УДК 621.891

ИЗМЕНЕНИЕ ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ ЗОНЫ ТРЕНИЯ МЕТАЛЛИЧЕСКИХ КОМПОЗИТОВ ПРИ ВВЕДЕНИИ РАСПЛАВА Pb-Sn

В. В. Фадин*, М. И. Алеутдинова*,**

* Институт физики прочности и материаловедения СО РАН, 634021 Томск

** Северский технологический институт — филиал Национального исследовательского ядерного университета "МИФИ", 636036 Северск E-mail: aleut@ispms.tsc.ru

Представлены вольт-амперные характеристики зоны скольжения металлических композитов на стальной основе в режиме токосъема. Трение реализовано при плотности тока более 100 A/см² для случаев отсутствия и наличия в зоне трения расплава Pb–Sn. Предложена элементарная модель контакта шероховатой поверхности, позволяющая оценить площадь, занимаемую расплавом, в зависимости от плотности тока. Показано, что введение расплава легкоплавких металлов является эффективным способом уменьшения электросопротивления зоны трения скользящего электроконтакта.

Ключевые слова: металлический композит, трение в режиме токосъема, поверхность трения, фактическая площадь контакта, электросопротивление зоны трения.

Введение. Триботехническое нагружение материала приводит к появлению структурных изменений поверхности контакта, в результате чего образуется слой вторичных структур. Свойства вторичных структур определяют характер взаимодействия пары трения и выходные характеристики трибосистемы, в первую очередь износостойкость [1]. Дополнительное нагружение материала в зоне трения электрическим током приводит к более существенному изменению его структуры, что обусловливает соответствующие изменения прочностных и электрических характеристик скользящего электроконтакта. В этом случае, как правило, происходит увеличение электросопротивления зоны трения. Для уменьшения этого эффекта в промышленных скользящих электроконтактах трение осуществляется с использованием консистентной смазки [2]. Однако в некоторых случаях (например, при высоких или низких температурах) применение смазки не является эффективным способом уменьшения структурных изменений поверхностного слоя. В случае отсутствия смазки трение осуществляется при низкой токовой нагрузке, когда плотность тока не превышает 50 A/cm^2 .

Реализация трения в режиме токосъема при повышенных значениях исходных параметров (плотности тока, скорости скольжения, разреженности среды и т. п.) трибосистемы является актуальной проблемой. Материалы, используемые в этих условиях, не обладают высокой износостойкостью, что не позволяет увеличить электропроводность зоны контакта. Изменение фазового состава материалов пары трения не приводит к существенному

Работа выполнена в рамках Программы фундаментальных исследований СО РАН № III.20.2 (код проекта III.20.2.4).

[©] Фадин В. В., Алеутдинова М. И., 2012

Рис. 1. Схема скользящего электроконтакта:

а — схема нагружения типа вал (1) — колодка (2); б — области возникновения электроразрядов перед замыканием (точки А) или после размыкания (точки Б) двух элементов скользящих шероховатых поверхностей; є — схема шероховатого контакта при наличии расплава Pb–Sn и электроразрядов (1 — исследуемый композит (образец), 2 — контртело (ст. 45), 3 — слой расплава Pb–Sn вокруг пятна контакта, А–А, Б–Б, В–В — зоны действия электроразрядов)

уменьшению электросопротивления зоны контакта при скольжении без смазки и при повышенной плотности тока (более 50 A/cm^2) [3]. Для решения этой проблемы необходимо увеличить фактическую площадь электроконтакта. Важным условием является отсутствие консистентной смазки и электроразрядной проводимости в зоне трения. Площадь токопроводящего контакта можно увеличить за счет введения в качестве электропроводной смазки жидкого легкоплавкого металла. Первые исследования в этом направлении выполнены в [3].

Целью настоящей работы является определение принципиальной возможности уменьшения электросопротивления зоны скользящего контакта путем введения расплава системы Pb–Sn в зону трения композитов на стальной основе.

