2009. Том 50, № 3 Май – июнь C. 492 – 496

УДК 538.91

РЕКОНСТРУКТИВНЫЕ ФАЗОВЫЕ ПЕРЕХОДЫ КИСЛОРОДНО-ОКТАЭДРИЧЕСКИХ СТРУКТУР

© 2009 Ю.В. Кабиров¹, М.Ф. Куприянов¹*, Е.В. Чебанова²

Статья поступила 21 февраля 2008 г.

С доработки — 28 октября 2008 г.

На основе экспериментальных структурных данных по оксидным соединениям рассмотрены реконструктивные фазовые переходы и их условия в структурах типа перовскита, ильменита, пирохлора и других. Показано, что подобные переходы зависят от давления, температуры, химического состава и дефектной структуры.

 \mathbf{K} лючевые слова: кристаллохимия, фазовые переходы, сегнетоэлектрики, оксидные системы.

Проблемы управления реконструктивными фазовыми переходами и их описания во многих соединениях в последние годы стали весьма актуальными в связи с тем, что при создании активных материалов в нанокристаллических состояниях имеют место резкие изменения структур и соответствующих физических свойств (например, [1, 2]). Поэтому соединения со структурами кислородно-октаэдрического типа, являясь основой разнообразных активных материалов (сегнетоэлектриков, высокотемпературных сверхпроводников и др.), детально изучают с целью выяснения закономерностей их реконструктивных изменений при формировании наноструктур разного масштаба. Реконструктивные фазовые переходы обычно наблюдают при воздействии внешнего давления, например, [3—8], увеличения температуры [1, 2, 9, 10], при изменениях составов твердых растворов [11, 12].

В табл. 1 приведены примеры оксидных материалов в различных структурных типах и указаны условия трансформаций между ними. По Бургеру [13] реконструктивные фазовые переходы могут происходить как с изменением первой координационной сферы, так и без изменения. Если трансформации между разными типами кислородно-октаэдрических структур достаточно просто описываются путем рассмотрения траекторий перемещения атомов, то определение условий таких превращений является сложной задачей.

Целью настоящей работы являлось рассмотрение взаимосвязей кислородно-октаэдрических структур, которое может быть использовано для определения возможных путей управления реконструктивными фазовыми переходами.

РЕКОНСТРУКТИВНЫЕ ТРАНСФОРМАЦИИ В ОКСИДНЫХ СИСТЕМАХ

В работах [16—18] построены диаграммы структурных состояний ряда оксидных систем в пространстве ионных радиусов катионов, которые не являются впрямую измеряемыми величинами. На этих диаграммах каждому типу структуры соответствует определенная область его существования. Например, область существования оксидов со структурой типа перовскита состава ABO_3 определяется граничными условиями для ионных радиусов катионов (R_A , R_B):

_

¹ Южный федеральный университет, физический факультет

²Ростовский государственный строительный университет, Институт строительных технологий и материалов

^{*} E-mail: salv62@mail.ru

Таблица 1 Примеры реконструктивных превращений некоторых оксидов

Оксид	Возможные структурные изменения	Условия трансформации	Литература
α -Fe ₂ O ₃	Корунд перовскит	Давление 55 ГПа	[3]
Ti_2O_3	Корунд-перовскит	Давление 25 ГПа	[3]
CdTiO ₃	Ильменит->перовскит	Температура выше 800 °C	[9, 10]
CdTiO ₃	Перовскит-ильменит	Измельчение под давлением 0,5 ГПа	[14]
FeTiO ₃	Ильменит-перовскит	Давление 20 ГПа, температура 700 °C	[5]
FeTiO ₃	Перовскит-ильменит	Давление 13,6 ГПа, температура 500 °C	[5]
$MgSiO_3$	Ильменит-перовскит	Давление 30 ГПа	[15]
$MnTiO_3$	Ильменит-перовскит	Давление 3 ГПа	[15]
$MnTiO_3$	Перовскит-ильменит	Давление ниже 2,5 ГПа	[15]
$Tb_2Sn_2O_7$	Пирохлор - аморфная фаза	Давление 100 ГПа	[6]
$Sm_2Ti_2O_7$	Пирохлор - аморфная фаза	Давление 51 ГПа	[7]
$Pb_2Ti_2O_6$	Дефицитный	Высокотемпературный отжиг при	[2]
	пирохлор→перовскит	температуре выше 700 °C	
$Pb_2Sn_2O_6$	Дефицитный	Давление 6—7 ГПа, температура	[8]
	пирохлор→перовскит	600 °C	
(1–x)NaNbO ₃ —xBiCrO ₃	Перовскит→дефицитный пирохлор	Концентрация $x \ge 0,2$	[11]
$Pb(Ti_{1-x}Sn_x)O_3$	Перовскит→дефицитный пирохлор	Концентрация $x \ge 0,5$	[12]

