размерах, рассчитанная по восьмигрупповым константам [8], составляет ≈ 3.7 %. Разбавление кислородом до состава UO₂/PuO₂ приводит к увеличению значения n_{cr} до 6,4 %, в основном из-за смягчения спектра нейтронов. Присутствие железа в порах топлива при типичной «насыпной» концентрации последнего $\approx 60 \%$ увеличивает критическую долю 239 Ри до 8,2~% (приняты плотности UO_2/PuO_2 19,5 и железа 12 г/см³ для условий на границе твердого ядра). Характерная длина L примерно такая же, как в $^{238}{
m U}$ нормальной плотности — около 6 см (разбавление урана компенсируется сжатием). Для данной работы интерес представляет ситуация, когда исходный материал обогащен 239 Pu или 235 U. В духе приближений [1] предварительно будем полагать, что эти материалы эквивалентны. Для сравнения укажем расчетные критические концентрации 235 U: 5.3~% для металлического урана, 7.85~% для оксида, 9.8~% для смеси оксида с 40 % (по объему) железа. Хотя плутоний несколько активнее, это различие второстепенное по сравнению с более грубыми предположениями модели и может сказываться только в пограничных ситуациях. Экспериментальное значение $n_{cr} = 5.56~\%$ для металлического урана [9], что дает представление о качестве констант [8].

РЕЗУЛЬТАТЫ РАСЧЕТОВ

Для тестирования схемы рассчитывалось

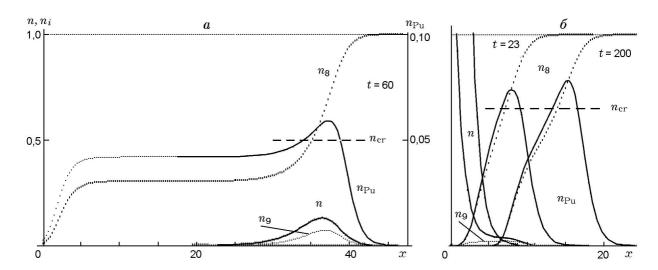


Рис. 1. Распространяющаяся (a) и «запертая» (δ) волны: участок зависимости $n_{\mathrm{Pu}}(x)$ выше линии n_{cr} — активная зона; для наглядности масштабы n_{cr} и n_{Pu} увеличены в 10 раз

формирование волны при отсутствии начального обогащения $(n_8(x,0)=1,\ n(x,0)=n_{\rm Pu}(x,0)=n_9(x,0)=0),$ что соответствует постановке [1]. На левой границе расчетной области (x=0) задавался поток нейтронов: на каждом шаге по времени к n(0,t) добавлялась некоторая постоянная величина (0,1) за единицу времени). Здесь и далее полагалось $\gamma=0,1$ (т. е. для данного расчета в начальном состоянии $\tilde{n}=0,1$). Критическая концентрация варьировалась. Расчеты показали хорошее совпадение результатов с данными [1] для скорости волны при $n_{cr}=0,04\div0,064$.

В [1] отмечена аналогия между стационарным уравнением диффузии и уравнением Шредингера. Это позволило записать критическое условие в виде

$$I = \int \sqrt{\frac{n_{\rm Pu}}{n_{cr}} - 1} \ dx = \frac{\pi}{2},$$
 (2)

где интеграл берется по надкритической области $(n_{\rm Pu}>n_{cr})$. Равенство (2) аналогично условию Бора — Зоммерфельда в квантовой механике. Роль потенциальной ямы здесь играет (инвертированный) профиль концентрации плутония. Действительно, наши расчеты показали, что в установившемся режиме условие (2) выполняется с точностью до нескольких процентов. Более точного совпадения ожидать нет оснований, так как само условие квантования для нижнего уровня является приближенным.

