УДК 532.526

ВОЗНИКНОВЕНИЕ ВРАЩЕНИЯ ЖИДКОСТИ В ПОГРАНИЧНОМ СЛОЕ МАРАНГОНИ В ОБЛАСТИ ЛОКАЛЬНОГО ОХЛАЖДЕНИЯ СВОБОДНОЙ ГРАНИЦЫ

В. А. Батищев

Южный федеральный университет, 344090 Ростов-на-Дону, Россия E-mail: batishev-v@mail.ru

Исследована бифуркация вращения в стационарном осесимметричном термокапиллярном течении несжимаемой жидкости, заполняющей полубесконечное пространство, ограниченное свободной поверхностью, на которой задано неравномерное распределение температуры. Течение жидкости рассчитано с использованием уравнений Навье — Стокса в предположении малости коэффициентов диффузии. Показано, что в результате бифуркации при локальном охлаждении свободной границы вблизи оси симметрии и при наличии внешнего потока нагретой жидкости возникает вращательный режим в тонком пограничном слое Марангони, причем вне этого слоя вращение отсутствует. При локальном нагреве свободной границы вращение не обнаружено.

Ключевые слова: свободная граница, пограничный слой, охлаждение, бифуркация, термокапиллярный эффект, вращение.

DOI: 10.15372/PMTF20180303

Введение. Течения в пограничных слоях, возникающих вблизи свободной границы теплопроводной жидкости, интенсивно изучались во второй половине ХХ в. В случае малых значений коэффициентов диффузии при неравномерном нагреве свободной границы возникает термокапиллярное течение жидкости в тонком пограничном слое вблизи этой границы. Одной из первых работ, посвященных исследованию автомодельных решений, описывающих течения жидкости в пограничных слоях Марангони, является работа [1]. Исследованию свойств термокапиллярных течений жидкости посвящен цикл работ В. В. Пухначева и его учеников, в том числе работа, в которой выполнен групповой анализ уравнений нестационарного пограничного слоя Марангони [2]. Нелинейные пограничные слои, обусловленные поверхностными касательными напряжениями, могут возникать при ветровых нагрузках. В работе [3] исследовались автомодельные решения для нелинейного пограничного слоя в случае поверхностных волн, вызванных касательными напряжениями. Неравномерное распределение примеси на свободной границе также создает касательные напряжения, которые вызывают течение жидкости в концентрационном пограничном слое. В [4] исследована задача о возникновении вращения однородной жидкости в тонком слое, ограниченном снизу твердой стенкой, а сверху неравномерно нагретой свободной границей, причем толщина этого слоя имеет порядок толщины пограничного слоя Марангони. В работе [5] данная задача изучена для тонкого слоя неоднородной жидкости

26

Рис. 1. Схема течения жидкости в цилиндрических координатах r, θ, z : штриховая линия — граница пограничного слоя, пунктирная — граница слоя жидкости, принадлежащего области пограничного слоя, сплошные линии — линии тока

в приближении Обербека — Буссинеска. В настоящей работе рассмотрено стационарное осесимметричное течение однородной жидкости в полуплоскости, ограниченной свободной границей с неравномерным распределением температуры. Предполагается, что вне возникающего пограничного слоя Марангони скорость жидкости имеет такой же порядок, как и в пограничном слое. Показано, что в результате бифуркации основного режима при локальном охлаждении свободной границы и различной скорости внешнего потока вращательный режим может возникать в пограничном слое, вне которого вращение отсутствует. При локальном нагреве свободной поверхности бифуркации вращения не обнаружено.

1. Уравнения движения. Рассматривается осесимметричное стационарное течение однородной несжимаемой жидкости в полубесконечном пространстве, ограниченном свободной границей Γ, вдоль которой задано неравномерное распределение температуры (рис. 1). Для описания течения жидкости используются система уравнений Навье — Стокса и уравнение теплопроводности в случае малых значений диффузионных коэффициентов вязкости ν и температуропроводности χ :

$$(\boldsymbol{v}, \nabla)\boldsymbol{v} = -\rho^{-1}\nabla p + \nu\Delta v + \boldsymbol{g},$$

 $(\boldsymbol{v}, \nabla)T = \chi\Delta T, \quad \text{div } \boldsymbol{v} = 0.$

