УДК 533.15 + 536.46

Взаимодействие горящей газовой струи с вращающейся проницаемой преградой

А.Н. Бажайкин

Институт теоретической прикладной механики им. С.А. Христиановича СО РАН, Новосибирск

E-mail: bazhan@itam.nsc.ru

Экспериментально исследовано взаимодействие струи углекислого газа и горящей струи пропан-бутана с вращающимся диском из высокопроницаемого для газов ячеистого пористого никеля. Получены визуальные картины течений, пространственные распределения концентраций и температур газов. Моделирование смешения топлива с воздухом с помощью углекислого газа показало, что существует корреляция между исходным распределением концентраций CO₂ и распределением температур и компонентов продуктов сгорания пропан бутана. Показано, что горение пропан-бутана на диске сопровождается нагревом его поверхностей до 800–900 °С. Определены режимы устойчивого горения в зависимости от расхода топлива, расстояния от сопла форсунки до диска и его скорости вращения.

Ключевые слова: картина течений, концентрация газов, вращающийся проницаемый диск, горение топливной струи.

Введение

Одной из актуальных задач при создании энергопреобразующих устройств является организация горения на вращающемся диске из проницаемого пористого материала. Вращение диска создает сложную картину течений [1]: находящаяся внутри него среда (воздух) под действием центробежных сил движется в радиальном направлении от центра к периферии и выбрасывается с цилиндрической поверхности; одновременно через открытые торцевые поверхности всасывается окружающая среда, причем всасывание происходит на всей торцевой поверхности. При подаче к торцевым поверхностям различных газовых сред, например, воздуха и газообразного топлива, можно организовать устойчивое горение с перемещением образующихся продуктов сгорания (при наличии улитки) для дальнейшего их использования в качестве рабочего тела. В этом случае совмещаются функции смесителя, реактора и вентилятора.

Вопросы устойчивости и теплообмена при взаимодействии горящих струй с непроницаемыми преградами в основном решены и отражены во множестве публикаций, например, в [2–4]. Информация об эффектах, связанных с взаимодействием струй с проницаемыми для газов преградами, представлена в ограниченном количестве и нуждается в глубоком и всестороннем изучении. В работе [5] было показано устойчивое горение струи пропан-бутана, натекающей на неподвижную преграду из высокопроницаемого ячеисто-пористого материала (ВПЯМ), которая нагревалась до 1000 °С. В работе [6] было продемонстрировано, что стабилизация горения происходит за счет образования перед преградой зоны торможения струи, где выполняются условия для стабилизации диффузионного пламени [6].

Особенности горения топливной струи на вращающейся проницаемой преграде (диске) определяются влиянием течений, связанных с вращением, от которых зависит пространственное распределение топлива. Для моделирования смешения топлива с воздухом был выбран углекислый газ, т.к. по плотности он близок к пропан-бутану. Для диагностики протекающих процессов использовались теневая и обычная видеосъемки, газовый анализ и измерения температур.

Экспериментальные исследования

Схема экспериментальной установки представлена на рис. 1. Сопло 1 диаметром 0,5 мм, имеющее цилиндрическую форму, устанавливалось на рельсе 2 с возможностью перемещения вдоль последнего. Расстояние между осью струи и осью диска из-за ограниченных его размеров было всегда одинаковым и составляло 45 мм, что соответствовало примерно середине поверхности между его краем и втулкой крепления с валом двигателя. Давление впрыска газа регулировалось редуктором 4 и контролировалось образцовым манометром 6, расход измерялся с помощью счетчика 5 и контролировалось образцовым манометром 6, расход измерялся с помощью счетчика 5 и контролировалось по его расходу. Диск 8, заключенный в обечайку-улитку 9, приводился во вращение электродвигателем 10 с контролем оборотов электронным тахометром. Диск из никелевого ВПЯМ, изображенный на рис. 1b, имел диаметр 150 мм, толщину 20 мм, пористость 95 %, размер ячеек 2–4 мм и удельную внутреннюю поверхность $10^3 1/м$. Его прочности было достаточно для использования в качестве силового элемента вентилятора.

