2012. Том 53, № 3

Май – июнь

C. 527 – 533

УДК 548.736

КОМПЛЕКСНЫЕ СОЛИ С УЧАСТИЕМ КАТИОНОВ [Rh(NH₃)₆]³⁺

С.П. Храненко¹, Е.А. Быкова¹, А.В. Алексеев^{1,3}, А.П. Тютюнник², С.А. Громилов^{1,3}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, e-mail: grom@niic.nsc.ru ²Институт химии твердого тела УрО РАН, Екатеринбург

³Новосибирский государственный университет, Научно-образовательный комплекс "Наносистемы и современные материалы"

Статья поступила 11 июля 2011 г.

С доработки — 6 сентября 2011 г.

Синтезированы и рентгенографически исследованы четыре комплексные соли с участием комплексного катиона $[Rh(NH_3)_6]^{3+}$. Определены кристаллографические характеристики $[Rh(NH_3)_6](WO_4)Cl$ и расшифрованы структуры $[Rh(NH_3)_6]Cl_3$, $[Rh(NH_3)_6](ReO_4)_3 \cdot 2H_2O$ и $[Rh(NH_3)_6](MoO_4)Cl \cdot 3H_2O$. Изучены особенности взаимной упаковки фрагментов.

Ключевые слова: родий, рений, молибден, вольфрам, комплексная соль, кристаллохимия, рентгеноструктурный анализ.

В настоящее время в кристаллоструктурных и рентгенографических базах данных [1—3] известна лишь одна кристаллическая структура, содержащая комплексный катион $[Rh(NH_3)_6]^{3+}$ [$Rh(NH_3)_6]_2(C_2O_4)_3 \cdot 4H_2O$ [4]. Цель настоящей работы — синтез и рентгеноструктурное исследование комплексных солей с участием катионов $[Rh(NH_3)_6]^{3+}$ и тетраэдрических анионов (MO_4) (M = Re, Mo, W).

Для синтеза биметаллических комплексных солей в первую очередь необходимо было решить проблему получения $[Rh(NH_3)_6]Cl_3$. По литературным данным [4-6] этот комплекс хорошо растворим в воде и может быть получен путем длительного воздействия концентрированного аммиака при повышенных температурах и давлении на амминхлоридные комплексы родия(III). В [5, 6] целевой продукт получали нагреванием $[Rh(NH_3)_5Cl]Cl_2$ в запаянной ампуле с концентрированным аммиаком при температуре 100—102 °C. Комплекс $[Rh(NH_3)_6]Cl_3$ из раствора выделяли двумя способами: добавлением концентрированной соляной кислоты, а также медленным упариванием раствора до образования кристаллического осадка. В первом случае выделяется безводная соль, а во втором — кристаллогидрат с одной молекулой воды. Аналогично, в [4] для синтеза $[Rh(NH_3)_6]Cl_3$ использовали $[Rh(NH_3)_5Cl]Cl_2$, увеличив температуру реакции до 140 °C и время нагревания до 96 ч. Рентгенографических данных $[Rh(NH_3)_6]Cl_3$ мы в доступной нам литературе не обнаружили.

В настоящей работе мы изменили подход к синтезу, применив герметичный автоклав, что позволило значительно снизить температуру реакции и перейти на RhCl₃ в качестве стартового реагента. Это позволяет упростить синтез и исключить промежуточный синтез [Rh(NH₃)₅Cl]Cl₂.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Синтез [Rh(NH₃)₆]Cl₃ проводили в стальном автоклаве с тефлоновым вкладышем, плотно закрывающимся тефлоновой пробкой. Автоклав герметично завинчивали стальной крышкой, позволяющей устанавливать его в жидкостные бани. Для синтеза использовали коммерческий

[©] Храненко С.П., Быкова Е.А., Алексеев А.В., Тютюнник А.П., Громилов С.А., 2012