Материалы и методика исследований. Порошковые модельные композиты имели следующий исходный состав (объемные доли компонентов): 1) Cu + 10 % Гр + 70 % ШХ15 (композит 1), где ШХ15 — сталь марки ШХ15, переработанная из шлифовального шлама подшипникового производства; Гр — графит; 2) Cu + 10 % Гр + 70 % Г13 (композит 2), где Г13 — сталь Гадфильда с объемной долей Mn, равной 13 %. Образцы спекались в вакууме при температуре T = 1100 °C в течение 2 ч. Удельное электросопротивление ρ композитов определено с использованием амперметра и вольтметра. Твердость НВ композитов измерена на твердомере Бринелля. Пористость П измерена методом гидростатического взвешивания на аналитических весах. Триботехнические испытания проведены в условиях скольжения в режиме токосъема без смазки при давлении, равном 0,13 МПа, и скорости скольжения, равной 5 м/с, на машине трения CMT-1 с модернизированным креплением образца. Нагружение осуществлено по схеме вал — колодка (рис. 1, *a*). Поверхность трения контртела (вала), выполненного из стали марки ст. 45 (твердость равна 50 HRC), имела параметр шероховатости $R_a = 0,63$ мкм. Длина пути трения составляла 9 км. Плотность тока *j* определена как отношение силы тока *i* к номинальной площади трибоконтакта s_n .

Результаты исследований и их обсуждение. Высокая электропроводимость зоны трения достигается за счет использования материалов, имеющих низкое удельное электросопротивление исходной структуры. Появление структурных дефектов в материале поверхностного слоя приводит к увеличению его удельного электросопротивления, что должно вызывать повышение электросопротивления r_0 зоны контакта. Из рис. 2, *a* следует, что при увеличении плотности тока в зоне контакта до значений $j \approx 250$ A/cm² сопротивление $r_0 = U/(js_n)$ зоны трения композитов в отсутствие расплава Pb–Sn уменьшается. Это обусловлено появлением электроразрядной проводимости, что приводит к уменьше-

Рис. 2. Зависимости контактного напряжения U(a), проводимости системы элемент шероховатости — расплав Pb–Sn (δ) и отношения площадей s_2/s_n , занимаемых расплавом Pb–Sn (δ), от плотности тока:

1 — композит Cu + 10 % Гр + 70 % ШХ15, 2 — Cu + 10 % Гр + 70 % ШХ15 + (Pb–Sn), 3 — Cu + 10 % Гр + 70 % Г13, 4 — Cu + 10 % Гр + 70 % Г13 + (Pb–Sn)

нию общего сопротивления r_0 . Появление электроразрядов в зоне контакта обусловлено существованием некоторого количества элементов шероховатости поверхностей трения, которые в данный момент времени находятся в положении, предшествующем механическому контакту (появлению пятна контакта), или следующем за ним (см. рис. 1, δ). Возможна также ситуация, когда элементы шероховатостей (точки В) двух поверхностей трения находятся напротив друг друга (см. рис. 1, ϵ). При этом расстояние между рассмотренными элементами меньше расстояния, необходимого для электрического пробоя приложенным контактным напряжением. При увеличении концентрации ионов в зоне контакта под действием разрядов расстояние между элементами шероховатости может увеличиться и стать равным среднему расстоянию между поверхностями трения.

Поскольку ток течет перпендикулярно поверхностям трения через пятна контакта и через воздушный зазор между этими поверхностями в виде разрядов между пятнами контакта, это позволяет представить общее электросопротивление r_0 контакта в виде схемы параллельного соединения сопротивления на пятнах контакта r_1 и сопротивления совокупности электроразрядов r_2 . Тогда

$$r_0^{-1} = r_1^{-1} + r_2^{-1}. (1)$$

Сопротивление r_1 является сопротивлением стягивания: $r_1 = 0.25(\rho_1 + \rho_c)/(an) (\rho_1, \rho_c -$ удельное электросопротивление слоя, в котором происходят структурные изменения, и контртела ($\rho_c = 0.22$ мкОм·м) соответственно; a — средний радиус пятна контакта; n — количество пятен контакта) [2, 4]. Подставляя в формулу для сопротивления стягивания радиус a из выражения для фактической площади контакта $s_1 = \pi a^2 n$, можно записать $r_1 = 0.25(\rho_1 + \rho_c)(\pi/n)^{0.5} s_1^{-0.5}$. Для получения предварительной оценки значения r_1 точное значение n знать необязательно, поэтому можно считать, что контакт происходит как минимум в трех точках (n = 3), т. е. $(\pi/n)^{0.5} \approx 1$. Тогда

$$r_1 = 0.25(\rho_1 + \rho_c)s_1^{-0.5}.$$
(2)