На рис. 1,a показано распределение концентраций при $n_{cr}=0.05$ в момент времени t=60. Скорость волны $D=0{,}625.$ Отметим, что в этом режиме выгорает pprox 70~% $^{238}{\rm U}.$

При $n_{cr} > 0.064$ концентрация плутония также может превысить критическую, но стационарная волна не развивается. На рис. 1, б показаны результаты расчета при $n_{cr}=0.065$ в моменты времени t=23 и 200. При t=200 достигнута даже бо́льшая концентрация $n_{\rm Pu}$ (и бо́льшее превышение над n_{cr}), чем в предыдущем расчете, но размер зоны мал, так как передний фронт волны смещается крайне медленно; со временем концентрация n_0 падает настолько, что в том же масштабе становится неразличимой. Качественно «запирание» можно объяснить следующим образом. Скорость накопления плутония падает с приближением к пределу \tilde{n} , поэтому концентрация нарастает медленно. Условие на интеграл І при малом значении разности $n_{\rm Pu} - n_{cr}$ требует значительной ширины надкритической области: $\Delta \sim$ $\sqrt{n_{cr}/(n_{\rm Pu}-n_{cr})};$ однако характерная ширина волны не растет с повышением n_{cr} , а даже уменьшается. По мере выгорания $^{238}{
m U}$ падает равновесная концентрация плутония: $\tilde{n} = \gamma n_8$. Масштабы рис. 1, 2 таковы, что в наших предположениях (при $\gamma=0.1$) равенство $\tilde{n}=n_{\mathrm{Pu}}$ достигается при пересечении кривых n_8 и $n_{\rm Pu}$. Как видно из рис. $1, \delta$, с этого момента концентрация n_{Pu} начинает уменьшаться (на рис. 1, aспад $n_{\rm Pu}$ происходит несколько раньше пересечения из-за заметной концентрации промежуточного продукта n_9). В результате критические условия в таком подвижном «реак-

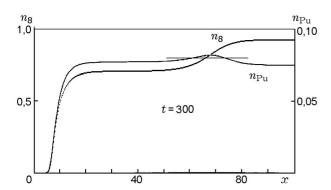


Рис. 2. Околокритический режим при высоком начальном обогащении:

масштабы n_{cr} и n_{Pu} увеличены в 10 раз

торе» не достигаются, и волна перемещается только за счет нейтронного потока с границы. По мере удаления от последней диффузии все труднее обеспечить продвижение волны, и распределение «застывает». При выключении внешнего источника нейтронов остановка волны происходит быстрее. Таким образом, при $n_{cr}>0.064$ не удается сформировать самоподдерживающуюся критическую область.

Присутствие активного изотопа в начальном уране, естественно, облегчает условия формирования волны [2]. На рис. 2 показана ситуация при $n_{cr}=0.08$ и $n_{\rm Pu}(x,0)=0.075$. В момент времени t=300 сформировалась волна со скоростью D=0.19. Эти условия близки к предельным: уже при $n_{\rm Pu}(x,0)=0.07$ волна не образуется. Видно, что волна при близких значениях n_{cr} и $n_{\rm Pu}(x,0)$ гораздо более длинная. Концентрации n и n_9 очень малы (амплитуды порядка толщины линии). Выгорание 238 U здесь меньше, чем в режиме, показанном на рис. 1, но также значительно — около 20 %. Концентрация плутония за волной, как и на рис. 1, несколько выше начальной.

На первый взгляд, повышая начальную концентрацию $n_{\rm Pu}(x,0)$, можно обеспечить волновой режим и при $n_{cr} \to \tilde{n}$. На самом деле, не при любых значениях $n_{cr} < \gamma$ можно «спасти» волну таким способом. Например, при $n_{cr} = 0.09$ подобрать $n_{\rm Pu}(x,0)$ не удалось. Нейтроны внешнего источника вначале выжигают плутоний на границе среды и перерабатывают уран в $^{239}{\rm Np}$. Последний со временем начинает производить плутоний, но не успевает создать требуемую высокую концентрацию, а затем производство ${\rm Pu}$ падает из-за выжигания урана. Вблизи границы формируется все

более толстый слой, в котором отсутствуют как плутоний, так и уран (что заметно и на рис. 2). Диффузия нейтронов через этот слой не может обеспечить нарастания концентрации плутония, и волна не возникает даже при $n_{\rm Pu}(x,0)=n_{cr}$.

