УДК 660.539.382.2

ЛОКАЛИЗАЦИЯ ПЛАСТИЧЕСКОГО ТЕЧЕНИЯ В ТЕХНИЧЕСКИХ СПЛАВАХ ЦИРКОНИЯ

Т. М. Полетика, Г. Н. Нариманова, С. В. Колосов, Л. Б. Зуев

Институт физики прочности и материаловедения СО РАН, 634021 Томск

Исследованы поведение кривых пластического течения и особенности форм локализации пластической деформации при растяжении образцов из сплавов Zr — 1 % Nb (Э110) и Zr — 1 % Nb — 1,3 % Sn — 0,4 % Fe (Э635). Установлена связь кинетики развития локализации с законом деформационного упрочнения при пластическом течении и переходе к разрушению. Исследована дислокационная микроструктура сплавов в очагах локализации деформации и предразрушения.

Ключевые слова: деформационное упрочнение, пластическое течение, локализация, дислокационная структура.

Введение. Накопленные к настоящему времени экспериментальные данные свидетельствуют о том, что локализация пластического течения происходит на всех стадиях нагружения [1, 2]. Обнаружена однозначная зависимость между режимом пластического течения на данном участке деформационной кривой и типом пространственно-временного распределения компонент тензора пластической дисторсии. Показано, что по макрокартине локализации деформации можно судить о способности материала к пластическому формоизменению, например, при холодной обработке давлением [3].

В данной работе исследуется характер локализации деформации в образцах из промышленных сплавов циркония Э110 и Э635, применяемых для изготовления труб тепловыделяющих элементов ядерных реакторов [4, 5]. В отличие от предыдущих работ [6, 7] в основном изучается заключительная стадия процесса деформирования, предшествующая появлению шейки. Интерес к сплавам Zr с гексагональной плотноупакованной решеткой обусловлен тем, что характер их деформации и поведение кривых пластического течения изучены слабо. Не существует единого представления о природе пластической деформации и механизмах деформационного упрочнения даже для чистого циркония [8–10]. Что касается многокомпонентных сплавов на его основе, то их деформационные характеристики и способность к пластическому формоизменению во многом определяются сложными фазовым составом и микроструктурой материала. Поэтому изучение процессов локализации пластического течения, соответствующих различным стадиям деформационной кривой вплоть до разрушения, и их взаимосвязи с изменением микроструктуры очень актуально. Эти данные необходимы для выяснения закономерностей эволюции микроструктуры, ведущих к локализации деформации на макроуровне и образованию очага разрушения материала, в частности, для оценки запаса технологической пластичности сплавов Э110 и Э635.

Материалы и методика эксперимента. Использовались сплавы Zr — 1 % Nb (Э110) и Zr — 1 % Nb — 1,3 % Sn — 0,4 % Fe (Э635). Сплав Э110 состоял из рекристаллизованных зерен α -Zr (средний размер зерна около 5 мкм) с равномерно распределенными по объему выделениями β -Nb размером до 0,08 мкм. Сплав Э635 состоял из рекристаллизованных зерен α -Zr размером порядка 4 мкм с дисперсными включениями интерметаллидов Fe₂Zr, Nb₂Zr и Zr₃Fe размером порядка 0,08 мкм внутри зерен и на их границах [11].

Плоские образцы с размерами рабочей части $42 \times 5 \times 2$ мм растягивались на испытательной машине Instron-1185 при скорости перемещения подвижного захвата 0,1 мм/мин ($\dot{\varepsilon} = 4 \cdot 10^{-5} \text{ c}^{-1}$). Одновременно с записью диаграммы деформации методом спеклинтерферометрии [2, 12] фиксировалось поле векторов смещений точек на поверхности образцов $\mathbf{r}(x, y)$. Очевидно, путем дифференцирования этого поля могут быть получены все компоненты тензора пластической дисторсии $\beta_{i,j} = \nabla \mathbf{r}$. Далее приводятся данные о распределениях только одной компоненты — локальной деформации $\varepsilon_{xx} = \frac{\partial u}{\partial x} (u -$ проекция вектора \mathbf{r} на ось растяжения x).

С учетом высокой пластичности исследуемых материалов анализ полученных деформационных кривых, а также зависимостей коэффициента деформационного упрочнения $(\theta = ds/de)$ от деформации для сплавов Э110 и Э635 проводился после перехода от условных напряжений σ и деформаций ε к истинным напряжениям $s = \sigma(1 + \varepsilon)$ и деформациям $e = \ln(1 + \varepsilon)$.