Здесь $\boldsymbol{v} = (v_r, v_\theta, v_z)$ — вектор скорости; p — давление; T — температура жидкости; ρ — плотность; $\boldsymbol{g} = (0, 0, -g_t)$; g_t — ускорение свободного падения. Задача решается в цилиндрических координатах r, θ, z . Предполагается, что коэффициент поверхностного натяжения σ линейно зависит от температуры: $\sigma = \sigma_0 - |\sigma_T|(T - T_*) (\sigma_0, |\sigma_T|, T_*)$ — известные постоянные). Свободная граница Γ считается недеформируемой. На свободной поверхности выполняются динамические условия для касательных напряжений и кинематическое условие, а также задана температура T_{Γ} :

$$2\nu\rho(\Pi \boldsymbol{n} - (\boldsymbol{n}\Pi\boldsymbol{n})\boldsymbol{n}) = \nabla_{\Gamma}\sigma,$$
$$\boldsymbol{v}\boldsymbol{n} = 0, \qquad T = T_{\Gamma}(r, z), \qquad (r, z) \in \mathbf{I}$$

Здесь \boldsymbol{n} — единичный вектор внешней нормали к свободной границе Γ ; Π — тензор скоростей деформации; ∇_{Γ} — оператор градиента вдоль границы Γ . Полагается, что в окрестности оси симметрии температура свободной границы изменяется по квадратичному закону $T_{\Gamma} = T_{\infty} + 0.5\tau T_{\infty}(r^2/L^2 - 1)$ при $r \leq L$ и $T_{\Gamma} = T_{\infty}$ при $r \geq L$ (r — радиальная координата; T_{∞} — средняя постоянная температура слоя жидкости; L — радиус окружности, внутри

которой температура меняется по квадратичному закону; параметр τ характеризует изменение температуры свободной границы вблизи оси симметрии, т. е. амплитуду отклонения температуры T_{Γ} на границе от среднего значения T_{∞}). При $\tau > 0$ свободная поверхность неравномерно охлаждается вблизи оси симметрии. Температура границы увеличивается при увеличении расстояния от оси симметрии при $r \leq L$. При $\tau < 0$ свободная граница неравномерно нагрета при $r \leq L$.

Температура жидкости стремится к постоянному значению T_{∞} , а поле скоростей ограничено при увеличении расстояния от свободной границы в случае $z \to -\infty$.

Уравнения движения и краевые условия записываются в безразмерных переменных, в качестве масштабов длины, скорости, давления и температуры выбираются параметры $L, u, \rho u^2, T_{\infty}$, причем масштаб скорости определяется по формуле

$$u = (|\sigma_T|^2 T_{\infty}^2 L^{-1} \nu^{-1} \rho^{-2})^{1/3}.$$

Далее вводится параметр ε по формуле

$$\varepsilon = (\rho \nu^2 L^{-1} T_{\infty}^{-1} |\sigma_T|^{-1})^{1/3}.$$

Заметим, что масштаб скорости u и параметр ε находятся в результате сравнения порядков величин в уравнениях Навье — Стокса и в краевых условиях при $\varepsilon \to 0$.

При малых значениях параметра ε вблизи свободной границы формируется пограничный слой Марангони, обусловленный поверхностными касательными напряжениями. Толщина этого слоя имеет порядок $O(\varepsilon)$. Вне слоя в первом приближении течение жидкости является невязким и описывается уравнениями Эйлера. Рассматривается случай, когда скорость жидкости в пограничном слое и скорость внешнего невязкого течения $v_0 = (v_{r0}, v_{\theta 0}, v_{z0})$ имеют одинаковый порядок u. Невязкое течение полагается незакрученным, т. е. $v_{\theta 0} = 0$.

Ниже показано, что вблизи оси симметрии при локальном охлаждении свободной границы возникает вращательное движение жидкости внутри пограничного слоя, причем вне этого слоя вращение отсутствует.

2. Асимптотические приближения. Задача решается с использованием метода пограничного слоя при $\varepsilon \to 0$. Поместим начало системы координат на свободную поверхность на оси симметрии (см. рис. 1). Введем растянутую переменную *s* по формуле $s = z/\varepsilon$. Построим асимптотические разложения решения задачи в виде рядов по степеням малого параметра:

$$v_r = v_{r0} + h_{r0} + \varepsilon (h_{r1} + v_{r1}) + \dots, \qquad v_z = v_{z0} + \varepsilon (h_{z1} + v_{z1}) + \dots, v_\theta = h_{\theta 0} + \varepsilon h_{\theta 1} + \dots, \qquad T = 1 + \theta_0 + \varepsilon (T_1 + \theta_1) + \dots$$

