УДК 532.526

Воздействие волны Толлмина–Шлихтинга на осредненные параметры пограничного слоя^{*}

Г.В. Петров

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: smorodsk@itam.nsc.ru

Дан вывод нелокальных уравнений для двух гармоник волны Толлмина–Шлихтинга и осредненных параметров несжимаемого пограничного слоя на пластине. Результаты расчетов показывают, что под воздействием волны трение на стенке увеличивается, и это увеличение становится существенным, когда отношение амплитуд второй и основной гармоник достигает 0,5.

Ключевые слова: пограничный слой, устойчивость, нелинейность, переход к турбулентности.

Волна Толлмина–Шлихтинга рассматривается как периодическое по времени нелинейное возмущение. В работе [1] анализ ограничен двумя гармониками без учета воздействия на осредненные характеристики пограничного слоя на пластине, в настоящей работе это взаимодействие учитывается.

Нестационарные двумерные уравнения Навье–Стокса в ортогональной (см., например, [2]) системе координат (ξ_1, ξ_2) представляются в виде:

div
$$\mathbf{v} = 0$$
, $d_t v_i + h_k \left(v_i v_k - \tau_{ik} \right) - h_i \left(v_k^2 - \tau_{kk} \right) = -\partial_i p / \rho + div \tau_i$,

 $\begin{aligned} \mathbf{\tau}_{i} &= \left(\tau_{i1}, \ \tau_{i2}\right), \ \tau_{ii} &= 2\nu \left(\partial_{i} v_{i} + h_{k} v_{k}\right), \ i = 1, 2, k \neq i, \ \tau_{12} = \nu \left(\partial_{1} v_{2} + \partial_{2} v_{1} - h_{2} v_{1} - h_{1} v_{2}\right), \\ \text{div } \mathbf{a} &= \sum \left(\partial_{k} + h_{k}\right) a_{k}, \ d_{t} = \partial_{t} + \sum v_{k} \partial_{k}, \ \partial_{t} = \partial/\partial t, \ \partial_{k} = H_{k}^{-1} \partial/\partial \xi_{k}, \ h_{k} = \partial_{k} \ln H_{i}, \\ \text{где } t \longrightarrow \text{время, } \mathbf{v} = \left(v_{1}, v_{2}\right) \longrightarrow \text{скорость, } p \longrightarrow \text{давление, } \rho \longrightarrow \text{плотность, } \nu \longrightarrow \text{кине-} \\ \text{матическая вязкость, } H_{k} \longrightarrow \text{коэффициенты Ламе.} \end{aligned}$

Параметры течения задаются в виде сумм осредненных стационарных значений и возмущений: $v_1 = u + \hat{u}$, $v_2 = \hat{v}$, $\tau_{12} = \tau + \hat{\tau}$, $\tau_{ii} = \tau_i + \hat{\tau}_i$. Используется система

^{*} Работа выполнепри финансовой поддержке РФФИ (код проекта 08-01-00038а).

координат, связанная с линиями тока осредненного течения (ξ, ψ) , где ξ — расстояние вдоль поверхности пластины, ψ — функция тока, тогда $H_1 = \exp \int h_2 H_2 d\psi$, $H_2 = 1/u$, $h_1 = -\partial_1 \ln u$, h_2 — кривизна линий тока. Используя масштабы длины — v/u_{∞} , времени — v/u_{∞}^2 , скорости — u_{∞} , давления — ρu_{∞}^2 , $\tau_{jk} - u_{\infty}^2$ получим уравнения для каждой гармоники возмущения:

$$\begin{aligned} &(\partial_1 + h_1)\hat{u} + (\partial_2 + h_2)\hat{v} = 0, \\ &(\partial_1 + h_1)\hat{\tau}_1 + (\partial_2 + 2h_2)\hat{\tau} - \partial_1\hat{p} - \partial_t\hat{u} - \hat{u}\partial_1u - u\partial_1\hat{u} - \hat{v}\partial_2u - h_2u\hat{v} + h_1\hat{\tau}_2 = \{A\}, \\ &(\partial_1 + 2h_1)\hat{\tau} + (\partial_2 + h_2)\hat{\tau}_2 - \partial_2\hat{p} - \partial_t\hat{v} - u\partial_1\hat{v} - h_1u\hat{v} + h_2(2u\hat{u} - \hat{\tau}_1) = \{B\}, \\ &\hat{\tau} = (\partial_2 - h_2)\hat{u} + (\partial_1 - h_1)\hat{v}, \quad \hat{\tau}_1 = 2(\partial_1\hat{u} + h_2\hat{v}), \quad \hat{\tau}_2 = 2(h_1\hat{u} + \partial_2\hat{v}), \end{aligned}$$