Различные стадии кривых пластического течения легко обнаруживаются после перестройки их в координатах $\ln (s - s_e) - \ln e$, где $s_e = \sigma_e (1 + \varepsilon_e)$. Величина σ_e определяется путем экстраполяции в окрестности $\varepsilon = 0$ зависимости $\sigma(\varepsilon)$, перестроенной в координатах $s - \sqrt{e}$ [13]. В координатах $\ln (s - s_e) - \ln e$ парабола $s \sim e^n$ превращается в прямую с углом наклона $n = d[\ln (s - s_e)]/d(\ln e)$, являющимся естественной характеристикой течения.

Электронно-микроскопические исследования проводились на электронном микроскопе ЭВМ-125К при ускоряющем напряжении, равном 125 кВ, на тонких фольгах, приготовленных электрополировкой в электролите 90 % $CH_3OH + 10$ % $HClO_4$ при температуре -50 °C.

Результаты экспериментов. Кривые нагружения исследуемых сплавов подобны друг другу (рис. 1). На них имеется переходная стадия упрочнения, следующая непосредственно за пределом текучести, и выполняется параболический закон упрочнения. Однако, если для сплава Э110 (рис. 1, a) за переходной стадией с уменьшающимся коэффициентом деформационного упрочнения следует короткая линейная стадия (увеличение деформации на этой стадии не превышает 0,5 %, $\theta \approx 6$ ГПа), то для сплава Э635 (рис. 1, δ) за переходной стадией наблюдается излом на деформационной кривой. Согласно данным [14] подобные участки, называемые площадками текучести, наблюдались в цирконии и его сплавах. В частности, площадка достаточно большой протяженности наблюдалась в сплаве циркалой-4 [15]. Для сплавов циркония ее появление объясняется закреплением дисло-

каций атмосферами Коттрелла из атомов кислорода (примесь внедрения в Zr), а также па́рами O–O или O–S (O — кислород, S — примесь замещения) [16]. В случае сплава Э635 за площадкой текучести длиной примерно 0,2 % с постоянным значением коэффициента деформационного упрочнения $\theta \approx 4$ ГПа на деформационной кривой следует переходная стадия, на которой значения θ увеличиваются (рис. 1, δ).

Параболическая стадия упрочнения для обоих сплавов начинается при $\varepsilon \approx 2 \%$ и характеризуется постоянно уменьшающимся коэффициентом θ (рис. 1). Начиная с $\varepsilon \approx 5 \%$ коэффициент θ становится очень малым, а затем близким к нулю, что соответствует четвертой стадии деформационного упрочнения [17].

Использование логарифмических координат $\ln (s - s_e) - \ln e$ позволило разбить каждую параболическую деформационную кривую на пять прямолинейных участков с постоянно уменьшающимся показателем параболичности n (рис. 2). В случае сплава Э635 величина n последовательно пробегает значения 0,54, 0,49, 0,4, 0,3, 0,2 (кривая 1), а в случае сплава Э110 — значения 0,7, 0,5, 0,4, 0,25, 0,2 (кривая 2). Переходы между участками параболической кривой имеют разную длину; наиболее продолжителен переход между третьим и четвертым участками (при $\varepsilon \approx 5 \%$ для сплава Э635 и $\varepsilon \approx 6 \%$ для сплава Э110), имеющий длину 0,2 % и практически нулевой наклон.

Кривая пластического течения заканчивается участком с $n \approx 0$, соответствующим стадии развития видимой шейки (на рис. 2 не показан). Общая длина параболической стадии до этого момента для сплава Э110 составляет 12 %, для сплава Э635 — 9 %. Большее удлинение до разрушения рекристаллизованного сплава Э110 по сравнению со сплавом Э635 сопровождается уменьшением предела текучести и временного сопротивления примерно в два раза. Различие механических свойств обусловлено разным легированием сплавов.