Аналогичный ряд строится для давления. Функции h_{r0} , h_{r1} , h_{z1} , $h_{\theta0}$, $h_{\theta1}$, θ_0 , θ_1 зависят от переменных s, r, локализованы в области пограничного слоя D_{Γ} и исчезают при выходе из него ($s \to -\infty$). Функции v_{r0} , v_{z0} , v_{r1} , v_{z1} , T_1 ("внешнее" решение) описывают течение жидкости вне области пограничного слоя. Функции v_{r0} , v_{z0} определяются из уравнений Эйлера и описывают незакрученное течение идеальной жидкости. Из условия $h_{\theta0} \to 0$ ($s \to -\infty$) следует, что при выходе из области пограничного слоя D_{Γ} вращение пограничного слоя не вызывает вращения жидкости вне D_{Γ} .

Подставляя асимптотические разложения в систему Навье — Стокса и приравнивая к нулю суммы коэффициентов порядка O(1), получаем уравнения пограничного слоя в главном приближении

$$h_{r0}\frac{\partial h_{r0}}{\partial r} + h_{z1}\frac{\partial h_{r0}}{\partial s} - \frac{h_{\theta 0}^2}{r} + \frac{\partial}{\partial r}(ah_{r0}) + (b+cs)\frac{\partial h_{r0}}{\partial s} = \frac{\partial^2 h_{r0}}{\partial s^2},$$
$$h_{r0}\frac{\partial h_{\theta 0}}{\partial r} + h_{z1}\frac{\partial h_{\theta 0}}{\partial s} + \frac{h_{r0}h_{\theta 0}}{r} + \frac{a}{r}\frac{\partial(rh_{\theta 0})}{\partial r} + (b+cs)\frac{\partial h_{\theta 0}}{\partial s} = \frac{\partial^2 h_{\theta 0}}{\partial s^2},$$

$$\frac{\partial h_{r0}}{\partial r} + \frac{h_{r0}}{r} + \frac{\partial h_{z1}}{\partial s} = 0, \tag{1}$$
$$h_{r0} \frac{\partial \theta_0}{\partial r} + h_{z1} \frac{\partial \theta_0}{\partial s} + a \frac{\partial \theta_0}{\partial r} + (b + cs) \frac{\partial \theta_0}{\partial s} = \frac{1}{\Pr} \frac{\partial^2 \theta_0}{\partial s^2}$$

(Pr — число Прандтля). Коэффициенты *a*, *b*, *c* определяются значением поля скорости внешнего течения жидкости на свободной границе:

$$a = v_{r0} \big|_{\Gamma}, \qquad b = v_{z1} \big|_{\Gamma}, \qquad c = \frac{\partial v_{z0}}{\partial z} \big|_{\Gamma}$$

Для системы (1) приведем краевые условия

$$s = 0: \qquad \frac{\partial h_{r0}}{\partial s} = -\frac{\partial T_{\Gamma}}{\partial r}, \quad h_{z1} + b = 0, \quad \frac{\partial h_{\theta 0}}{\partial s} = 0, \quad \theta_0 = T_{\Gamma} - 1, \qquad (2)$$
$$s \to -\infty: \qquad h_{r0} \to 0, \quad h_{z1} \to 0, \quad h_{\theta 0} \to 0, \quad \theta_0 \to 0.$$

В предположении, что вне области пограничного слоя заданы компоненты v_{r0} , v_{z0} поля скоростей внешнего невязкого незакрученного течения, коэффициенты a(r), c(r) в уравнениях (1) однозначно определены. Например, если течение идеальной жидкости вблизи границы Γ задано полем скоростей $v_{r0} = Ur$, $v_{z0} = -2Uz$, $v_{\theta 0} = 0$, то a = Ur, c = -2U. При решении краевой задачи (1), (2) неизвестный коэффициент b(r) исключается путем введения новой функции $H_z = h_{z1} + b + cs$, при этом также исключается функция h_{z1} . После решения полученной задачи коэффициент b(r) определяется однозначно по формуле $b(r) = \lim_{s \to -\infty} (H_z - cs)$. Заметим, что коэффициент b(r) задает кинематическое краевое условие на свободной границе в задаче о расчете в первом приближении v_{r1} , v_{z1} внешнего течения.