RhCl₃ (с содержанием металла 37,09 %) и концентрированный аммиак марки ОСЧ. В автоклав помещали 1 г (3,6 ммоля) RhCl₃, вносили в него при перемешивании 60 мл аммиака и устанавливали на водяную баню 80—85 °C. После нагревания в течение 30 ч автоклав охлаждали до комнатной температуры. Образовавшийся прозрачный бесцветный раствор переносили в кварцевую чашку и оставляли на 15—20 ч для удаления избытка аммиака. Комплекс выделяли из раствора с pH ~ 7,5 добавлением по каплям концентрированной HCl до прекращения выпадения белого осадка. Осадок сразу отфильтровывали на плотном стеклянном фильтре, промывали дважды концентрированным аммиаком, дважды этиловым спиртом и высушивали на воздухе при комнатной температуре до постоянного веса. Выход комплекса 95 %. Для соединения найдено, %: N 26,8, H 5,7, Cl 34,2. Для [Rh(NH₃)₆]Cl₃ вычислено, %: N 26,97, H 5,78, Cl 34,2. ИК спектр (ИК—Фурье спектрометр Scimitar ETS 2000, область 4000—400 см⁻¹, таблетки KBr, v): 3100—3400_{уширен}, 1590, 1318, 837 см⁻¹. Микроанализы выполняли на Euro EA300. Хлор определяли по Шёнигеру с титриметрическим окончанием.

Комплексы состава [Rh(NH₃)₆](ReO₄)₃·2H₂O (**I**), [Rh(NH₃)₆](MoO₄)Cl·3H₂O (**II**) и [Rh(NH₃)₆](WO₄)Cl (**III**) получали осаждением из аммиачно-водного раствора (1:3) [Rh(NH₃)₆]Cl₃ натриевыми солями осадителей: NaReO₄ (ч), Na₂MoO₄·2H₂O (ч) и Na₂WO₄·2H₂O (ч). 1 ммоль [Rh(NH₃)₆]Cl₃ растворяли в 20 мл раствора и вносили в него по 1 ммоль Na₂MoO₄· ·2H₂O (Na₂WO₄·2H₂O) и 3 ммоля в случае NaReO₄ в 3 мл H₂O. Выделившиеся осадки промывали дважды минимальным количеством ледяной H₂O и высушивали на воздухе при комнатной температуре до постоянного веса. Выход: для **I** — 95, для **II** — 75, для **III** — 80 %.

Кристаллы выращивали из разбавленных аммиачно-водных растворов. Их удалось получить только в случае [Rh(NH₃)₆]Cl₃ и [Rh(NH₃)₆](MoO₄)Cl·3H₂O. Во всех случаях поликристаллические порошки комплексных солей были бесцветными.

Рентгенографическое исследование синтезированных продуктов проведено на дифрактометре ARL X'TRA (Cu K_{α} -излучение, полупроводниковый детектор, схема Брэгга—Брентано, комнатная температура). В результате были выявлены условия, приводящие к образованию однофазных образцов. Дифрактограмма [Rh(NH₃)₆]Cl₃ проиндицирована по аналогии с дифрактограммой изоструктурной фазы [Ru(NH₃)₆]Cl₃ [2, 79696] и [Co(NH₃)₆]Cl₃ [2, 1694]. Аналогично, для [Rh(NH₃)₆](ReO₄)₃·2H₂O была найдена изоструктурная фаза [Co(NH₃)₆](ReO₄)₃·2H₂O [7]. Дифрактограмма [Rh(NH₃)₆](MoO₄)Cl·3H₂O была проиндицирована по данным исследования монокристалла, отобранного из общей массы (см. далее). Наиболее сложным оказался случай [Rh(NH₃)₆](WO₄)Cl, так как вырастить монокристалл удовлетворительного качества не удалось, были использованы программы автоматического индицирования ITO, TREOR, DICWOL, входящие в состав программного комплекса WinXPow.

Рентгеноструктурное исследование монокристаллов [Rh(NH₃)₆]Cl₃ и [Rh(NH₃)₆](MoO₄)Cl· · 3H₂O было проведено на автоматическом дифрактометре Bruker X8 APEX (MoK_{α}-излучение, графитовый монохроматор, двухкоординатный CCD-детектор) при *T* = 150 К. Структуры уточнены в анизотропном приближении. Атомы Н частично локализованы экспериментально, а частично заданы геометрически. Все расчеты выполнены по комплексу программ SHELXTL [8]. Кристаллографические характеристики и результаты уточнения структур даны в табл. 1. Координаты базисных атомов и их эквивалентные тепловые факторы даны в табл. 2.

Рентгеноструктурное исследование поликристаллов [Rh(NH₃)₆](ReO₄)₃·2H₂O и [Rh(NH₃)₆]× (WO₄)Cl проведено на дифрактометре STADI-P STOE (Cu $K_{\alpha 1}$ -излучение, геометрия "на прохождение", мини-PSD, интервал углов 20 2—120°, шаг сканирования $\Delta 2\theta = 0,02^{\circ}$, комнатная температура). В качестве внешнего стандарта был использован поликристаллический кремний (a = 5,43075(5) Å).