Как известно, стадийность кривой пластического течения связана с характером локализации пластической деформации [1, 2]. Эта закономерность характерна и для исследованных сплавов Zr. С использованием метода лазерной спеклинтерферометрии удалось проследить эволюцию картины макролокализации деформации ε_{xx} на всех стадиях деформационной кривой. Так, для сплава Э110 на начальном участке кривой деформации, соответствующем переходной стадии, а также на линейной стадии наблюдается движение максимумов локальных удлинений. Что касается сплава Э635, то анализ картин локали-

зации деформации в окрестности предела текучести показал, что при $\varepsilon = 1 \%$ (что соответствует перегибу на кривой *s*-*e* (см. рис. 1,*б*)) происходит зарождение одного фронта локализации деформации, в котором сосредоточена практически вся деформация образца ($\varepsilon = 1 \%$) аналогично локализации деформации на площадке текучести в полосах Людерса. За этим фронтом, движущимся со скоростью примерно $1,4 \cdot 10^{-5}$ м/с, зарождаются и движутся другие, менее интенсивные максимумы локальных удлинений. Развитие локализации деформации в интервале $1,03 \% < \varepsilon < 1,82 \%$ для сплава Э635 показано на рис. 3. Шкала соответствует значениям локальной деформации ε_{xx} .

При $\varepsilon \approx 2 \%$ пластическая деформация охватывает весь образец. В нем устанавливается стационарная (неподвижная) система максимумов локализации, соответствующая параболической стадии пластического течения [1, 2]. На рис. 4, *a*, *b* показано распределение локальной деформации для сплава Э635 на параболической стадии деформационного упрочнения при $n \approx 0,5$ и на стадии предразрушения при $n \to 0$ соответственно. Шкала соответствует значениям локальной деформации ε_{xx} . Таким образом, на переходной стадии деформационной кривой с увеличивающимся коэффициентом деформационного упрочнения формируется стационарная система очагов локализации деформации.

Для сплава Э110 стационарная система максимумов локальных удлинений возникает после перехода к участку параболы с $n \approx 0,7$. При n < 0,5 начинается движение максимумов локализации деформации, которое продолжается на участках с меньшими значениями показателя параболичности вплоть до образования шейки. На рис. 5,*a* приведена зависимость положения максимумов локализации (x — абсцисса очага локализованной деформации на оси образца) от общей деформации образца из сплава Э110.

Рис. 4

Рис. 5

Рис. 6

Для сплава Э635 на первых двух участках с показателями параболичности n = 0,54; 0,49 также наблюдается стационарная система очагов локализации деформации (рис. 5, δ). Несмотря на близкие значения n, положения максимумов различаются, так как в интервале $\varepsilon = 2,8 \div 3,2$ % происходит смещение стационарной системы. Далее на участке параболической кривой с n < 0,5 так же, как и для сплава Э110, начинается движение фронтов локализации деформации, которое продолжается до образования шейки (рис. 5, δ).

Микроструктура деформированного материала. Электронно-микроскопические исследования структуры деформированных образцов проводились при достижении общей деформации $\varepsilon = 1.8$; 7,7 % для сплава Э635 и $\varepsilon = 7$ % для сплава Э110.

Как показали спеклинтерферометрические исследования, деформация образца сплава Э635 с момента достижения предела текучести до начала параболической стадии ($\varepsilon \approx 2\%$) происходит вследствие движения по нему главного максимума локализации деформации и следующих за ним менее интенсивных максимумов (см. рис. 3). После прекращения растяжения при деформации $\varepsilon = 1,8\%$ были просуммированы значения приращений ε_{xx} и определено положение деформационного фронта.

Фольги для электронно-микроскопических исследований вырезались в двух местах: 1) перед фронтом локализации деформации ($\varepsilon_{xx} \approx 0$); 2) внутри очага локализации деформации ($\varepsilon_{xx} > 10^{-2}$). Установлено, что в области 1 наблюдается хаотическое распределение почти не взаимодействующих дислокаций — длинных одиночных дислокаций, сгущений и переплетений дислокаций, иногда скоплений (рис. 6,*a*). Такая микроструктура характерна для переходной стадии, следующей за пределом текучести в поликристаллах, на которой коэффициент деформационного упрочнения уменьшается [13]. В области 2 наблюдается преимущественно сетчатая дислокационная структура. Ее формирование начинается вблизи границ зерен (рис. 6, δ). Узлы дислокационной сетки закреплены частицами второй фазы, встречаются участки сетчатой структуры, где частицы лежат на дислокациях, т. е. взаимосвязаны. Образование сетчатой структуры соответствует переходной стадии [17], характеризующейся увеличением коэффициента деформационного упрочнения.