Визуализация картины течений проводилась с помощью теневого прибора ИАБ-451, который устанавливался перпендикулярно оси струи так, чтобы в поле зрения прибора (240 мм) попадали сопло, диск и пространство за диском. Кромка ножа Фуко совпадала с осью струи таким образом, что половина изображения (относительно оси струи) получалась светлой, а другая половина — темной. Съемка процесса проводилась с частотой 24 кадра в секунду. Изображение пламени и нагретого диска регистрировалось фотокамерой «LUMIX» в режиме видеосъемки.

Газовый анализ среды осуществлялся с помощью газоанализатора марки «TECT» при отборе газов зондом с наружным и внутренним диаметрами 1,0 и 0,6 мм соответственно.

Рис. 1. Схема постановки экспериментов (*a*) и изображение преграды — диска из никелевого ВПЯМ (*b*). 1 — сопло, 2 — рельс, 3 — баллон, 4 — редуктор, 5 — счетчик, 6 — манометр, 7 — электронные весы, 8 — диск, 9 — обечайка-улитка, 10 — электродвигатель.

Газоанализатор позволял одновременно определять объемные концентрации газов CO₂, CO, O₂, C_mH_n, H₂ и NO_x с относительной погрешностью 5 % (для всех компонентов) и временным интервалом 5 секунд. Измерение температур продуктов сгорания проводилось с помощью хромель-алюмелевых термопар, а температуры поверхности нагретого диска определялись с помощью инфракрасного пирометра марки IS-300 (Германия) с точностью 1 %.

Взаимодействие струи СО2 с вращающимся проницаемым диском

В работе [7] было показано, что натекающая на неподвижную проницаемую преграду струя частично проходит сквозь нее, растекается перед преградой и внутри нее, а также образует течение, циркулирующее между преградой и соплом.

Исследования распространения струи СО₂ в воздухе и взаимодействия ее с вращающимся диском (без улитки 9) проводились при скоростях истечения $U_0 = 100-250$ м/с, расстояниях между соплом и диском $l_c = 50-100$ мм и скоростях вращения N == 100–1200 об/мин. На рис. 2 показаны теневые изображения струй, истекающих с U_0 = = 250 м/с при $l_c = 60$ мм и при разных значениях N. В отсутствие вращения диска (рис. 2a, N = 0) образуются течения вдоль его передней поверхности и за ним, а также циркуляционное течение между соплом и диском, как описано в работе [7]. В случае вращения (рис. 2b, N = 300 об/мин) картина течений меняется: исчезает циркуляционное течение, течение за диском ограничивается по длине, течение перед ним утончается и наблюдается течение, исходящее с цилиндрической поверхности. В этом случае, всасываемый диском поток воздуха увлекает за собой струю и окружающие ее течения внутрь, где газовоздушная смесь под действием центробежных сил движется в радиальном направлении к периферии, откуда выбрасывается наружу. При N = 500 об/мин (рис. 2*c*) сохраняется растекание вдоль лицевой поверхности, течение за диском практически исчезает. Поток, исходящий с цилиндрической поверхности, на кадре малозаметен, однако при просмотре видеофильма его интенсификация была хорошо видна. Таким образом, повышение N приводит к перераспределению течений с наружной части диска внутрь его и увеличению количества газо-воздушной смеси, вовлекаемой в эти течения при фиксированных U_0 и l_c Эксперименты, проведенные при различных значениях U_0 и l_c показали, что при фиксированных N перестройка течений происходит интенсивнее с уменьшением U_0 и увеличением $l_{\rm c}$. Это означает, что структура течений определяется скоростью натекания, которая уменьшается с увеличением длины струи. Чем с меньшей скоростью струя подходит к преграде, тем интенсивнее влияние факторов, связанных с вращением.