При описании структуры [Rh(NH₃)₆](ReO₄)₃·2H₂O в качестве стартовой модели были использованы координаты атомов изоструктурной фазы [Co(NH₃)₆](ReO₄)₃·2H₂O [7]. Уточнение проводили по программному комплексу GSAS [9]. Профиль дифракционных отражений аппроксимировали функцией псевдо-Войта: $I(2\theta) = \eta \cdot L(2\theta) + (1 - \eta) \cdot G(2\theta)$ (η — коэффициент

Таблица 1

Характеристика	[Rh(NH ₃) ₆]Cl ₃	$[Rh(NH_3)_6](MoO_4)Cl \cdot 3H_2O$		
Молекулярный вес	311,46	454,55		
Размер кристалла, мм		0,25×0,21×0,18		
<i>a</i> , <i>b</i> , <i>c</i> , Å	12,6244(10), 21,499(2), 12,9439(16)	18,6907(3), 8,8111(2), 8,3443(2)		
<i>V</i> , Å ³	3229,3(6)	1374,19(5)		
Пр. группа	C2/m	Pnma		
Ζ	12	4		
V/Z, Å ³	269,11	343,55		
$d_{\text{выч}}, \Gamma/\text{см}^3$	1,922	2,197		
Область сканирования θ, град.	1,71—30,47	2,18—36,34		
Число независимых отражений	5017	3497		
Число отражений с $I \ge 2\sigma(I)$	3078	3202		
$R_1, \% (wR_2, \%)$	8,39 (7,43)	2,07 (4,52)		
$R_1 I \ge 2\sigma(I), \% (wR_2, \%)$	3,94 (6,59)	1,78 (4,41)		
<i>S</i> по <i>F</i> ²	0,957	1,093		
Rh—N, Å	2,044(3)-2,072(2)*	2,070(1)-2,076(1)		
∠N—Rh—N, град.	89,06(6)—91,53(16)	89,12(6)-91,14(4)		
Mo—O, Å		1,763(1)-1,777(1)		
∠О—Мо—О, град.		108,31(4)—111,43(4)		

Результаты рентгеноструктурного анализ монокристаллов

* В структуре [Rh(NH₃)₆]₂(C₂O₄)₃·4H₂O: Rh—N 2,069—2,080 Å, ∠N—Rh—N 88,6—91,4° [4].

Таблица 2

Атом	x/a	y/b	z/c	U	Атом	x/a	y/b	z/c	U
1	2	3	4	5	6	7	8	9	10
Rh(1)	5000	5000	0	11(1)*	N(31)	977(3)	2597(2)	-8910(2)	40(1)
Rh(2)	5000	3356(1)	-5000	12(1)	N(33)	953(3)	3943(2)	-8909(2)	49(1)
Rh(3)	0	3274(1)	-10000	13(1)	N(32)	1096(3)	3281(2)	-10821(3)	61(1)
Rh(4)	0	5000	-5000	10(1)	N(42)	-616(3)	5000	-6737(3)	21(1)
Cl(3)	3962(1)	5000	-3751(1)	20(1)	N(11)	4138(3)	5000	1071(3)	31(1)
Cl(5)	3685(1)	6700(1)	1364(1)	34(1)	N(12)	6536(3)	5000	1379(3)	50(2)
Cl(6)	6271(1)	1890(1)	-6446(1)	24(1)	N(41)	-1186(2)	5670(1)	-5039(2)	23(1)
Cl(1)	2364(1)	3634(1)	-2513(1)	29(1)	Cl(2)	1914(1)	5000	-6907(1)	19(1)
N(21)	3801(2)	3368(1)	-4275(2)	22(1)	Cl(4)	8625(1)	5000	517(1)	24(1)
N(23)	4057(2)	2672(1)	-6108(2)	28(1)	N(13)	5000	5953(2)	0	72(2)
N(22)	4084(2)	4037(1)	-6118(2)	30(1)					
$[Rh(NH_3)_6](ReO_4)_3 \cdot 2H_2O(I)$			$[Rh(NH_3)_6](MoO_4)Cl \cdot 3H_2O(II)$						
Re(1)	2171(1)	34791(9)	3618(1)	3,77(3)**	Rh(1)	6708(1)	2500	6533(1)	9(1)*
Re(2)	0	0464(1)	2500	3,50(5)	Cl(1)	8159(1)	2500	2812(1)	18(1)