В пятнах контакта происходит пластическая деформация, упрочняющая материал поверхностного слоя и вызывающая в нем структурные изменения при трении. В этом случае фактическая площадь контакта $s_1 = N/\text{HB}_1$ (N — нагрузка на образец; HB_1 — твердость по Бринеллю слоя вторичных структур) [5]. Из (2) следует выражение

$$\rho_1 = 4r_1 (N/\text{HB}_1)^{0.5} - \rho_c.$$

Состав композита	НВ, ГПа	$\begin{array}{c} \mathrm{HB}_{1},\\ \Gamma \Pi \mathrm{a} \end{array}$	$\sigma^*_{\mathtt{M}},$ МПа	П, %	$\rho,$ мкОм · м	$ ho_1,$ мкОм · м	$(s_1/s_n) \cdot 10^5$	$r_1,$ Ом
$\begin{array}{c} Cu+10\%\Gamma p+70\%IIIX15\\ Cu+10\%\Gamma p+70\%\Gamma 13 \end{array}$	$1,72 \\ 1,53$	$4,16 \\ 4,85$	920 500	11 13	$0,24 \\ 1,00$	$\begin{array}{c} 25 \\ 65 \end{array}$	$3,1 \\ 2,6$	$0,35 \\ 1,00$

Физические и механические характеристики спеченных композитов

* $\sigma_{\mathbf{u}}$ — прочность материала при изгибе.

В настоящей работе значение r_1 определено по закону Ома путем измерения контактного напряжения и соответствующего тока в условиях отсутствия дуги на начальном участке вольт-амперной характеристики и наличия структурных изменений (вторичных структур) в зоне трения образца, т. е. после трения при максимальной плотности тока. При этом полагалось, что величина r_1 постоянна при любой силе тока. Величина HB₁ определялась путем измерения микротвердости поверхностного слоя в поперечном сечении и нахождения соответствующего ему значения НВ по таблице перевода значений твердости [6]. При этом сделано допущение, что HB₁ практически не зависит от плотности тока, так как поверхность трения всегда покрыта окислами. Деформация элемента шероховатости и образование пятна контакта сопровождаются разрушением слоя окислов, частицы которого внедряются в материал пятна контакта. Кроме того, деформация элемента шероховатости приводит к резкому увеличению температуры, при этом область вокруг пятна контакта интенсивно насыщается окислителями из атмосферы, в деформируемом объеме образуются неравновесные растворы окислителей. Также могут образоваться стабильные окислы или другие фазы. Влияние указанных факторов приводит к увеличению твердости пятна контакта. Поэтому наряду с уменьшением твердости вследствие увеличения температуры происходит ее увеличение за счет насыщения пятна контакта окислами и их неравновесными растворами. Поскольку невозможно определить, какой из этих двух процессов преобладает, имеет смысл принять допущение $HB_1 \approx const.$ При этом учитывается, что с увеличением плотности тока увеличивается толщина слоя вторичных структур. Следовательно, величину HB₁ целесообразно определить после трения при максимальной плотности тока, когда слой вторичных структур имеет максимальную толщину, приближенно равную 20 мкм. Исходные данные для расчета ρ_1 представлены в таблице, из которой следует, что в спеченных композитах твердость вторичных структур больше твердости материала деформируемого объема. При большом значении HB₁ фактическая площадь контакта s₁ мала.