Количественную информацию о составе образующейся смеси CO₂ с воздухом позволил получить газовый анализ, для которого отбор проб производился в сечениях,

Рис. 2. Теневые изображения взаимодействия струи с вращающимся диском. $U_0 = 250 \text{ м/c}, l_c = 60 \text{ мм}, N = 0 (a), 300 (b), 500 (c) об/ мин.$

перпендикулярных оси струи. На рис. 3 показаны пространственные распределения концентраций CO₂ (Cco_2) при неподвижном и вращающемся (N = 500 об/мин) диске, полученные при $U_0 = 250$ м/с, $l_c = 60$ мм. В случае неподвижного диска (рис. 3*a*) у среза сопла (кривая 1) наблюдается резкий пик СО₂ в ядре струи, переходящий в плато с концентрациями в 2-2,5 %. В сечениях, расположенных на некотором удалении от сопла, соответствующих кривым 2, 3, максимумы концентраций CO_2 на оси значительно уменьшаются, а значения Ссо₂ на плато увеличиваются до 4–5 %. Эти результаты показывают, что углекислый газ присутствует не только в ядре и в зоне смешения струи, но и в области, значительно превышающей видимые на снимках поперечные размеры струи, что можно объяснить наличием циркуляционного течения между соплом и преградой. На преграде (заштрихованное сечение, соответствующее кривой 4) наблюдается неоднородная картина с четко выраженными минимумами и максимумами и резкими колебаниями Ссо2 в точках измерений (на кривых приведены усредненные значения Ссо₂). На тыльной стороне преграды (заштрихованное сечение, соответствующее кривой 5) все неоднородности сглаживаются и Ссо2 с постоянного максимального значения в приосевой зоне струи плавно снижается к периферии. В сечениях, удаленных от преграды, соответствующих кривым 6, 7, Ссо₂ также плавно снижается от оси к краю сечения.

Картина распределения концентраций CO₂ при вращении диска показана на рис. 3*b*. У среза сопла (кривая *1*) и в последующих сечениях (кривые *2*, *3*) наблюдаются ярко выраженные пики концентраций в ядре струи. Ниже по течению струи (кривые 4-6) пиковые значения Cco_2 значительно снижаются и радиус струи увеличивается за счет расширения периферийных участков. На лицевой поверхности диска (заштрихованное сечение, соответствующее кривой 7) концентрации в приосевой части струи относительно выравниваются, снижаясь с 5 до 3,5 %, после чего резко падают и плавно уменьшаются до нуля. На тыльной стороне диска (сечение, ограниченное кривой 8) концентрации CO₂ еще более выравниваются, плавно снижаясь с 4 до 2,5 % от центра к периферии. Следует отметить, что непосредственно у лицевой и тыльной поверхностей диска в распределении концентраций CO₂ осевая симметрия нарушается из-за вращения, поэтому в сечениях 7 и 8 представлены усредненные значения Cco_2 , измеренные по обе стороны от оси струи, которые различаются в среднем на 15 %. Сравнение представленных данных с результатами, полученными для неподвижного диска (рис. 3a), показывает, что

Рис. 3. Распределение концентраций CO₂ около струи и проницаемого диска при $U_0 = 270$ м/с и $G_T = 0,1$ г/с. N = 0 (*a*), 500 (*b*) об/мин.

перед вращающимся диском поперечные размеры струи существенно сокращаются за счет исчезновения циркуляционного течения. Внутри вращающегося диска происходит смешение воздуха с углекислым газом и перемещение смеси в радиальном и осевом направлении с последующим выходом наружу. Для определения состава смеси, истекающей с цилиндрической поверхности диска, срез трубки пробоотборника устанавливался в 1-2 мм от поверхности и перемещался вдоль нее в осевом направлении. Измерения показали, что концентрации CO₂ различаются по окружности диска в зависимости от угла (у) между лучами, соединяющими ось диска с точкой контакта оси струи с диском и местом отбора проб газа. На рис. 4 показаны распределения концентраций CO₂ по толщине диска h при различных углах γ . Видно, что кривые Cco_2 подобны, имеют минимальные значения у лицевой поверхности диска (h = 0-5 мм) и плавно растут до максимумов ближе к тыльной поверхности. Концентрации CO_2 существенно зависят от угла γ : при $\gamma = 0$ (кривая *I*) уровень значений Ссо₂ минимален, а при $\gamma = 90^{\circ}$ — максимален (кривая 2). Измерения при углах $\gamma = 180^{\circ}$ (кривая 3) и $\gamma = 270^{\circ}$ (кривая 4) дали промежуточные результаты. Полученные данные показывают, что струя во вращающемся диске движется одновременно как в осевом направлении (по инерции), так и в радиальном (под действием центробежных сил), и в то же время сносится в тангенциальном направлении внутренними перегородками диска. В результате основная масса струи достигает края диска при определенном угле его поворота, в данном случае при $\gamma = 90^\circ$, N = 500 об/мин, $U_0 = 250$ м/с и $l_c = 60$ мм. При этом рассеянная перегородками диска часть струи распространяется по всему его внутреннему пространству и выбрасывается со всей цилиндрической поверхности.