Координаты (×10⁴) и тепловые колебания атомов в изученных кристаллических структурах

529

	Окончание табл. 2					бл. 2			
1	2	3	4	5	6	7	8	9	10
Rh	2500	2500	0	2,53(5)	O(1)	9310(1)	2500	6643(2)	20(1)
N1	0996(17)	1577(14)	0160(9)	4,62(13)	N(1)	6930(1)	2500	8970(2)	15(1)
N2	1484(15)	3768(12)	0310(9)	4,62(13)	Mo(2)	9003(1)	2500	8645(1)	11(1)
N3	3356(17)	2335(13)	1428(9)	4,62(13)	O(2)	8470(1)	873(1)	8936(1)	18(1)
01	-0579(11)	5721(10)	3528(8)	4,62(13)	N(2)	7475(1)	844(1)	6132(1)	14(1)
02	2612(12)	4543(10)	4236(9)	4,62(13)	O(3)	9758(1)	2500	9940(2)	21(1)
O3	1640(12)	3923(8)	2582(8)	4,62(13)	N(3)	6487(1)	2500	4103(2)	17(1)
O4	3677(12)	2567(10)	3703(7)	4,62(13)	N(4)	5933(1)	852(1)	6859(1)	15(1)
05	0939(13)	2826(9)	4022(9)	4,62(13)	O(1W)	9910(1)	2500	3165(2)	22(1)
O6	5546(13)	4622(9)	3440(8)	4,62(13)	O(2W)	9140(1)	5459(1)	5374(1)	22(1)
07	6326(13)	6206(8)	2323(8)	4,62(13)					

 $U = U_{3KB} \times 10^3.$ $U = U_i/U_e \times 10^2.$

смешения; *L* и *G* — функции Лоренца и Гаусса соответственно), а угловую зависимость ширины линий — соотношением (*FWHM*)² = $Utg^2\theta + Vtg\theta + W$, где *FWHM* — полная ширина линии на половине максимума. Уровень фона задавали в виде комбинации из 15 полиномов Чебышева. Поглощение в образце было скорректировано с использованием функции для плоского образца в геометрии "на прохождение" [8]. Тепловые параметры атомов кислорода и азота были связаны и уточнялись как одна переменная. Преимущественная ориентация в направлении [1 0 1] корректировалась функцией March-Dollase. Кристаллографические характеристики и результаты уточнения представлены в табл. 3.

Дифрактограмма [Rh(NH₃)₆](WO₄)Cl проиндицирована в рамках ромбоэдрической ячейки, критерий качества для тридцати первых пиков F(30) = 201,4 (0,004, 36). Получены следующие кристаллографические характеристики: a = 9,1304(4), c = 31,082(2) Å, пр. гр. R-3m (No 166), V = 2244,0(2) Å³, Z = 6. Поиск модели кристаллической структуры не дал приемлемого результата.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ И ВЫВОДЫ

Сравнивая полученные геометрические характеристики $[Rh(NH_3)_6]^{3+}$ в изученных структурах с приведенными в [4] для $[Rh(NH_3)_6]_2(C_2O_4)_3 \cdot 4H_2O$ (см. табл. 1 и 3), можно отметить их удовлетворительное согласие.

Таблица З

<i>a</i> , Å	10,0556(1)	Область сканирования 20, град.	20—120
<i>b</i> , Å	12,81648(1)	$R(F^2), \%$	2,83
<i>c</i> , Å	14,9250(1)	<i>R</i> _p , %	2,72
β, град.	102,7656(8)	$wR_{\rm p},\%$	3,61
$V, Å^3$	1875,94(3)	CHI ²	3,373
Пр. группа	C2/c	Rh—N, Å	1,976(15)-2,125(14)
Ζ	4	∠N—Rh—N, град.	88,3(5)-92,1(6)
V/Z, Å ³	468,99	Re—O, Å	1,623(12)-1,895(12)
$d_{\rm выч}, \Gamma/{\rm cm}^3$	3,511	∠О—Re—О, град.	103,5(6)—112,2(8)