и для осредненных параметров пограничного слоя:

$$\begin{aligned} &(\partial_1 + h_1)\tau_1 + (\partial_2 + 2h_2)\tau - \partial_1 p - u \quad \partial_1 u - h_1 \tau_2 = \langle A \rangle, \\ &(\partial_1 + 2h_1)\tau + (\partial_2 + h_2)\tau_2 - \partial_2 p + h_2 \left(u^2 - \tau_1\right) = \langle B \rangle, \\ &\tau = (\partial_2 - h_2)u, \quad \tau_1 = 2\partial_1 u, \quad \tau_2 = 2h_1 u = -\tau_1, \\ &A = \hat{u} \left(\partial_1 \hat{u} + h_2 \hat{v}\right) + \hat{v} \left(\partial_2 \hat{u} - h_1 \hat{v}\right), \quad B = \hat{u} \left(\partial_1 \hat{v} - h_2 \hat{u}\right) + \hat{v} \left(\partial_2 \hat{v} + h_1 \hat{u}\right). \end{aligned}$$

Угловые скобки для *A* и *B* означают осреднение, фигурные — комбинационные нелинейные члены для данной гармоники.

Уравнения упрощаются с помощью асимптотических оценок по целым отрицательным степеням $R = \sqrt{\xi}$: ∂_2 , τ , $\hat{\tau}$, $\hat{\tau}_j = O(R^{-1})$, h_1 , $\tau_j = O(R^{-2})$, ∂_1 для возмущений имеет порядок R^{-1} , а для пограничного слоя R^{-2} . Отбрасываются члены порядка R^{-2} , в частности, содержащие множителем кривизну линий тока h_2 . Получаемые уравнения:

$$\begin{split} \partial_1 \hat{u} + \partial_2 \hat{v} &= 0, \\ \partial_1 \hat{\tau}_1 + \partial_2 \hat{\tau} - \partial_1 \hat{p} - \partial_t \hat{u} - \hat{u} \partial_1 u - u \partial_1 \hat{u} - \hat{v} \partial_2 u = \{A\}, \\ \partial_1 \hat{\tau} + \partial_2 \hat{\tau}_2 - \partial_2 \hat{p} - \partial_t \hat{v} - u \partial_1 \hat{v} - h_1 u \hat{v} = \{B\}, \\ \hat{\tau} &= \partial_2 \hat{u} + (\partial_1 - h_1) \hat{v}, \quad \hat{\tau}_1 = 2 \partial_1 \hat{u}, \quad \hat{\tau}_2 = 2 \partial_2 \hat{v}, \\ \partial_2 u &= \tau, \quad \partial_2 p = -\langle B \rangle, \quad \partial_2 \tau = \partial_1 p + u \quad \partial_1 u + \langle A \rangle, \\ A &= \hat{v} \hat{\tau} + \hat{u} \partial_1 \hat{u} - \hat{v} \partial_1 \hat{v}, \quad B = \hat{u} \partial_1 \hat{v} - \hat{v} \partial_1 \hat{u} \delta \quad \partial_1 = \partial/\partial \xi, \end{split}$$

с учетом оценок для вязкого критического слоя имеют точность ниже, чем R^{-2} , но выше, чем R^{-1} .

Преобразование $\partial_1 = R^{-1}\partial - u^{-1}(\partial f + 0.5f/R)\partial_\eta$, $\partial_2 = R^{-1}\partial_\eta$, где $\partial = 0.5\partial/\partial R$, $\partial_\eta = \partial/\partial\eta$, $f = \psi/R$, η — переменная подобия в случае невозмущенного погранич-

A

ного слоя, приводит уравнения для основной гармоники $\hat{a} = \operatorname{Re}\left\{\tilde{a}\exp\left[i\left(\int \alpha d\xi - \omega t\right)\right]\right\}$ (Re — вещественная часть, ω — заданная угловая частота, α — вычисляемое комплексное волновое число) к виду:

$$\partial_{\eta}\tilde{u} - \dot{\tilde{u}} + g\dot{\tilde{v}} + (\partial - h)\tilde{v} = 0, \quad \partial_{\eta}\tilde{v} - \tilde{v}' + g\tilde{u}' + (\partial + h)\tilde{u} = 0,$$