В пограничном слое введем радиальную компоненту H_r вектора скорости в главном приближении по формуле $H_r = h_{r0} + a$. Функции H_r , H_z и компонента $h_{\theta 0}$ удовлетворяют системе уравнений пограничного слоя Прандтля с краевыми условиями на свободной границе (s = 0) для касательных напряжений $\partial H_r/\partial s = -\partial T_{\Gamma}/\partial r$, $\partial h_{\theta 0}/\partial s = 0$ и условием непротекания $H_z = 0$.

С учетом квадратичного закона распределения температуры на свободной границе, который в безразмерных переменных принимает вид $T = 1 + 0.5\tau(r^2 - 1)$ при r < 1, построим решение задачи (1), (2) вблизи оси симметрии. Предположим, что радиальная компонента скорости идеальной жидкости на свободной границе вблизи оси симметрии линейно зависит от радиальной координаты: $v_{r0}|_{\Gamma} = Ur \ (U \ge 0)$. Заметим, что такому значению скорости на недеформируемой границе Γ соответствует поле скоростей невязкой жидкости в окрестности этой границы: $v_{r0} = Ur, v_{z0} = -2Uz, v_{\theta0} = 0$.

Решение уравнений пограничного слоя вблизи оси симметрии будем строить в виде

$$h_{r0} = rH'(\eta), \qquad h_{z1} = 2H(\eta) - b, \qquad h_{\theta 0} = rG(\eta),$$

где $\eta = -s$. Данное решение описывает течение жидкости в пограничном слое только при малых значениях радиальной координаты и несправедливо при r > 1. Функции H, Gзависят от параметров U, τ . Для функций $H(\eta), G(\eta)$ из (1), (2) выводим краевую задачу

$$H''' = H'^2 + 2UH' - 2H''(H + \eta U) - G^2, \qquad G'' = 2(H' + U)G - 2(H + \eta U)G', \qquad (3)$$
$$H(0) = 0, \quad H''(0) = \tau, \quad G'(0) = 0, \quad H'(+\infty) = 0, \quad G(+\infty) = 0.$$

После решения задачи (3) функция $v_{z1}|_{\Gamma}$ находится по формуле $v_{z1}|_{\Gamma} = 2H(+\infty)$.

Главное приближение температуры жидкости в области пограничного слоя определяется формулой $T = 1 + \theta_0 + O(\varepsilon)$. Функцию θ_0 представим в виде суммы $\theta_0 = r^2 \theta_{00}(\eta) + \theta_{01}(\eta)$. Функции θ_{00} , θ_{01} определяются путем решения краевых задач

$$\theta_{00}^{\prime\prime} = 2 \Pr\left((H^{\prime} + U)\theta_{00} - (H + \eta U)\theta_{00}^{\prime}\right), \qquad \theta_{01}^{\prime\prime} = -2 \Pr\left(H + \eta U\right)\theta_{01}^{\prime}, \qquad (4)$$

$$\theta_{00}(0) = \tau/2, \qquad \theta_{01}(0) = -\tau/2, \qquad \theta_{00}(+\infty) = \theta_{01}(+\infty) = 0.$$

Рис. 2. Зависимость V(U) на свободной границе при различных значениях параметра τ :

сплошные кривые — режимы течения первого типа (без вращения), штриховые — режимы течения второго типа, различающиеся направлением вращения; $1 - \tau = -1,0$, $2 - \tau = 0,3, 3 - \tau = 1,0$

3. Результаты численных расчетов. Краевые задачи (3), (4) решались численно с использованием метода пристрелки и пакета Matlab при Pr = 7. Заметим, что решение задачи (3) для различных положительных значений параметра τ можно получить, решив эту задачу при $\tau = 1$, а затем выполнив перерасчет полученного решения по формулам

$$H(\eta) = \tau^{1/3} H_1(\xi), \qquad G(\eta) = \tau^{2/3} G_1(\xi), \qquad U = \tau^{2/3} U_1, \qquad \xi = \tau^{1/3} \eta, \tag{5}$$

где функции H_1, G_1 и параметр U_1 соответствуют решению задачи (3) при $\tau = 1$.