Таким образом, исходное обогащение активным компонентом несколько расширяет область существования волновых режимов. С приближением к пределу длина волны растет, а масштабы всех изменений уменьшаются. Отметим, что отношение Pu/U после волны возрастает довольно существенно. Это не означает превышения критичности: уран заменяется осколками деления, в принятом приближении эквивалентными как поглотители. Поэтому за волной состояние материала докритическое (а с учетом реальных свойств нуклидов будет дальше от критичности, чем начальное). Тем более материал за волной не способен к поддержанию волнового режима, так как ухудшается соотношение n_{cr} и \tilde{n} : осколки неспособны к производству плутония. Однако, если осколки будут эффективно удаляться (возможный механизм обсуждается ниже), активность материала за волной вполне может превзойти исходный уровень.

ОБСУЖДЕНИЕ

Начальное обогащение урана дает дополнительную свободу выбора режима сжигания урана в реакторах на быстрых нейтронах по концепции Л. П. Феоктистова. В частности, эффект «активизации» в рассмотренном приближении достаточен для использования оксидного топлива (у которого критическая концентрация — 6,4 % — даже без разбавления теплоносителем практически совпадает с предельной для волнового режима без обогащения). Можно надеяться, что эта качественная оценка сохранится и при обогащении ²³⁵U (с учетом меньшей активности, а также других противодействующих факторов). Более определенные выводы можно будет сделать после проведения достаточно детального многогруппового расчета с использованием реальных ядерных констант.

Рассмотрим теперь геофизические аспекты. Толщина слоя смеси UO_2 /Fe может быть ≈ 1 м (если принять оценку доли урана в Земле порядка $(2\div 3)\cdot 10^{-8}$ г/г [10], при которой получается удовлетворительный баланс теплопродукции радиоактивного распада с современной

величиной теплового потока Земли). Возможны и бо́льшие концентрации, если снять требование установления теплового потока, что с учетом огромной тепловой инерции Земли вполне допустимо. В прошлом содержание урана и толщина слоя могли быть заметно больше (4 млрд лет назад — примерно вдвое). Таким образом, неопределенность имеющихся данных допускает образование слоя, по крайней мере, в несколько метров, в то время как уже при толщине в десятки сантиметров слой может быть критическим.

На возможность протекания в далеком прошлом цепных ядерных реакций в богатых урановых месторождениях указал П. К. Курода [11], отметив вероятное достижение критичности приблизительно 2 млрд. лет назад в присутствии воды как замедлителя. Позднее был найден естественный ядерный реактор Окло, который «работал» именно в это время (см. [12]). Для рассматриваемого «месторождения» внутри ядра Земли условия представляются даже более благоприятными, с учетом той разницы, что здесь реакция идет на быстрых нейтронах.

Концентрация ²³⁵U упала до критического (при бесконечных размерах) значения $\approx 10 \%$ примерно 3,3 млрд лет назад. После этого становится возможным накопление слоя значительной толщины. Далее в течение сравнительно небольшого интервала времени $(\approx 300 \text{ млн лет})$ концентрация упадет еще на $\simeq 2 \%$, после чего возникнет возможность распространения волны нейтронного горения. Характерная скорость волны порядка L/τ , т. е. сантиметры в сутки. Время горения слоя на поверхности внутреннего ядра Земли будет порядка миллиона лет. Однако вблизи предела, что более вероятно, скорость волны будет мала и время составит порядка 107 лет. Геологически это небольшое время, и прохождение волны при заметном выгорании имело бы характер геологической катастрофы. Вместе с тем рассмотренный режим гораздо медленнее взрывных процессов, изучаемых в [5, 6]. Его можно сравнить с медленным, реакторного типа горением ²³⁵U [6], с той разницей, что в волне потенциально может перерабатываться и заметная доля ²³⁸U.