$$\partial_{\eta}\tilde{p} - \dot{\tilde{p}} + gu\,\dot{\tilde{v}} + 2i\alpha\,\dot{\tilde{u}} - i\alpha R\tilde{\tau} + u\,(\partial + h)\tilde{v} = -\sigma_{1}F_{1},$$

$$\partial_{\eta}\tilde{\tau} - i\alpha R\tilde{p} - \theta\tilde{v} - iR(\alpha u - \omega)\tilde{u} - (2R\alpha^{2} + g\theta)\tilde{u} - \tilde{u}\partial u - g\,(\dot{\tilde{p}} + u\dot{\tilde{u}}) - \partial\tilde{p} - u\partial\tilde{u} = \sigma_{1}G_{1},$$

$$\dot{\tilde{u}} = R\tilde{\tau} - i\alpha R\,\tilde{v}, \quad \dot{\tilde{v}} = -i\alpha R\,\tilde{u}, \quad \dot{\tilde{p}} = iR(\alpha u - \omega)\tilde{v}, \quad (1)$$

где $\theta = R\tau$, $h = Rh_1 = -(\partial + g\partial_\eta)\ln u$, $g = -u^{-1}(0,5/R + \partial)f$, (на стенке $h_w = 0,25/R - 0,5\partial \ln \theta_w$, $g_w = 0$). Для второй гармоники величины $\tilde{u}, \tilde{v}, \tilde{p}, \tilde{\tau}, \omega, \alpha, \sigma_1, F_1, G_1$ меняются на $\tilde{u}_2, \tilde{v}_2, \tilde{p}_2, \tilde{\tau}_2, 2\omega, \alpha_2, \sigma_2, F_2, G_2$. Правые части уравнений определяются соотношениями:

$$\sigma_{1} = 0,5 \exp\left\{i\int(\alpha_{2} - 2\operatorname{Re}\alpha)2RdR\right\},$$

$$F_{1} = iR\left(\alpha_{2} + \overline{\alpha}\right)\left(\overline{\tilde{u}}\widetilde{v}_{2} - \widetilde{u}_{2}\overline{\tilde{v}}\right) + \overline{\tilde{u}}\left(\partial\widetilde{v}_{2} + g\dot{\tilde{v}}_{2}\right) + \widetilde{u}_{2}\left(\partial\overline{\tilde{v}} + g\overline{\tilde{v}}\right) - \overline{\tilde{v}}\left(\partial\widetilde{u}_{2} + g\dot{\tilde{u}}_{2}\right) - \widetilde{v}_{2}\left(\partial\overline{\tilde{u}} + g\overline{\tilde{u}}\right),$$

$$G_{1} = R\left(\overline{\tilde{v}}\widetilde{\tau}_{2} + \widetilde{v}_{2}\overline{\tilde{\tau}}\right) + iR\left(\alpha_{2} - \overline{\alpha}\right)\left(\overline{\tilde{u}}\widetilde{u}_{2} - \overline{\tilde{v}}\widetilde{v}_{2}\right) + \overline{\tilde{u}}\left(\partial\widetilde{u}_{2} + g\dot{\tilde{u}}_{2}\right) +$$

$$+ \widetilde{u}_{2}\left(\partial\overline{\tilde{u}} + g\overline{\tilde{u}}\right) - \overline{\tilde{v}}\left(\partial\widetilde{v}_{2} + g\dot{\tilde{v}}_{2}\right) - \widetilde{v}_{2}\left(\partial\overline{\tilde{v}} + g\overline{\tilde{v}}\right), \quad \sigma_{2} = 0,5 \exp\left\{i\int(2\alpha - \alpha_{2})2RdR\right\},$$

$$F_{2} = \widetilde{u}\left(\partial\widetilde{v} + g\dot{\tilde{v}}\right) - \widetilde{v}\left(\partial\widetilde{u} + g\dot{\tilde{u}}\right),$$

$$G_{2} = R\widetilde{v}\widetilde{\tau} + i\alpha R\left(\widetilde{u}^{2} - \widetilde{v}^{2}\right) + \widetilde{u}\left(\partial\widetilde{u} + g\dot{\tilde{u}}\right) - \widetilde{v}\left(\partial\widetilde{v} + g\dot{\tilde{v}}\right), \quad (2)$$

где надстрочная черта означает комплексное сопряжение.