Введем параметр V = H'(0) + U, пропорциональный радиальной компоненте вектора скорости вязкой жидкости на свободной границе в главном приближении. На рис. 2 приведена зависимость параметра V от параметра U, пропорционального скорости идеальной жидкости на свободной границе, при различных значениях параметра τ . Режимы течений жидкости делятся на два типа: к первому типу относятся режимы течений в отсутствие вращения $(v_{\theta} = 0)$, ко второму типу — течения жидкости с вращением (вторичные режимы). Кривая 1 на рис. 2 рассчитана для случая нагрева свободной границы при $\tau = -1$. Видно, что скорость вязкой жидкости на свободной границе монотонно увеличивается при увеличении параметра U. Кривые 2, 3 рассчитаны для случая охлаждения свободной границы при $\tau = 0,3, \tau = 1,0$. При $\tau > 0$ режимы в отсутствие вращения существуют только в случае $U \ge U_m$. С учетом (5) получаем $U_m \approx 0,7651\tau^{2/3}$. При $\tau = 0,3$; 1,0 данные значения U_m соответствуют "вершинам" кривых 2, 3. Для каждого значения U при $U > U_m$ найдено по два решения первого типа, которые различаются формой профиля скорости. При $U = U_m$ эти решения совпадают, а при $U < U_m$ — исчезают. При $U_m < U < U_0$ профили скоростей каждого из двух решений имеют зоны противотока ($U_0 \approx 0.8344 \tau^{2/3}$ значение параметра U, при котором V = 0). В течениях первого типа при V > 0 зона противотока отсутствует, при V < 0 присутствует зона противотока, примыкающая к свободной границе. В зоне противотока радиальная компонента скорости направлена к оси симметрии.

На рис. 3 показана зависимость функции $V_r = H_r/r$, пропорциональной радиальной компоненте скорости в главном приближении, от поперечной координаты в пограничном слое при U = 0.8, U = 0. Кривые 1–3 соответствуют решениям первого типа. Кривая 1

Рис. 3. Зависимость $V_r(\eta)$ в пограничном слое при различных значениях U, τ : сплошные кривые — режимы течения первого типа $(1 - \tau = -1, U = 0.8; 2, 3 -$ решения нелинейной задачи при $\tau = 1, U = 0.8$, штриховые кривые — режимы течения второго типа $(4 - \tau = 1, U = 0.8, 5 - \tau = 1, U = 0)$

соответствует нагреву свободной границы при $\tau = -1$, U = 0,8. Кривые 2, 3 — профили скоростей для двух различных решений, полученных при U = 0,8, $\tau = 1$ в случае локального охлаждения границы. Оба решения имеют зону противотока вблизи свободной границы. Заметим, что у перечисленных выше решений при U = 0,8 радиальная компонента скорости либо монотонно уменьшается при $\tau = -1$, либо монотонно увеличивается при $\tau = 1$ при увеличении расстояния от свободной границы и стремится к предельному значению $V_r = 0,8$ при $\eta \to \infty$. Кривые 4, 5 описывают режимы течений жидкости с вращением при U = 0,8, U = 0, $\tau = 1$ в случае локального охлаждения границы. Видно, что имеются зоны противотока и профиль скорости при U = 0 является немонотонным. Отсутствие монотонности радиальной компоненты скорости в сечении пограничного слоя проявляется в случае малых значений параметра U при $\tau > 0$.

4. Бифуркация решений. Вторичные режимы. Решения первого типа при $\tau > 0$ отсутствуют при скоростях внешнего потока, удовлетворяющих неравенству $U < U_m$. При таких значениях параметра U существуют решения, описывающие течение жидкости с вращением в пограничном слое. Решения, описывающие режимы с вращением, ответвляются от решений, описывающих режимы первого типа, в точках бифуркации. Точки ветвления находятся при численном решении задачи на собственные значения, которая получается путем линеаризации задачи (3), (4) вблизи решения, описывающего режимы первого типа H, θ_{00} , θ_{01} , и принимает вид

$$f_0^{(3)} = 2(H' + U)f_0' - 2H''f_0 - 2(H + \eta U)f_0'';$$
(6)

$$g_0'' = 2(H' + U)g_0 - 2(H + \eta U)g_0'; \tag{7}$$

$$\theta_{b0}^{\prime\prime} = 2\Pr\left(f_0^{\prime}\theta_{00} - f_0\theta_{00}^{\prime} + (H^{\prime} + U)\theta_{b0} - (H + \eta U)\theta_{b0}^{\prime}\right);\tag{8}$$

$$\theta_{b1}^{\prime\prime} = -2\Pr\left(f_0\theta_{01}^{\prime} + (H + \eta U)\theta_{b1}^{\prime}\right);\tag{9}$$

$$f_0(0) = f_0''(0) = \theta_{b0}(0) = \theta_{b1}(0) = g_0'(0) = 0,$$
(10)

$$f_0'(+\infty) = \theta_{b0}(+\infty) = \theta_{b1}(+\infty) = g_0(+\infty) = 0.$$