Поскольку ядерное энерговыделение велико, значительный разогрев среды происходит уже при весьма малой глубине реакции. Как и для обычных ядерных реакторов, здесь существенны ограничения теплосъема. До некоторой степени проблема облегчается малой скоростью волны. Например, в ситуации, изображенной на рис. 2, средняя по сверхкритической области плотность тепловыделения составляет $\approx 5~{\rm MBr/n}$. Приближение к пределу распространения может снизить мощность до значения $\simeq 1 \; \text{MBT/л}$, характерного для активной зоны быстрых реакторов [13]. Можно ожидать, что естественный «самоходный» реактор также способен работать при такой теплонапряженности, поскольку и в нем тепло отводится жидким металлом. Естественно, вблизи предела волна будет чувствительной к различным отклонениям (состава, толщины слоя и пр.), которые могут привести к срыву волнового режима.

С удалением от предела возникнут конвективные течения, которые нарушат геометрию слоя взвеси и приведут к разбросу топлива. Однако это не обязательно означает прекращение распространения волны; более вероятно снижение ее средней скорости. По-видимому, возможен следующий сценарий. Реакция начинается локально в месте, где раньше всего достигаются критические условия по ²³⁵U. Этот естественный реактор может работать на малой мощности за счет стабилизирующих факторов (тепловое расширение, оседание новых порций топлива) или же давать кратковременные вспышки. Через несколько дней в окрестности создаются повышенные концентрации плутония и реакция распространяется в стороны. Конвекция уносит реагирующий материал, и в данном месте реакция прекращается. После перемешивания с окружающим веществом и охлаждения смесь оксидов урана и плутония вновь выпадает на границу слоя, по большей части в тех местах, где реакция еще не шла. Увеличение толщины слоя, причем с добавлением активного вещества, приближает условия к критическим. За счет такой своеобразной диффузии становится возможной вспышка в новом месте. Характерное время описанного пульсирующего процесса оценить непросто, но ясно, что он будет идти значительно медленнее горения в нейтронно-делительной волне, чем и обеспечивается приемлемый средний теплоотвод. Отметим, что α -распад плутония (время жизни 34600 лет) не будет ограничением, так как продуктом распада является ²³⁵U.

В конвективном режиме следует ожидать самоочищения активного слоя. Оскол-

ки деления, образующие более легкие соединения, будут отделяться от тяжелых актиноидов (всплывать)[4]. В меньшей степени этот же фактор может проявляться и для «нормального» волнового процесса. Отметим, что в волне концентрация плутония возрастает (см. рис. 1, 2; по существу, это и есть эффект размножения). При учете отделения шлаков более вероятно не единственное катастрофическое событие, а неоднократное прохождение волн горения при относительно небольшом выгорании урана в каждой из них.

До сих пор не упоминалась роль тория, количество которого в $\simeq 4$ раза больше, чем урана. Следует ожидать, что соединения тория также будут участвовать в формировании плотного слоя, значительно увеличивая его толщину. Если материалы перемешаны, горение одного только урана затруднено из-за падения эффективного обогащения (торий не имеет природного делящегося изотопа). Однако идеального перемешивания как раз трудно ожидать; должны присутствовать макроскопические неоднородности, в том числе области с преобладанием урана. Зажигание таких активных пятен может вовлечь в реакцию нейтронного деления и торий, который будет перерабатываться в $^{233}\bar{\mathrm{U}}$ (с характерным временем 39,5 дней). Скорость волны, лимитированной этим временем, на порядок меньше, чем при горении урана (однако это соотношение вряд ли соблюдается для пульсирующего режима). Время жизни 233 U 2 U 2 О лет, т. е. интервал характерных времен, в котором потенциально возможен рассматриваемый процесс, также весьма широк.