Влияние частоты вращения диска на состав смеси, исходящей с цилиндрической поверхности диска, определялось при $\gamma = 90^\circ$, $U_0 = 250$ м/с, $l_c = 60$ мм и показано на рис. 5. В отсутствии вращения (кривая l) газ распределяется относительно равномерно с падением концентрации ближе к тыльной стороне. При вращении и с ростом N концентрации CO₂ у лицевой поверхности диска существенно уменьшаются, а максимумы CO₂ смещаются в сторону его тыльной поверхности. Особенно это заметно при больших значениях N (кривые 3, 4), причем зависимости $Cco_2(h)$ подобны приведенным на рис. 4. Представленные на рис. 4 и 5 результаты показывают существенную неоднородность

Рис. 4. Распределение концентраций CO₂ по толщине диска *h* при разных углах измерений (γ).
γ = 0 (1), 90 (2), 180 (3), 270 (4) град.

распределения CO₂ внутри диска как по толщине, так и по углу его поворота вследствие сложного движения струи под действием перечисленных выше факторов.

Если рассматривать полученные результаты применительно к горению пропан-бутана (70/30 весовых %), для которого стехиометрическое соотношение составляет 3,8 %, наиболее благоприятные для горения условия создаются впереди, внутри и позади неподвижной преграды, что было отмечено в работе [7]. При вращении диска области концентраций, близких к стехиометрии, значительно сужаются и располагаются впереди и внутри диска ближе к тыльной его поверхности, причем с увеличением скорости вращения размеры этих областей уменьшаются.

Рассмотренная картина течений и распределение концентраций CO₂ между соплом и диском, а также в течениях, выходящих из диска, в зависимости от скорости вращения последнего являются предварительной информацией для исследования горения топливной струи вблизи и внутри диска из высокопроницаемого ячеисто пористого материала.

Взаимодействие горящей струи с вращающимся проницаемым диском

Исследования горения струи пропан-бутана, натекающей на вращающийся проницаемый диск, проводились в условиях, аналогичных описанным выше для струи СО2. На рис. 6 показаны изображения горящей струи пропан бутана, истекающей со скоростью U₀ = 250 м/с из сопла диаметром 0,5 мм на вращающийся диск из никелевого сплава ВПЯМ, расположенный на расстоянии l_c = 60 мм. При низких скоростях вращения диска (N = 100 об/мин., рис. 6*a*) образуется пламя голубого цвета. На снимке видна область стабилизации диффузионного факела, переходящая в растекающееся по преграде пламя. При этом наблюдается слабое покраснение диска. С увеличением N (N == 500 об/мин) поперечные размеры горящей струи сокращаются вследствие всасывания в диск периферийных ее участков, при этом на лицевой поверхности диска образуется разогретая кольцевая область красного цвета, как показано на рис. 6b. Такая же красная кольцевая зона образуется на тыльной поверхности, а на цилиндрической поверхности наблюдается пламя голубого цвета (рис. 6с, N = 500 об/мин, вид сзади). При увеличении *N* выше 500 об/мин интенсивность нагрева снижалась до исчезновения красных кольцевых зон, а горящая струя вырождалась в узкую голубую полоску (рис. 6d, N = 750 об/мин), после чего происходил срыв (прекращение) горения.

Визуализация горения продемонстрировала качественную картину процесса. Для получения количественной информации о процессах горения применялся газовый анализ

Рис. 6. Изображения горящих струй на вращающемся диске.