Значения ρ_1 рассмотренных металлических композитов имеют порядок значений удельного электросопротивления известных электро- и углеграфитов [2]. Можно ожидать, что в зоне трения без смазки удельное электросопротивление ρ_1 материала других металлических композитов под действием тока большой плотности также имеет большие значения независимо от фазового состава. Поэтому уменьшать электросопротивление зоны трения, варьируя состав материала в режиме токосъема нецелесообразно.

При наличии тока i_2 в зоне контакта в виде электроразрядов с помощью (1) выражение для сопротивления r_2 можно представить в виде

$$r_2 = (js_n/U - 1/r_1)^{-1}.$$
(3)

Сопротивление $r_1 \approx \text{const}$ (см. таблицу), поэтому сопротивление r_2 в (3) изменяется аналогично сопротивлению $r_0 = U/(js_n)$, т. е. при некотором значении *j* достигает минимума. Дальнейшее увеличение плотности тока вызывает увеличение r_2 , что обусловлено образованием дефектной структуры и уменьшением эмиссионной способности поверхности трения (катода). Вследствие этого уменьшаются разрядный ток i_2 и площадь токопроводящей зоны, в которой возникают электроразряды.

Отношение токов i_2/i_1 может служить одной из характеристик зоны трения в режиме токосъема (i_1 — ток, протекающий через площадь s_1). Это отношение можно представить в виде $i_2/i_1 = (i - i_1)/i_1$ или

$$i_2/i_1 = js_n r_1/U - 1,$$

где $i_1 = U/r_1$. Значения $i_2/i_1 > 1$ указывают на то, что в зоне сухого скольжения в режиме токосъема при повышении плотности тока проводимость в основном обусловлена возникновением электроразрядов. Не исключено, что этот эффект будет наблюдаться во всех композитах на стальной основе.

Уменьшение электросопротивления зоны трения путем увеличения площади токопроводящей зоны, в которой возникают электроразряды, нецелесообразно вследствие быстрого электроэрозионного разрушения поверхности трения. Поэтому в настоящей работе предложено увеличить фактическую площадь электроконтакта за счет введения в зону трения расплава Pb–Sn. Для этого сплав Pb–Sn был нанесен на боковую поверхность образца в виде покрытия толщиной приблизительно 0,5 мм. При $j \approx 200 \text{ A/cm}^2$ покрытие Pb–Sn на композите 1 расплавилось и затекло в зону трения. Исходная структура композита 2 имеет большее удельное электросопротивление, поэтому расплав Pb–Sn образуется на его боковой поверхности при меньшей плотности тока и стекает в зону трения при $j \approx 100 \text{ A/cm}^2$. В результате уменьшается угол наклона вольт-амперной характеристики, что свидетельствует об уменьшении электросопротивления зоны трения (см. рис. 2, a), и увеличивается сила тока непосредственно через поверхность контакта. Кроме того, при наличии в зоне трения расплава Pb–Sn контактное напряжение всегда меньше, чем в отсутствие этого расплава (см. рис. 2,a). Однако контактное напряжение определяет электроразрядную проводимость, которая при наличии расплава Pb-Sn уменьшается, что приводит к уменьшению силы тока i_2 . Поэтому можно утверждать, что сила тока через поверхность контакта увеличивается за счет появления токопроводящей поверхности площадью s_2 в результате введения расплава Pb–Sn. Следует отметить, что в этих условиях на поверхностях обоих композитов формируется слой ВС, подобный слою вторичных структур, образующемуся в случае трения без смазки [7].

Для оценки значения s_2 можно принять, что расплав располагается вокруг элементов шероховатости в зоне трения (см. рис. 1, e). В этом случае общее сопротивление r_{12} поверхности контакта является сопротивлением стягивания:

$$r_{12} = 0.25(\rho_1 + \rho_c)/\sqrt{s_1 + s_2}.$$
(4)