Краевая задача (6)–(10), а также вторичные режимы рассчитывались численно методом пристрелки с использованием пакета Matlab. Рассмотрим случай $\tau > 0$. При решении

краевой задачи (6)–(10) сначала путем решения однородной краевой задачи, состоящей из уравнения (7) и краевых условий (10) для функции g_0 , находятся собственная функция g_0 и собственное число U_* . Собственную функцию представим в виде $g_0 = c_0 g_*(\eta)$ (c_0 произвольная постоянная, не равная нулю). Принимая для функции g_* условие нормировки $g_*(0) = 1$, получаем $U_* \approx 0.8355\tau^{2/3}$. Численные расчеты показывают, что функция $g_*(\eta)$ на интервале $[0, +\infty)$ монотонно убывает при увеличении переменной η и стремится к нулю при $\eta \to +\infty$. Далее, при $U = U_*$ определяется функция f_0 из краевой задачи, включающей уравнение (6) и краевые условия для f_0 (10). Численные расчеты показывают, что $f_0 = 0$ при $U = U_*$. По аналогии получаем $\theta_{b0} = 0$, $\theta_{b1} = 0$ при $U = U_*$. При $\tau < 0$ собственных значений параметра U не найдено.

Результаты расчетов режимов второго типа (с вращением жидкости) показаны на рис. 2, 3 штриховыми линиями. При каждом положительном значении параметра τ и $U < U_*$ найдено по два таких режима, которые различаются только направлением вращения. На рис. 2 точки *B* и *C* являются точками ветвления соответственно для $\tau = 1$, $\tau = 0,3$. Окружная компонента скорости в главном приближении $h_{\theta 0}$ монотонно уменьшается и стремится к нулю при увеличении расстояния от свободной границы. Максимальное значение этой компоненты достигается на свободной границе и с увеличением параметра τ увеличивается по степенному закону. При $\tau > 0$ краевая задача (3), (4) при $U \ge U_*$ имеет два решения первого типа, при $U_m < U < U_*$ — четыре решения, два из которых являются решениями первого типа, два — решениями второго типа. При $0 \le U < U_m$ найдены только два режима с вращением. При $U = U_m$ рассчитаны три режима, два из которых являются режимами второго типа.

Величина теплового потока на свободной границе Г определяется по формуле $q = -\lambda \partial T/\partial z|_{\Gamma}$, которую преобразуем к виду $q = q_*Q(r, U, \tau)$ (λ — теплопроводность). Размерный параметр q_* определим по формуле $q_* = \lambda T_*/(\varepsilon L)$, безразмерную функцию $Q(r, U, \tau)$ представим в виде $Q = r^2 \theta'_{00}(0) + \theta'_{01}(0)$. При расчете величины теплового потока на свободной границе сначала численно решается краевая задача (3), затем краевая задача (4) для определения поля температур в пограничном слое. В результате находятся значения производных $\theta'_{00}(0)$, $\theta'_{01}(0)$ на свободной границе и далее вычисляется функция Q, определяющая величину теплового потока на поверхности Г. На рис. 4 приведена зависимость функции Q от параметра U при $\tau = 1$, r = 0,3. Точкой B обозначена точка бифуркации. Видно, что при уменьшении параметра U от значения U_* до нуля величина теплового потока в случае вторичного режима незначительно уменьшается и при U = 0 достигает минимума. При U < 0 вторичные режимы не рассчитывались.

Обозначим через W параметр, пропорциональный окружной компоненте скорости на свободной границе в главном приближении $W = h_{\theta 0}/r|_{\Gamma}$. На рис. 5 приведена зависимость параметра W от параметра U для вторичных режимов. Каждому значению параметра Uпри $U < U_*$ соответствуют два симметричных вторичных режима со значениями $\pm |W|$. Точками B, C обозначены точки бифуркации. Видно, что при увеличении параметра Uот нуля до значения U_* модуль окружной компоненты скорости точек свободной границы монотонно уменьшается до нуля. Заметим, что в отсутствие внешнего потока |W| вычисляется по формуле $|W||_{U=0} \approx 1,0659\tau^{2/3}$.