Результаты рентгеноструктурного анализ поликристаллов [Rh(NH₃)₆](ReO₄)₃·2H₂O

Кристаллическая структура [Rh(NH₃)₆]Cl₃ представляет большой интерес с точки зрения упаковки разных по объему фрагментов — комплексных катионов [Rh(NH₃)₆]³⁺ и анионов Cl⁻. Исходя из их соотношения 1:3, можно было заранее предполагать трехслойную плотнейшую упаковку с заселением всех свободных пустот (двух тетраэдрических и одной октаэдрической). Для того чтобы выявить истинный мотив построения этой моноклинной структуры мы воспользовались методикой [10]. На элементарную ячейку приходится 12 формульных единиц, поэтому при поиске подходящей тройки отражений анализировали варианты с $\Delta = 12$. В результате была выявлена подрешетка, образованная пересечением трех семейств плоскостей: $\{-1 - 3 \ 1\}, \{-1 \ 3 \ 1\}$ и $\{0 \ 0 - 2\}$. Подрешетка построена на векторах: $a_{\rm T} = -a/2 - b/6, b_{\rm T} = -a/2 + b/6$, $c_{\rm T} = -a/2 - c/2$. Полученные метрики — $a_{\rm T} = 7,26$, $b_{\rm T} = 7,26$, $c_{\rm T} = 7,04$ Å, $\alpha_{\rm T} = 59,2$, $\beta_{\rm T} = 62,3$, $\gamma_{\rm T} = 62,3$, = 59,2° — свидетельствуют, что решетку можно рассматривать как псевдоромбоэдрическую с $a_{\rm T} \approx 7,2$ Å и $\alpha_{\rm T} \approx 60^{\circ}$. На рис. 1 показан такой фрагмент структуры. Можно перейти к рассмотрению структуры как искаженной гранецентрированной кубической с $a_{\rm T} \approx 10.3$ Å и $\alpha_{\rm T} \approx 91.7^{\circ}$. Подобные мотивы построения были отмечены нами в работе [11] для близких по размерам комплексов Rh(III). Например, в кубической структуре (NH₄)₂Na[Rh(NO₂)₆] [12] атомы родия следуют узлам идеальной ромбоэдрической подрешетки с параметрами $a_{\rm p} = 7,44$ Å и $\alpha_{\rm p} = 60^{\circ},$ а в моноклинной структуре α -[Rh(NH₄)₃(NO₂)₃] [13] — $a_p \approx 6,74$ Å и $\alpha_p \approx 60,3^\circ$.

 $[Rh(NH_3)_6](ReO_4)_3 \cdot 2H_2O$ (I). В построении кристаллической структуры участвуют три типа фрагментов. Хотя соотношение катионов и анионов, как и в предыдущем случае, 1:3, но их размеры сопоставимы и, кроме того, в упаковке участвуют молекулы воды. При поиске трансляционной подрешетки мы ориентировались в первую очередь на описание взаимного расположения наиболее крупных фрагментов — комплексных катионов $[Rh(NH_3)_6]^{3+}$. Для этого была рассчитана дифрактограмма только по атомам родия и азота. Такой подход описан в [11, 14].

Puc. 1. Псевдоромбоэдрический мотив построения кристаллической структуры [Rh(NH₃)₆]Cl₃. На левой части показаны два псевдогексагональных слоя, образованных комплексными катионами в направлении [0 0 2] (верхний слой выделен штриховыми линиями, атомы водорода и хлора не показаны). Пересечение трех семейств с псевдогексагональной организацией приводит к образованию псевдоромбоэдрической подъячейки, в которой атомы хлора занимают октаэдрические и тетраэдрические пустоты (атомы водорода и азота не показаны)

Рис. 2. Кристаллическая структура [Rh(NH₃)₆](ReO₄)₃·2H₂O. Штриховыми линиями показаны короткие контакты O(H₂O)...O(ReO₄) и Re...O. Атомы родия следуют узлам искаженной ромбоэдрической решетки с параметрами *a*₁ ≈ 8,1 Å и α₁ ≈ 104°

В итоге была выявлена подрешетка, образованная пересечением трех семейств плоскостей: {-111}, {-1-11} и {002}. Подрешетка построена на векторах: $a_r = -a/2 + b/2$, $b_r = -a/2 - b/2$, $c_r = a/2 + c/2$. Полученные метрики — $a_r = 8,15$, $b_r = 8,15$, $c_r = 8,02$ Å, $\alpha_r = 105,1$, $\beta_r = 105,1$, $\gamma_r = 103,8^{\circ}$ — свидетельствуют, что решетку можно рассматривать как псевдоромбоэдрическую. Ее узлам должны следовать атомы родия. Действительно, в структуре можно обнаружить такой мотив (рис. 2). Близость углов к 109,5° позволяет перейти к псевдообъемно-центрированной ячейке с $a_r \approx 9,9$ Å и $\alpha_r \approx 80,7^{\circ}$.