$$1,00 \text{ Å} < R_A < 1,69 \text{ Å},$$

 $0,57 \text{ Å} < R_B < 1,02 \text{ Å}.$

Однако эти соотношения (как и толеранс-фактор t Гольдшмидта [19]) определены по структурным параметрам веществ при комнатной температуре и нормальном давлении. При этом изменения структурных параметров с изменением давления и температуры не учитываются.

Структурные состояния оксидных систем могут изменяться при изменении температуры и давления. Известно [12, 23], что структурным состоянием таких объектов можно управлять также путем создания твердых растворов, разных по параметрам структуры компонентов, имитируя как увеличение, так и уменьшение "кристаллохимического давления".

Превращения корундовых и ильменитных фаз (Fe_2O_3 , $MnTiO_3$, $FeTiO_3$, $LiNbO_3$, $MgSiO_3$) в перовскитовые под высоким гидростатическим давлением сопровождаются уменьшением объемов ячеек V_0 и расстояний между слоями гексагональной анионной упаковки h, т.е. организацией более плотных перовскитовых структур. Особенность превращения ильменитной фазы $CdTiO_3$ [10] в перовскитовую состоит в том, что это превращение происходит после отжига при $850\,^{\circ}C$ без внешнего давления. Эта трансформация связана, в первую очередь, с отжигом дефектов, присутствующих в ильменитной структуре на стадии синтеза $CdTiO_3$ при относительно низких температурах, что подтверждается обратным превращением перовскитовой структуры в ильменитную при интенсивном механическом воздействии [12]. Можно полагать, что пирохлорные фазы ($PbSnO_3$, $PbTiO_3$ и др.) содержат большие концентрации дефектов (обычно пирохлорные фазы этих соединений образуются при относительно низких температурах синтеза). Эти фазы характеризуются относительно большими объемами (V_0) и малыми значениями коэффициентов плотнейшей упаковки (V_0). Коэффициенты упаковок рассчитаны трачениями коэффициентов плотнейшей упаковки (V_0). Коэффициенты упаковок рассчитаны тра-

диционным способом по формуле $k = \sum_{i=1}^{N} \frac{V_i}{V_p}$, где N — число атомов в ячейке; V_p — объем эле-

Таблица 2 Структурные параметры свинецсодержащих флюоритоподобных и перовскитовой структур

Название структуры	Пример соединения	a, Å	l _{O—O(F—F} , _{Pb—O)} , Å	h, Å	k	V_0 , \mathring{A}^3
Флюорит	PbF ₂	5,93	4,19	1,71	0,54	104,7
Пирохлор	$Pb_2Nb_2O_7$	10,67	3,76	1,54	0,61	75,9
Аниондефицитный пирохлор	$Pb_2Ti_2O_6$	10,50	3,71	1,52	0,56	70,3
Перовскит	PbTiO ₃	3,90	2,76	2,25	0,69	63,3

ментарной ячейки; объемы атомов $V_i = \frac{4}{3}\pi R_i^3$; R_i — ионные радиусы по Шеннону [22]. Отжиг

пирохлорных фаз при повышенных температурах, уменьшая концентрацию дефектов, должен приводить к уменьшению объема V_0 (при комнатной температуре). Дополнительное внешнее гидростатическое давление при высоких температурах также может приводить к уменьшению V_0 . Таким образом, если отжигом при высоких температурах уменьшать концентрацию дефектов и прикладывать внешнее давление, то можно обеспечить образование (вместо пирохлорной) перовскитовой фазы с меньшим V_0 .