Уравнения для осредненного течения в координатах (R,η) принимают вид

$$\partial_{\eta} p = P, \ \partial_{\eta} f = u, \ \partial_{\eta} u = \theta, \ \partial_{\eta} \theta = R \big(\partial p + gP + u\partial \ u + gu\theta + Q \big). \tag{3}$$

Вклад основной гармоники в Р и Q составляет:

$$P = -\sigma \operatorname{Re}\left\{\overline{\tilde{u}}\left[\left(i\alpha R + \partial\right)\tilde{v} + g\dot{\tilde{v}}\right] - \overline{\tilde{v}}\left[\left(i\alpha R + \partial\right)\tilde{u}\right] + g\dot{\tilde{u}}\right\},\$$

$$Q = \sigma \operatorname{Re}\left\{R\overline{\tilde{v}}\tilde{\tau} + \overline{\tilde{u}}\left[\left(i\alpha R + \partial\right)\tilde{u} + g\dot{\tilde{u}}\right] - \overline{\tilde{v}}\left[\left(i\alpha R + \partial\right)\tilde{v} + g\dot{\tilde{v}}\right]\right\},\$$

$$\sigma = 0,5 \exp\left\{-4\int \operatorname{Im}\alpha R dR\right\}.$$
(4)

Такие же формулы с учетом приведенных выше замен определяют вклад второй гармоники.

Аппроксимация $\partial \vec{a} = 0,5 \Delta \vec{a} / \Delta R$ преобразует (1–4) в систему обыкновенных дифференциальных уравнений. На каждом шаге маршевой схемы осуществляется итерационный цикл, внутри которого уравнения для каждой гармоники и для пограничного слоя интегрируются по очереди. Для этого правые части уравнений (1)

и функции P, Q в (3) вычисляются с помощью результатов предыдущей итерации. Метод расчета гармоник описан в [1].

Ограничиваясь в настоящей работе малыми отклонениями \ddot{a} от решения уравнения Блазиуса $\partial_{\eta}\theta_0 = -f_0\theta_0/2$, уравнения (3) представим в линеаризованном виде:

$$\partial_{\eta} \breve{p} = P, \ \partial_{\eta} \breve{f} = \breve{u}, \ \partial_{\eta} \breve{u} = \breve{\theta},$$

$$\partial_{\eta} \breve{\theta} = -\left(\theta_{0} \breve{f} + f_{0} \breve{\theta}\right) / 2 + R \left(\partial \breve{p} - \theta_{0} \partial \breve{f} + u_{0} \partial \breve{u} + gP + Q\right).$$
(5)

Давление определяется численным интегрированием от границы η_e пограничного слоя, где $\breve{p} = 0$, к стенке. Решение системы остальных уравнений (5) представляем в виде суммы ее частного решения и общего решения соответствующих однородных уравнений:

$$\partial_{\eta} \vec{f} = \vec{u}, \ \partial_{\eta} \vec{u} = \vec{\theta}, \ \partial_{\eta} \vec{\theta} = -\left[\theta_0 \vec{f} + f_0 \vec{\theta} + R\left(\theta_0 \vec{f} - u_0 \vec{u}\right) / \Delta R\right] / 2.$$
(6)

Вне пограничного слоя, где $u_0 = 1$, $\theta_0 = 0$, $f_0 = \eta - c_0$, последние два уравнения в (6) приводятся к уравнению

$$\partial_{\eta}^{2} \breve{u} = -\left[\left(\eta - c_{0}\right)\partial_{\eta} \breve{u} - R\breve{u}/\Delta R\right]/2.$$
(7)

Формально для получения асимптотики при $\eta \to \infty$ последним членом в (7) можно пренебречь, в результате получим интеграл $\partial_{\eta} \tilde{u} = \exp \left\{ -\left(\eta - c_0\right)^2 / 4 \right\}$, которым можно воспользоваться для постановки условия на границе пограничного слоя. Однако потребуется слишком большое значение η_e из-за большого параметра $b = R/(2\Delta R)$. Действительно, из сопоставления этого интеграла с затухающим при $\eta \to \infty$ решением $\ddot{u} = \exp(-\sqrt{b}\eta)$ уравнения (7) с отброшенным первым членом правой части следует, что необходимо выполнение соотношения $\eta_e >> \sqrt{b}$, тогда как оптимальные для расчета гармоник значения соразмерны. Поэтому будем ис- $\vec{u} = C_1 \exp\left(-\zeta^2/4\right),$ где $\zeta = f_0 + \sqrt{2R/\Delta R},$ пользовать асимптотику $\vec{\theta} = -C_1(\zeta/2)\exp(-\zeta^2/4)$, интеграл от \vec{u} берется с помощью асимптотического разложения: $\breve{f} = C_1 \varphi \exp\left(-\zeta^2/4\right), \ \varphi = -2/\zeta + 4/\zeta^3 - 24/\zeta^5$. Решение $U = (\breve{f}, \breve{u}, \breve{\theta})$ уравнений (6) суммируется $U = C_1U_1 + C_2U_2 + U_3$ из решений уравнений (7) с условиями на границе пограничного слоя: $U_1 = (\varphi, 1, -\zeta/2), U_2 = (1, 0, 0)$ и уравнений (6) с условием $U_3 = (0, 0, 0)$. Численное интегрирование от внешней границы к стенке производится для трех векторов одновременно с использованием ортогонализаций относительно U_1 . Коэффициенты C_1, C_2 определяются условиями на стен- $\kappa e: \ \overline{f} = \overline{u} = 0.$