Необходимо учесть очевидное равенство, аналогичное (1):

$$r_{12}^{-1} = r_{0a}^{-1} - r_2^{-1}. (5)$$

Здесь r_{0a} — общее сопротивление поверхности контакта (см. рис. 1,*a*), которое можно найти с использованием вольт-амперной характеристики (см. рис. 2,*a*): $r_{0a}^{-1} = j_a s_n/U$. Величины с индексом *a* соответствуют случаю, когда в зоне трения имеется расплав Pb–Sn. Подставляя в (5) r_2 из (3), получаем

$$r_{12}^{-1} = (j_a s_n / U) - (j s_n / U) + r_1^{-1}.$$
(6)

Зависимость $r_{12}^{-1}(j)$ представлена на рис. 2,6. Видно, что проводимость r_{12}^{-1} поверхности электроконтакта принимает наибольшее значение при некоторой плотности тока, которая зависит от состава композита. Не исключено, что при этой плотности тока в зоне трения находится максимально возможное (при использовании рассмотренного модельного

способа введения жидкой фазы) количество расплава. Поэтому следует ожидать, что при более совершенном способе введения жидкого металла наименьшее значение r_{12} будет достигнуто при другой плотности тока. Уменьшение r_{12}^{-1} после достижения максимального значения (см. рис. 2, δ) может быть обусловлено недостаточным количеством расплава Pb– Sn в зоне трения. Можно предположить, что в этих условиях свинец начинает испаряться и не может использоваться в качестве жидкой фазы в зоне трения с повышенной плотностью тока. Поэтому целесообразно вводить в зону трения металл, имеющий бо́льшую теплоту испарения.

В соответствии с (6) наличие максимума на кривой зависимости $r_{12}^{-1}(j)$ должно привести к появлению максимума на кривой зависимости $s_2(j)$. С помощью (4) можно найти величину s_2 :

$$s_2 = [0,25(\rho_1 + \rho_c)r_{12}^{-1}]^2 - s_1.$$

На рис. 2,6 видно, что максимальное значение s_2 достигается при плотности тока, соответствующей максимуму r_{12}^{-1} . Результаты сравнения данных, представленных на рис. 2,6 и в таблице, показывают, что площадь s_2 может быть значительно больше фактической площади контакта s_1 .

Следует отметить, что электросопротивления r_1 и r_{12} являются сопротивлениями стягивания, которые можно существенно уменьшить, в первую очередь за счет увеличения площади поверхности контакта. Поэтому для уменьшения электросопротивления зоны контакта в состав токосъемного композита целесообразно вводить металл, имеющий низкую температуру плавления и высокую теплоту испарения.

Заключение. Электросопротивление зоны трения скользящего электроконтакта целесообразно уменьшать за счет увеличения площади контактирующей поверхности путем введения расплава Pb–Sn в промежуток между поверхностями трения. Площадь, занимаемая расплавом Pb–Sn, может существенно превышать фактическую площадь контакта.

ЛИТЕРАТУРА

- 1. Костецкий Б. И. Поверхностная прочность металлов при трении / Б. И. Костецкий, Н. Г. Носовский, А. К. Караулов. Киев: Техника, 1976.
- 2. Мышкин Н. К. Электрические контакты / Н. К. Мышкин, В. В. Кончиц, М. Браунович. Долгопрудный: Издат. дом "Интеллект", 2008.
- 3. Фадин В. В., Алеутдинова М. И. Влияние фазового состава композитов, содержащих сталь, на электросопротивление зоны трения с токосъемом // Изв. вузов. Физика. 2009. № 6. С. 54–57.
- 4. Хольм Р. Электрические контакты / Пер. с англ. М.: Изд-во иностр. лит., 1961.
- Справочник по триботехнике: В 3 т. Т. 1. Теоретические основы / Под общ. ред. М. Хебды, А. В. Чичинадзе. М.: Машиностроение, 1989.
- 6. Гуляев А. П. Металловедение. М.: Металлургия, 1986.
- 7. Фадин В. В., Алеутдинова М. И. Влияние свинца и олова на структуру поверхностного слоя композитов со стальной основой при трении с токосъемом // Перспектив. материалы. 2008. № 6: Спецвыпуск. Ч. 2. С. 378–382.

Поступила в редакцию 6/XI 2010 г., в окончательном варианте — 12/IX 2011 г.