В табл. 2 приведены основные структурные характеристики свинецсодержащих веществ со структурами типа флюорита, пирохлора, аниондефицитного пирохлора и перовскита. По простым кристаллохимическим соображениям (одинаковые катионы и близкие по ионным радиусам анионы) выбраны известные Рb-содержащие соединения с флюоритоподобной и перовскитовой структурами. Родственные структуры типа флюорита, пирохлора и аниондефицитного пирохлора (С-фаза редких земель) отличаются содержанием анионов в слоях упаковки, перпендикулярных направлениям типа [111]. Эти анионные слои чередуются со слоями катионов соответствующего состава. Поэтому параметр h отражает особенности химических связей между слоями упаковки. В структурах перовскита слои с упаковкой кубического типа перпендикулярны направлению [111] и содержат анионы и катионы. Для стехиометрических соединений АВО3 состав таких слоев — АО3. Катионы типа В являются связующими между слоями упаковки. Поэтому для структур типа пирохлора и перовскита в гексагональной установке параметр $a_{\rm H}$ отражает средние анион-анионные, анион-катионные связи ($l_{\rm O-O}$, $l_{\rm F-F}$, $l_{\rm F-A}$, $l_{\rm O-A}$) в слоях упаковки. В качестве характеристик этих структур использованы параметры кубических ячеек (a), средние длины межатомных связей $(l_{O-O (F-F, Pb-O)})$, средние расстояния между слоями упаковки (h), коэффициенты плотнейших упаковок (k) и объемы, приходящиеся на "молекулу" ABO_{3-z} (V_0). Рассмотрим характер изменения расстояний между слоями кубических упаковок h и длин межатомных связей l при переходе, например, от структуры типа флюорита к структуре типа перовскита через пирохлорную и аниондефицитную пирохлорную структуры. Такое рассмотрение позволяет определить условия внешних воздействий, приводящих к фазовым переходам. Можно видеть (см. табл. 2), что l_{F-F} для PbF_2 является наибольшим (l_{F-F} = = 4,19 Å). Если $l_{\rm F-F}$ оценивать по величинам ионного радиуса фтора ($R_{\rm F}$ = 1,33 Å), то в предположении плотнейшей упаковки шаров $l_{F-F} = 2,66$ Å. Это означает, что в реальном соединении PbF₂ отталкивание анионов в слоях упаковки велико. В пирохлорной и аниондефицитной пирохлорной структурах $Pb_2Nb_2O_7$ и $Pb_2Ti_2O_6$ соответствующие l_{O-O} (3,76 и 3,71 Å) приближаются к рассчитанному l_{O-O} по ионному радиусу $O^{2-}(R_O^{2-}=1.36 \text{ Å и } l_{O-O}=2.72 \text{ Å})$. Это в одном и другом случаях легко объясняется дефектностью по кислороду этих структур относительно бездефектной структуры типа флюорита. Перовскитовая структура отличается тем, что в слоях плотнейшей упаковки уже присутствуют катионы типа A(Pb). Это делает соизмеримыми расчетные по значениям ионных радиусов l_{O-O} (2,72 Å) и экспериментальные l_{A-O} (2,76 Å).

На рис. 1, 2 (для примера) показаны сечения перовскитовой и пирохлорной ячеек вдоль оси третьего порядка. Анионные слои различного состава, как видно, расположены перпендикулярно оси.

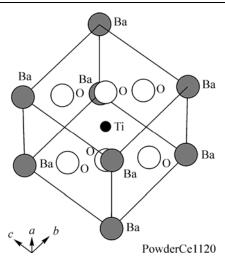
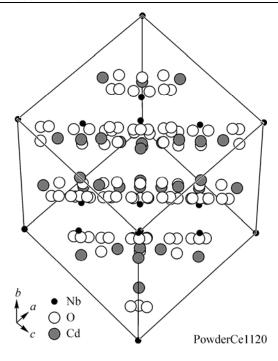



Рис. 1 (слева). Сечение перовскитовой ячейки $BaTiO_3$ вдоль оси третьего порядка

 $Puc.\ 2\ (cnpaвa)$. Сечение ячейки со структурой типа пирохлора $Cd_2Nb_2O_7$ вдоль оси третьего порядка