Рис. 7. Состав и характеристики продуктов сгорания, образующихся вблизи и внутри вращающегося диска.

продуктов сгорания, истекающих с цилиндрической поверхности диска. Отбор проб проводился вдоль цилиндрической поверхности с шагом 2 мм на расстоянии 1-2 мм от нее, а также за ее пределами до расстояния 10 мм спереди и сзади. Температуры продуктов сгорания измерялись с помощью хромель-алюмелевой термопары, установленной рядом с пробоотборником. Таким образом определялись интегральные для каждого сечения составы и температуры продуктов сгорания. На рис. 7 показаны результаты, полученные при N = 500 об/мин, $U_0 = 250$ м/с и $G_T = 0,085$ г/с, что соответствовало режиму, представленному на рис. 6b, 6c. Распределение температур продуктов сгорания (T_{Γ}) показывает, что максимум температур ($T_{\Gamma max}$ = 750 °C) расположен в средней части толщины диска (заштрихован на рисунке) и ближе к его тыльной поверхности. Подобным образом изменяется содержание углекислого газа в продуктах сгорания (CO2, г), составляющего в максимуме 5,5 %. Вид кривых T_{Γ} и CO_{2, Γ} качественно подобен распределению концентраций углекислого газа (СО2, х), взятым из рис. 5 (кривая 4). Видно, что для кривой СО_{2 х} максимум равен 4,2 % в середине толщины диска (что близко к стехиометрии пропан-бутана), затем к тыльной его поверхности наблюдается плавное снижение кривой, что предполагает наиболее интенсивное горение в этой области. Последнее подтверждается также видом кривой O_2 с минимумом (максимальным расходованием) в средней части толщины диска, составляющим 11–14 %. Это свидетельствует о том, что реагирует меньше половины атмосферного кислорода, при избытке которого, тем не менее, содержание оксида углерода (кривая СО) составляет в максимуме 1,5 % и водорода (кривая H₂) — 0,5 %. Таким образом, с одной стороны наблюдается избыток окислителя, с другой — недожог. По-видимому, это связано с неравномерностью распределения топлива по толщине и углу поворота диска и, следовательно, с существованием

Рис. 8. Зависимость относительного расстояния от сопла до диска (L_c), при котором происходит срыв горения, от скорости вращения диска N. $G_T = 0.04 (I), 0.06 (2), 0.085 (3)$ г/с.

участков, где кислорода недостаточно для окисления СО и H₂. Концентрации окислов азота составляли тысячные доли процента, а концентрации углеводородов C_mH_n — сотые доли, поэтому на рис. 7 они не приводятся.

Участки кривых (соответствующих компонентам продуктов сгорания), расположенные вне диска, являются непрерывным (без скачков) продолжением участков, соответствующим положению струи внутри диска, свидетельствующим о горении растекающейся перед диском и выходящей с тыльной его поверхности способной к реакции смеси. Уменьшение температуры T_{Γ} и концентрации CO₂, CO и H₂ при увеличении расстояния от диска объясняется увеличивающимся разбавлением газов окружающим воздухом.