[Rh(NH₃)₆](MoO₄)Cl·3H₂O (II). В построении кристаллической структуры (рис. 3) участвуют комплексные катионы [Rh(NH₃)₆]³⁺, анионы MoO₄²⁻ и Cl⁻, а также молекулы воды. При проведении анализа взаимного расположения объемных комплексных катионов мы ориентировались на теоретическую дифрактограмму, при расчете которой были заданы (как и в предыдущем случае) только атомы родия и азота. Наиболее симметричная трансляционная подрешетка образуется при пересечении семейств плоскостей {2 1 0}, {2 0 1} и {0 1 1}. Подрешетка построена на векторах: $a_{\rm T} = a/4 + b/2 - c/2$, $b_{\rm T} = a/4 - b/2 + c/2$, $c_{\rm T} = -a/4 + b/2 + c/2$. Параметры подрешетки: $a_{\rm T} = 7,66$, $b_{\rm T} = 7,66$ Å, $\alpha_{\rm T} = 114,0$, $\beta_{\rm T} = 109,8$, $\gamma_{\rm T} = 104,8^\circ$, позволяют рассматривать ее как псевдоромбоздрическую с $a_{\rm T} = 7,66$ Å и $\alpha_{\rm T} = 109,5^\circ$. При переходе к псевдообъемно-центрированной ячейке получаем $a_{\rm T} = c/2$, $b_{\rm T} = a$.

Таким образом, в настоящей работе проведено рентгенографическое исследование четырех комплексных солей с участием комплексного катиона $[Rh(NH_3)_6]^{3+}$: определены кристаллографические характеристики $[Rh(NH_3)_6](WO_4)Cl$, а также структуры $[Rh(NH_3)_6]Cl_3$, $[Rh(NH_3)_6] \times (ReO_4)_3 \cdot 2H_2O$ и $[Rh(NH_3)_6](MOO_4)Cl \cdot 3H_2O$.

Рис. 3. Кристаллическая структура [Rh(NH₃)₆](MoO₄)Cl·3H₂O. Штриховыми линиями показаны короткие контакты

СПИСОК ЛИТЕРАТУРЫ

- 1. Allen F.H. // Acta Crystallogr. 2002. B58. P. 380 388.
- 2. *Inorganic* Crystal Structure Database, ICSD, Release 2010, Fashinformationszentrum Karlsruhe, D-1754 Eggenstein—Leopoldshafen, Germany, 2010.
- 3. Powder Diffraction File. PDF-2/Release 2009. // International Centre for Diffraction Data. USA, 2009.
- 4. Gorol M., Mosch-Zenetti N.C., Noltemeyer M. et al. // Z. Anorg. Allg. Chem. 2000. 626. P. 2318.
- 5. Jörgensen S.M. // J. Prakt. Chem. 1891. 44. P. 48.
- 6. Jörgensen S.M. // J. Prakt. Chem. 1891. 44. P. 63.
- 7. Байдина И.А., Филатов Е.Ю., Макотченко Е.В., Смоленцев А.И. // Журн. структур. химии. 2012. **53**, № 1. С. 117 123.
- 8. Sheldrick G.M. // Acta Crystallogr. 2008. A64, N 1. P. 112 122.
- 9. Larson A.C., Von Dreele R.B. // "GSAS" LANSCE, MS-H805, Los Alamos Natl. Lab. Los Alamos, NM 87545.
- 10. Борисов С.В. // Журн. структур. химии. 1986. 27, № 3. С. 164 167.
- 11. *Громилов С.А.* Определение структурных мотивов координационных соединений на основе точных рентгендифрактометрических данных поликристаллов: Автореф. дис. ... докт. физ.-мат. наук. Новосибирск: ИНХ СО РАН, 2005.
- 12. Громилов С.А., Байдина И.А., Алексеев В.И. и др. // Журн. неорган. химии. 1990. **35**, № 3. С. 682 684.
- 13. Громилов С.А., Храненко С.П., Байдина И.А. и др. // Журн. структур. химии. 2002. **43**, № 1. С. 151 155.
- 14. Громилов С.А., Борисов С.В. // Журн. структур. химии. 2003. 44, № 4. С. 724 742.