В анализируемых структурах катионы занимают позиции между анионными слоями (флюорит, пирохлор и аниондефицитный пирохлор), средние расстояния между такими слоями относительно невелики $(1,7-1,5\,\text{Å})$. Внедрению катионов типа A(Pb) в анионные слои (при трансформации структуры типа пирохлора в структуру перовскитового типа) соответствует и увеличение h до $2,25\,\text{Å}$. Эти особенности структур типа флюорита, пирохлора и аниондефицитного пирохлора и структур типа перовскита легко объясняются следующим образом. Внедрение катионов типа A в слои упаковки приводит к уменьшению l_{O-O} и l_{A-O} в слоях упаковки за счет уменьшения сил отталкивания между анионами (O,F). Соответствующий "уход" катионов типа A из позиций между слоями упаковки приводит к увеличению сил отталкивания между слоями упаковки (увеличение h). Как можно видеть (см. табл. h), увеличение h и уменьшение h0—0 h1 при переходах от флюоритоподобных структур к перовскитовой в целом приводят к более плотной структуре (увеличенным коэффициентам плотнейшей упаковки).

Кристаллохимическое рассмотрение кислородно-октаэдрических структур позволяет определить условия управления структурным состоянием того или иного вещества путем изменения давления, температуры, состава и концентрации дефектов.

Работа поддержана грантом Российского фонда фундаментальных исследований № 08-03-13504-офи_ц.

СПИСОК ЛИТЕРАТУРЫ

- 1. Scott J.F. // Ferroelectrics Rev. 1998. 1, N 1. P. 1.
- 2. *Martin F.W.* // Phys. Chem. Glass. 1965. 6, N 4. P. 143.
- 3. Olsen J.S., Gervard L. // Mater. Sci. Forum. 1993. 133—136. P. 603.
- 4. Ming Li Chung, Kim Young-Ho, Uchida T. et. al. // Amer. Miner. 2006. 91, N 1. P.120.
- 5. Ito E., Yoshito M. // Phys. Chem. Minerals. -1979. N 4. P. 265.
- 6. *Kumar R.S., Cornelius A.L., Nicol M.F.* // Appl. Phys. Lett. 2006. **88**. P. 031903-1.
- 7. Zhang F.X., Manoun B., Saxena S.K. et al. // Ibid. 2005. **86**. P. 181906-1.
- 8. Веневцев Ю.Н., Политова Е.Д., Иванов С.А. Сегнето- и антисегнетоэлектрики титаната бария. М.: Химия, 1985.
- 9. Megaw H.D. // Proc. Phys. Soc. 1946. 58, Pt. 2, N 326. P. 133.
- 10. Кабиров Ю.В., Кульбужев Б.С., Куприянов М.Ф. // Журн. структур. химии. 2001. 42, № 5. С. 972.

- 11. Hsiao Y.J., Chang Y.H. // J. Appl. Phys. Lett. 2005. **87**. P. 142906-1.
- 12. $\mbox{\it Чебанова } E.B.$ Формирование структурных состояний $\mbox{\it PbTiO}_3$ и его твердых растворов с $\mbox{\it PbSnO}_3$ и $\mbox{\it PbMnO}_3$. Взаимосвязь структур типа перовскита и пирохлора. Дисс. ... канд. физ-мат. наук. $\mbox{\it Poctob-ha-Дону}$: ЦВВР, 2007.
- 13. *Бургер М.Дж.* // Кристаллография. 1971. **16**. С. 1085.
- 14. Пруцакова Н.В., Кабиров Ю.В., Чебанова Е.В. и др. // Письма в ЖЭТФ. 2005. 31, № 19. С. 53.
- 15. http://www.webmineral.com
- 16. Wood E.A. // Acta Crystallogr. 1951. 4, Pt. 4. P. 355.
- 17. Roth R.S. // J. Res. Nat. Bur. Standards. 1957. **58**. P. 75.
- 18. Фесенко Е.Г. Семейство перовскита и сегнетоэлектричество. М.: Атомиздат, 1972.
- 19. *Goldschmidt V.W.* // J. Math. Naturvid. Klass. 1926. **2**. P. 97.
- 20. http://database.iem.ac.ru/mincryst/
- 21. Retrieve 2.01. Karlsruhe, Gmelin institute, 1997.
- 22. Shannon R.D. // Acta Crystallogr. A. 1976. 32, Pt. 5. P. 751.
- 23. Дергунова Н.В., Сахненко В.П., Фесенко Е.Г. // Кристаллография. 1978. 23, № 1. С. 94.