После достижения общей деформации $\varepsilon \approx 7,7$ % образцы разрезались в месте расположения пика локализации и в его окрестности, в которой значение деформации много меньше. На рис. 7,*a* представлена типичная для участка с $n \approx 0,2$ полосовая структура; между границами полос наблюдается ячеисто-сетчатая дислокационная субструктура с высокой плотностью дислокаций. Микроструктура сплава в окрестности пика локализации деформации приведена на рис. 7,*6*. Наблюдается дальнейшее развитие полосовой структуры. В результате кристаллографическая ориентация полосовой субструктуры нарушается и

Рис. 7

Рис. 8

происходит разделение микрополос на участки с частично фрагментированной структурой и субструктурой с многомерными дискретными и непрерывными разориентациями. Азимутальные разориентации на электронограммах таких областей достигают 20°; электронограммы содержат дуги точечных рефлексов, что свидетельствует о высокой дисперсности структуры (рис. 7, δ). Известно, что образование субструктуры с многомерными дискретными и непрерывными разориентациями характерны для четвертой стадии деформации [17].

В [6, 7] установлено, что пластическая деформация рекристаллизованного сплава Э110 на участках параболической кривой с n < 0,5 развивается с образованием ячеистосетчатой и полосовой субструктур, а также с образованием субструктуры с многомерными разориентациями. В окрестности очага предразрушения возможно образование фрагментированной структуры. В данной работе проводится сравнение дислокационной структуры сплава Э635 с дислокационной структурой сплава Э110, деформированного до значения $\varepsilon = 7 \%$ ($n \approx 0,2$). На рис. 8 представлены микроструктуры сплава в окрестности пика локализации деформации, в которой в дальнейшем образуется шейка, и в окрестности минимума локальных удлинений. В окрестности минимума (рис. 8,a) наблюдается полосовая субструктура, причем внутри отдельных полос можно различить элементы характерной для предыдущей стадии деформирования ячеисто-сетчатой дислокационной субструктуры с азимутальными разориентациями на субграницах, равными 1 ÷ 3°. В окрестности пика локализации деформации наряду с субструктурой с многомерными разориентациями появляются фрагменты с азимутальной разориентацией, составляющей 5° (рис. 8, δ). Полученные данные соответствуют предложенной в работе [18] модели, согласно которой деформация в шейке развивается вследствие постепенного роста разориентации соседних элементов субструктуры. Из проведенных авторами данной работы экспериментов следует, что к моменту разрушения в обоих сплавах образуется фрагментированная субструктура с большеугловыми границами.

Наличие границ зерен, дисперсных частиц и примесей ускоряет формирование каждой последующей дислокационной субструктуры за счет более высокой плотности дислокаций, и в момент начала образования шейки степень готовности к образованию фрагментированной структуры у таких сплавов больше. Это означает, что субструктуры в таком материале меняются быстрее. По-видимому, сложная по сравнению со сплавом Э110 микроструктура сплава Э635 обусловливает более высокую скорость движения очагов локализации деформации на участках с показателем параболичности n < 0,5 (см. рис. 5).

Сопоставление результатов электронно-микроскопических исследований с данными об эволюции локализации деформации на параболической стадии (n < 0,4) позволяет сделать вывод о том, что четвертая стадия пластического течения, на которой $n \to 0$, обусловлена зарождением очага предразрушения и формированием шейки в материале.

Обсуждение результатов. Анализ зависимости ε_{xx} от общей деформации показал, что движение фронтов локализации деформации происходит по направлению к месту образования шейки. Из рис. 5 следует, что первый интенсивный максимум локализации деформации на месте образования шейки появляется в обоих сплавах в конце участка параболической кривой с показателем $n \approx 0,5$. По-видимому, этот максимум локализации деформации можно считать предвестником образования очага разрушения. Движение фронтов локализации на следующем участке происходит по направлению к этому очагу предразрушения и, по-видимому, обусловлено его возникновением: максимумы деформации "пробегают" весь образец, и деформация накапливается в месте образования первичного очага предразрушения. Например, при $n \approx 0,4$ для сплава Э635 время полного "пробега" составляет около 360 с, а период накопления деформации в образце — 100 с, для сплава Э110 — около 550 с и примерно 200 с соответственно. На участке с $n \approx 0,3$ на месте ушедших к шейке максимумов зарождаются новые фронты локализации деформации, и процесс повторяется, но скорость движения максимумов локальных удлинений выше (см. рис. 5).