В настоящее время возможность волнового режима сомнительна (если только не произошло существенного изменения изотопного состава активного слоя за счет эффекта размножения). Как уже говорилось, даже в сплошном оксиде урана критическая концентрация совпадает с предельно допустимой в рассмотренном приближении. Нынешняя доля ²³⁵U мала и практически не облегчает условий распространения. Поэтому даже при специальной организации глубинного ядерного реактора топливо поджечь не удастся. Интервал времени, когда могли распространяться волны деления, можно оценить как $2 \div 3$ млрд лет назад. Подбор «кандидатов» среди геологических событий выходит за рамки данной работы. Однако отметим, что периоды геологической активности могут быть связаны с цикличностью ядерного энерговыделения в предполагаемых выше процессах.

Проведенные расчеты основаны на приближенной модели [1], дополненной «приравниванием» 235 U и 239 Pu. Качественные оценки влияния приближений затруднительны, поскольку волновой режим при ожидаемом составе активного слоя недалек от предела распространения. Большой интерес представлял бы более полный расчет с учетом всех основных изотопов и спектра нейтронов.

ЛИТЕРАТУРА

- 1. **Феоктистов Л. П.** Нейтронно-делительная волна // Докл. АН СССР. 1989. Т. 309, № 4. С. 864—867.
- Феоктистов Л. П. Безопасность ключевой момент возрождения ядерной энергетики // Успехи физ. наук. 1993. Т. 163, № 8. С. 89–102.
- 3. **Driscoll R. B.** Nuclear disruption of a planet with convective outer core // Bull. Amer. Phys. Soc. 1988. V. 33, N 4. P. 1031. (APS Meeting. Baltimore, 18–21 April 1988. Abstract GM12).
- 4. **Herndon J. M.** Feasibility of a nuclear fission reactor at the center of the Earth as the energy source for the geomagnetic field // J. Geomagnetism and Geoelectricity. 1993. V. 45. P. 423–437.
- 5. **Анисичкин В. Ф.** Взрываются ли планеты? // Физика горения и взрыва. 1997. Т. 33, № 1. С. 138–142.
- 6. Митрофанов В. В., Анисичкин В. Ф., Воронин Д. В. и др. О возможности взрывного ядерного энерговыделения в недрах планет // V Забабахинские научные чтения: Труды Междунар. конф., Снежинск, 1998. Снежинск: Изд-во РФЯЦ—ВНИИТФ, 1999. Ч. 1. С. 67–76.
- 7. **Митрофанов В. В.** О гетерогенной ядерной детонации на реакции деления // VI Забабахинские научные чтения: Тезисы Междунар. конф., Снежинск, 2001. Снежинск: Изд-во РФЯЦ—ВНИИТФ, 2001. С. 41.
- 8. **Уолтер А.**, **Рейнольдс А.** Реакторыразмножители на быстрых нейтронах. М.: Энергоатомиздат, 1986.
- 9. **Групповые** константы для расчета реакторов и защиты / Л. П. Абагян, Н. О. Базазянц, М. Н. Николаев, А. М. Цибуля. М.: Энергоиздат, 1981. С. 232.
- Wasserburg G. J., MacDonald G. J. F., Hoyle F., Fowler W. A. Relative contribution of U, Th and K to heat production in the Earth // Science. 1964. V. 143, N 3605. P. 465–467.
- 11. **Kuroda P. K.** On the nuclear physical stability of the uranium minerals // J. Chem. Phys. 1956. V. 25, N 4. P. 781–782.

- 12. **Петров Ю. В.** Естественный ядерный реактор Окло // Успехи физ. наук. 1977. Т. 123, № 3. С. 473–486.
- 13. **Физическая** энциклопедия / Под ред. А. М. Прохоров и др. М.: Большая Рос. энцикл., 1994. Т. 4. С. 298.

Поступила в редакцию 7/VI 2002 г.