Результаты представлены максимальными по сечениям R = const значениями A амплитуд пульсаций скорости \hat{u} и производными от средней скорости

Рис. 1. Зависимость амплитуд гармоник от *R* при $\omega = 5,6\cdot 10^{-5}$, $A_0 = 0,05$ %. Основная гармоника (1, 2), вторая гармоника (3, 4), без учета влияния на стационарные параметры пограничного слоя (2, 4), линейная теория (5).

 $\theta = \partial u / \partial \eta$. Координаты (*R*, η) асимптотически равны $\left(\sqrt{u_{\infty}x/v}, y\sqrt{u_{\infty}/(xv)}\right)$, где (*x*, *y*) — декартовы координаты.

Приведенные на рис. 1–3 данные получены для угловой частоты $\omega = 5, 6 \cdot 10^{-5}$ и амплитуды, заданной в точке начала нарастания по линейной теории (начальной амплитуды), $A_0 = 0,05$ %. В отличие от линейной теории, в соответствии с которой возмущения всегда затухают при достаточно больших *R* (кривая 5 на рис. 1), нелинейная волна при данной A_0 не затухает, а когда амплитуда второй гармоники сравнивается с амплитудой основной гармоники (см. кривые *I* и *3*), счет теряет устойчивость и прекращается.

Воздействие волны на осредненные характеристики пограничного слоя демонстрируют кривая роста параметра трения на стенке θ_w (см. рис. 2) и сопоставленные на рис. 3 профили θ для возмущенного и невозмущенного (пунктирная линия) пограничного слоя в сечении R = 1120. Данное сечение представлено пунктирными вертикалями на рис. 1, 2 и соответствует отношению амплитуд второй и основной гармоник 0,5. На рис. 1 показано также обратное влияние деформации осредненного поля течения на амплитуды гармоник.

Значения *R*, при которых $A_2/A = 0,5$ и воздействие изменения осредненных параметров течения на амплитуды гармоник становится существенным, приведены на рис. 4 для ряда частот в зависимости от начальной амплитуды. Огибающая

Рис. 2. Изменение $\theta = \partial u / \partial \eta$ вдоль поверхности пластины при $\omega = 5,6\cdot 10^{-5}, A_0 = 0,05$ %.

Рис. 3. Профиль $\theta = \partial u / \partial \eta$ в сечении $R = 1120 \ (A_2 / A = 0.5)$ при $\omega = 5.6 \cdot 10^{-5}$ $A_0 = 0.05 \ \%.$

Рис. 4. Зависимость критических значений *R* от начальной амплитуды для $\omega \cdot 10^5 = 2,4$ (*1*), 3 (2), 4 (3), 5,6 (4), 8 (5).

этого семейства (сплошная линия) определяет наряду с $R^*(A_0)$ также и критические частоты $\omega^*(A_0)$. Амплитуда основной гармоники при $R = R^*$ составляет 7–8%.

Резкое увеличение трения на стенке является признаком начала перехода пограничного слоя в турбулентное состояние, в данном случае оно предваряется быстрым и необратимым отклонением формы волны Толлмина–Шлихтинга от синусоиды.

СПИСОК ЛИТЕРАТУРЫ

- **1. Петров Г. В.** Гармоники волн Толлмина–Шлихтинга в сжимаемом пограничном слое // Теплофизика и аэромеханика. 2008. Т. 15, № 4. С. 599–602.
- **2. Кочин Н.Е., Кибель И.А., Розе Н.В.** Теоретическая гидромеханика. Ч. 2. М.: Гос. изд. физ.-мат. лит., 1963. 727 с.

Статья поступила в редакцию 10 марта 2009 г.