Между параболическими участками деформационной кривой с показателями $n \approx 0,4$ и $n \approx 0,3$ имеется почти горизонтальный участок, на котором деформация увеличивается на 0,2 %. Этот участок соответствует моменту образования первичной шейки. Локализация деформации, соответствующая данному моменту, показана на рис. 4,6 (имеется область, в которой пик деформации существенно превышает пики деформации в остальных очагах локализации).

На участке параболической стадии деформационного упрочнения с показателем параболичности $n \approx 0,2$ практически завершается формирование очага предразрушения. На следующем участке при $n \to 0$ происходит образование шейки, которая к этому моменту уже видна.

На рис. 9 представлены зависимости скорости v движения фронтов локализованной деформации на параболической стадии упрочнения от показателя параболичности n для сплава Э635 (кривая 1) и сплава Э110 в рекристаллизованном (кривая 2) и закаленном (кривая 3) состояниях. Временное сопротивление $\sigma_{\rm B}$ сплавов в этих состояниях составило 580, 440 и 330 МПа соответственно. Следует отметить, что с увеличением $\sigma_{\rm B}$ исследованных сплавов скорости движения очагов локализованной деформации увеличиваются. Это

свидетельствует о том, что скорость движения фронтов локализации деформации к шейке, т. е. скорость формирования шейки, определяется уровнем напряжений в образце при пластическом течении.

Одной из наиболее важных особенностей локализации пластического течения, впервые обнаруженных в проведенных экспериментах, является движение очагов локализованной деформации по направлению к одному из них при показателе параболичности n < 0.5. Причина различия в расположении и движении очагов, например при n = 1/2 ($\varepsilon \sim \sigma^2$) и n = 1/3 ($\varepsilon \sim \sigma^3$), может заключаться в следующем. При случайном изменении локальных напряжений на $\pm \delta \sigma$ на переднем и заднем фронтах очага деформации в первом случае симметричное распределение деформаций сохраняется, а во втором нарушается, что приводит к перемещению очага локализованной пластичности.

Обобщенная зависимость скорости движения очагов локализованной деформации v от показателя параболичности n для рекристаллизованного сплава Э110 приведена на рис. 10 (точки соответствуют экспериментальным данным). Из уравнения этой кривой $v = 2,63 \cdot 10^{-4} (n - 0,64)^2$ следует, что очаги локализованной деформации образуют стационарную структуру только при n, близком к значению, предсказываемому моделью деформационного упрочнения Тейлора — Мотта [19], т. е. при $n \approx 0,5$.

Как показывают приведенные выше данные, при n < 0,5 очаги локализованного течения объединяются, что приводит к формированию шейки и переходу пластического течения в пластическое разрушение. При этом очаги локализованной деформации движутся, но движение не является согласованным аналогично наблюдаемому на стадии линейного упрочнения [1, 2]. Имеется аналогия между движением очагов локализации деформации и движением очагов горения в нелинейной среде [20] при их слиянии в единый очаг, окруженный неактивной областью. Причина такого слияния при горении состоит в обмене тепловой энергией между соседними очагами горения в среде с нелинейной теплопроводностью. В случае слияния очагов пластической деформации также происходит обмен упругой энергией между соседними очагами за счет акустических импульсов (см., например, [21]).

Заключение. Установлено, что кривые пластического течения рекристаллизованных сплавов циркония Э110 и Э635 являются многостадийными, причем на параболической стадии выделяются пять участков, на которых показатель параболичности уменьшается.

Методом лазерной спеклинтерферометрии получены распределения фронтов локальных удлинений ε_{xx} на каждой стадии кривой нагружения вплоть до образования шейки. Это позволило исследовать кинетику образования шейки в циркониевых сплавах с различными составом и структурой. Установлено, что скорость движения фронтов локализации деформации к месту образования шейки зависит от показателя параболичности: чем меньше n, тем выше скорость движения фронтов локализации. При этом скорость образования шейки зависит от временного сопротивления и общей деформации до разрушения.

В результате направленного движения деформационных фронтов к одному очагу локализации и слияния с ним происходит периодическое накопление в нем деформации, что проявляется в более быстрой смене дислокационных субструктур вплоть до образования фрагментированной структуры, наблюдаемой при формировании шейки.