5. Асимптотика вторичных режимов вблизи точки бифуркации. Обозначим через H_* , θ_0^* , θ_1^* , U_* значения в точке бифуркации функций H, θ_{00} , θ_{01} и параметра U, описывающих решения первого типа. В малой окрестности точки бифуркации введем параметр $\varepsilon_1 = G(0)$, где G(0) — функция параметров τ и U, которая обращается в нуль в точке бифуркации при $U = U_*$. Величина G(0) пропорциональна амплитуде окружной компоненты скорости в случае вторичного режима на свободной границе. Очевидно, что при $U \to U_*$ параметр ε_1 является малым. Введем параметр $\delta = U_* - U$, который вблизи

Рис. 4. Зависимость Q(U) на свободной границе при $\tau = 1, r = 0,3$: сплошная кривая — режим течения первого типа, штриховая — режим течения второго типа

Рис. 5. Зависимость W(U) на свободной границе для режимов второго типа при различных значениях τ :

$$1 - \tau = 1, 0, 2 - \tau = 0, 3$$

точки бифуркации также является малым. Решение краевой задачи (3), (4) находим по формулам

$$H = H_* + f,$$
 $G = \varepsilon_1 g,$ $\theta_{00} = \theta_0^* + \theta_0^0,$ $\theta_{01} = \theta_1^* + \theta_0^1.$

Используя соотношение $\varepsilon_1 = G(0)$, получаем краевое условие для функции $g(\eta)$ на свободной границе g(0) = 1.

Введем операторы

$$L = D^{3} - 2(H'_{*} + U_{*})D + 2(H_{*} + \eta U_{*})D^{2} + 2H''_{*}E,$$

$$K = D^{2} - 2(H'_{*} + U_{*})E + 2(H_{*} + \eta U_{*})D$$

 $(D = d/d\eta$ — оператор дифференцирования; E — единичный оператор).

Приведем краевую задачу для определения функций f и g:

$$Lf = 2\delta(-f' + \eta f'' - H'_* + \eta H''_*) + f'^2 - 2ff'' - \varepsilon_1^2 g^2,$$

$$Kg = 2\delta(\eta g' - g) + 2f'g - 2g'f,$$
(11)

$$f(0) = 0, \quad f''(0) = 0, \quad g'(0) = 0, \quad f'(+\infty) = 0, \quad g(+\infty) = 0.$$

Дополнительное условие g(0) = 1 связывает малые параметры ε_1^2 и δ . В задачу (11) параметр ε_1 входит в виде квадратичной функции ε_1^2 . Предположим, что функцию ε_1^2 можно представить в виде асимптотического ряда по степеням δ :

$$\varepsilon_1^2 = \delta V_1 + \delta^2 V_2 + \dots, \qquad \delta \to 0.$$
⁽¹²⁾

Решения краевой задачи (11) построим в виде асимптотических рядов по степеням параметра δ

$$f = \delta f_1 + \delta^2 f_2 + \dots, \qquad g = g_* + \delta g_1 + \delta^2 g_2 + \dots, \qquad \delta \to 0.$$
⁽¹³⁾

Для функций g_k определим начальные условия $g_k(0) = 0$ ($k \ge 1$). Функция g_* представляет собой нормированную собственную функцию краевой задачи (6)–(10), удовлетворяющую условию $g_*(0) = 1$. Для определения функции f_1 приведем краевую задачу

$$Lf_1 = F_1, \qquad f_1(0) = 0, \quad f_1''(0) = 0, \quad f_1'(+\infty) = 0.$$
 (14)

Правая часть уравнения в (14) задается формулой

$$F_1 = 2\eta H_*'' - 2H_*' - V_1 g_*^2.$$

Функция g_1 в (13) находится после определения функции f_1 и удовлетворяет краевой задаче

$$Kg_1 = 2(\eta g'_* - g_* + f'_1 g_* - f_1 g'_*), \qquad g'_1(0) = 0, \quad g_1(+\infty) = 0.$$
⁽¹⁵⁾

Дополнительное условие $g_1(0) = 0$ служит для нахождения параметра V_1 .

При численном интегрировании задач (14), (15) функцию f_1 , зависящую от неизвестного параметра V_1 , следует представить в виде суммы $f_1 = f_{11}(\eta) + V_1 f_{12}(\eta)$. Функции f_{11} , f_{12} не зависят от параметра V_1 и определяются из краевой задачи (14), в которой следует положить соответственно $F_1 = 2\eta H''_* - 2H'_*$ в случае $f_1 = f_{11}$ и $F_1 = -g_*^2$ при $f_1 = f_{12}$. Путем численного расчета при $\tau = 1$ получаем значения производных $f'_{11}(0) \approx 3,3031$, $f'_{12}(0) \approx -0,7108$. Функция $f_{11}(\eta)$ монотонно возрастает при увеличении расстояния от свободной границы и при выходе из области пограничного слоя стремится к конечному предельному значению. Функция $f_{12}(\eta)$ монотонно уменьшается при увеличении η и при $\eta \to \infty$ стремится к конечному предельному значение для параметра V_1

$$V_1 = -I_1/I_0, (16)$$

где

$$I_0 = \int_0^\infty (f'_{12}g_* - f_{12}g'_*)\varphi(\eta) \, d\eta, \qquad I_1 = \int_0^\infty (g'_*(\eta - f_{11}) + g_*(f'_{11} - 1))\varphi(\eta) \, d\eta,$$

функция $\varphi(\eta)$ определяется из краевой задачи $K_*\varphi = 0$, $\varphi'(0) = \varphi(+\infty) = 0$; $K_* = D^2 - 4(H'_* + U_*)E - 2(H_* + \eta U_*)D$. Используя результаты численных расчетов по формуле (16), для параметра V_1 получаем формулу $V_1 \approx 2,8759\tau^{2/3}$. При определении параметра V_1 по формуле (16) не требуется решать краевую задачу (15). Значения V_1 , полученные при численном решении задачи (15) методом пристрелки, и значения V_1 , полученные по формуле (16), совпадают.

Результаты расчетов показывают, что функция $f_1(\eta)$ является положительной, имеет один экстремум (максимум) на интервале $[0, +\infty)$ и стремится к конечному пределу на бесконечности. Функция $g_1(\eta)$ также является положительной, имеет один экстремум (максимум) на полуоси $\eta > 0$ и стремится к нулю при $\eta \to +\infty$.

Используя формулу (12), получаем соотношение для параметров ε_1 , δ в главном приближении

$$\varepsilon_1 = \pm \sqrt{\delta V_1} + O(\delta), \qquad \delta \to 0,$$

откуда следует, что в точке бифуркации от решения первого типа ответвляются два решения, описывающие вторичные режимы, которые различаются направлением вращения. Вторичные режимы существуют только при $U < U_*$. Заключение. В работе показано, что при локальном охлаждении свободной границы нагретой жидкости возникает вращение жидкости в пограничном слое Марангони, причем вне этого слоя вращение отсутствует. Вращательный эффект возникает в результате бифуркации основного стационарного осесимметричного режима при наличии внешнего потока жидкости. Вторичные режимы появляются, когда скорость внешнего потока не превышает бифуркационного значения, в том числе в случае отсутствия внешнего потока жидкости. Вращательные режимы вблизи свободной границы имеют зону противотока, в которой жидкость движется в направлении оси симметрии. При локальном нагреве свободной границы вращательный эффект не обнаружен.

ЛИТЕРАТУРА

- 1. Napolitano L. G. Marangoni boundary layers // Proc. of the 3rd Europ. symp. on material science in space, Grenoble, 24–27 Apr. 1979. Paris: Europ. Space Agency, 1979. P. 313–315.
- 2. Пухначев В. В. Групповой анализ уравнений нестационарного пограничного слоя Марангони // Докл. АН СССР. 1984. Т. 279, № 5. С. 1061–1064.
- 3. Шкадов В. Я. К образованию волн на поверхности вязкой тяжелой жидкости под действием касательного напряжения // Изв. АН СССР. Механика жидкости и газа. 1970. № 3. С. 133–137.
- 4. Батищев В. А. Ветвление автомодельных решений, описывающих термокапиллярное течение жидкости в тонком слое // ПМТФ. 1999. Т. 40, № 3. С. 137–142.
- Батищев В. А., Хорошунова Е. В. Возникновение вращательных режимов при термокапиллярном течении неоднородной жидкости в слое // Прикл. математика и механика. 2000. Т. 64, вып. 4. С. 560–568.
- Bifurcation theory and nonlinear eigenvalue problems / Ed. by J. B. Keller, S. Antman. N. Y.: W. A. Benjamin, 1969.

Поступила в редакцию 1/II 2017 г., в окончательном варианте — 11/VII 2017 г.