Таким образом, развитие пластической деформации представляет собой сложный процесс самосогласованного зарождения и движения локализованных очагов пластического течения. Картина и динамика движения очагов локализованной деформации существенно зависят от вида закона деформационного упрочнения.

ЛИТЕРАТУРА

- 1. Зуев Л. Б., Данилов В. И. О природе крупномасштабных корреляций при пластическом течении // Физика твердого тела. 1997. Т. 39, № 8. С. 1399–1403.
- Zuev L. B., Danilov V. I. A self-excited wave model of plastic deformation // Philos. Mag. Ser. A. 1999. V. 79, N 1. P. 43–57.
- 3. Зуев Л. Б., Зыков И. Ю., Данилов В. И., Заводчиков С. Ю. Неоднородность пластического течения сплавов циркония с параболическим законом деформационного упрочнения // ПМТФ. 2000. Т. 41, № 6. С. 133–138.
- Займовский А. С., Никулина А. В., Решетников Н. Г. Циркониевые сплавы в ядерной энергетике. М.: Энергоатомиздат, 1994.
- 5. Никулина А. В., Маркелов В. А. Сплав Zr 1 % Nb 1 % Sn 0,5 % Fe для труб технологических каналов реакторов типа РБМК // Вопр. атом. науки и техники. Сер. Материаловедение и новые материалы. 1990. Вып. 2. С. 58–66.
- Poletika T. M., Zuev L. B., Nor A. A. The microstructure of local strain nuclei observed for Zr alloy in the stage of parabolic work hardening // Appl. Phys. Ser. A. 2001. V. 73, N 5. P. 601–603.
- 7. Полетика Т. М., Нариманова Г. Н., Гимранова О. В. и др. Локализация пластического течения в сплаве Zr — 1 % Nb // Журн. техн. физики. 2002. Т. 72, № 9. С. 57–62.
- Папиров И. И., Тихинский Г. Ф. Природа пластической деформации циркония. Харьков, 1976. (Препр. / АН УССР. Харьков. физ.-техн. ин-т; № 76-23).
- Akhtar A., Teghtsoonian E. Plastic deformation of zirconium single crystals // Acta Metall. 1971. V. 19, N 3. P. 655–663.
- Bailey J. E. Electron microscope studies of dislocations in deformed zirconium // J. Nuclear Mater. 1962. V. 7, N 1. P. 300–310.
- 11. Маркелов В. А., Рафиков В. З., Никулин С. А. Изменение микроструктуры сплава Zr с Sn, Nb и Fe при деформационно-термической обработке // Физика металлов и металловедение. 1994. Т. 77, № 4. С. 70–79.
- 12. Джоунс Р., Уайкс К. Голографическая и спекл-интерферометрия. М.: Мир, 1986.
- 13. **Трефилов В. И., Моисеев В. Ф., Печковский Э. П.** Деформационное упрочнение и разрушение поликристаллических металлов. Киев: Наук. думка, 1987.
- 14. Дуглас Д. Металловедение циркония. М.: Атомиздат, 1975.

- 15. Derep J. L., Ibrahim S., Rouby R., Fantozzi G. Deformation behavior of Zircaloy-4 between 77 and 900 K // Acta Metall. 1980. V. 28, N 5. P. 607–619.
- Черняева Т. П., Стукалов А. И., Грицина В. М. Поведение кислорода в цирконии // Вопр. атом. науки и техники. Сер. Материаловедение и новые материалы. 1999. Вып. 2. С. 71–85.
- 17. Козлов Э. В., Старенченко В. А., Конева Н. А. Эволюция дислокационной субструктуры и термодинамика пластической деформации металлических материалов // Металлы. 1993. № 5. С. 152–161.
- Рыбин В. В. Физическая модель явления потери механической устойчивости и образования шейки // Физика металлов и металловедение. 1977. Т. 44, № 3. С. 623–632.
- 19. Хоникомб Р. Пластическая деформация металлов. М.: Мир, 1972.
- 20. Самарский А. А., Еленин Г. Г., Змитренко Н. В. и др. Горение нелинейной среды в виде сложных структур // Докл. АН СССР. 1977. Т. 237, № 6. С. 1330–1333.
- Zuev L. B., Semukhin B. S. Some acoustic properties of a deforming medium // Philos. Mag. Ser. A. 2002. V. 82, N 6. P. 1183–1193.

Поступила в редакцию 11/VII 2002 г.