Представленные на рис. 7 результаты получены на одном из режимов устойчивого горения. Немаловажным являлось установление влияния начальных параметров эксперимента на устойчивость горения. Для этого при заданных расходах топлива G_T, оборотах N и расстоянии от сопла до диска топливная струя поджигалась, и после достижения стабильного горения и нагрева диска сопло I отодвигалось от диска до расстояния l_{c} , при котором горение прекращалось. На рис. 8 представлены результаты экспериментов в виде зависимости относительного расстояния $L_{\rm c} = l_{\rm c}/d_{\rm c}$ от N, откуда видно, что с ростом N значения L_c уменьшаются практически линейно. Каждая из полученных кривых ограничивает сверху область устойчивого горения для заданного G_{T} . С ростом расхода топлива область устойчивого горения расширяется, это видно по тому, что кривая 3 $(G_{\rm T} = 0.085 \, {\rm г/c})$ расположена выше кривой 2 $(G_{\rm T} = 0.06 \, {\rm г/c})$ и выше кривой 1 $(G_{\rm T} = 0.06 \, {\rm r/c})$ = 0,04 г/с). Таким образом, условия, в которых реализуется устойчивое горение, определяются расстоянием от сопла до диска, скоростью вращения диска и расходом топлива. Это связано с особенностями образования топливо-воздушной смеси и с влиянием противоположных факторов: нагревом диска в результате горения и его охлаждением всасываемым воздухом, а также вследствие радиационного излучения. Объемный расход всасываемого воздуха (V_B) определялся в «холодных» условиях (без горения). Для этого диск заключался в улитку без передней стенки. Задняя стенка имела отверстия для проникновения всасываемого воздуха. Значения V_В вычислялись по измеренной анемометром скорости потока ($U_{\rm B}$) в выходном патрубке улитки известного сечения. На рис. 9 представлена зависимость $V_{\rm B}(N)$, демонстрирующая увеличение расхода всасываемого воздуха пропорционально росту скорости вращения. В условиях горения это означает усиление охлаждения диска (теплоотвода) всасываемым воздухом с ростом N, что приводит к уменьшению температур диска ($T_{\rm D}$) и продуктов сгорания ($T_{\rm \Gamma}$) и прекращению горения. На рис. 9 показаны зависимости $T_{\rm D}(N)$ и $T_{\rm \Gamma}(N)$, полученные при разных $G_{\rm T}$ и одинаковых $l_{\rm c}$ Представленные кривые обладают общими чертами: с ростом N температуры увеличиваются до максимумов, после которых монотонно снижаются до значений, когда горение прекращается. На рис. 9 видно также влияние G_{τ} , с увеличением которого в 2 раза диск нагревается с 750 до 900 °С и в то же время выходящие из улитки газы нагреваются с 250 до 650 °C. Полученные результаты показывают, что в исследованном диапазоне изменения условий экспериментов оптимальные значения N, при которых

 $G_{\rm T} = 0.04 (1), 0.06 (2), 0.085 (3)$ r/c.

достигаются максимумы температур, находятся в интервале 300–500 об/мин. Температурные данные позволили оценить мощность радиационного излучения раскаленной поверхности диска по формуле Стефана–Больцмана. Оценки показали, что доля радиационной теплоотдачи составила 30–35 % от общей химической мощности, выделенной при горении.

Заключение

Результаты экспериментальных исследований взаимодействия струи CO₂ и горящей струи пропан-бутана с вращающимся диском из высокопроницаемого никеля позволяют сделать следующие выводы.

1. Струя CO_2 , натекающая на вращающийся диск, претерпевает по сравнению со случаем неподвижного диска существенные изменения. Поток окружающего воздуха, всасываемый вращающимся диском, уносит за собой периферийные участки струи, поэтому основная масса газо-воздушной смеси локализуется в относительно узкой приосевой зоне диаметром 25–40 мм. Вошедшая внутрь диска струя движется по инерции, под действием центробежных сил и в то же время сносится в тангенциальном направлении внутренними перегородками диска. Вследствие этого газо-воздушная смесь распределяется внутри диска крайне неоднородно по его толщине и углу поворота, причем распределение существенно зависит от числа оборотов диска. Под действием центробежных сил образовавшаяся смесь выходит наружу через цилиндрическую поверхность.

 Моделирование смешения топлива с воздухом с помощью углекислого газа показало, что существует корреляция между распределением температур и компонентов продуктов сгорания и распределением концентраций CO₂.

3. Получены экспериментальные зависимости относительных расстояний от сопла до диска, при которых происходит срыв горения, от числа его оборотов и расхода топлива. Расстояние от сопла до диска падает практически линейно с ростом числа оборотов, а при увеличении расхода топлива область устойчивого горения расширяется.

 Показано существование оптимальных режимов горения с максимальными температурами продуктов сгорания и нагрева диска при различных его оборотах и расходах топлива.

Исследования показали принципиальную возможность использования вращающейся высокопроницаемой преграды для осуществления процессов смешения, горения, теплои массообмена в зависимости от свойств подаваемых на нее веществ. При подаче разных видов газовых струй можно получать сложные смеси, а также осуществлять химические процессы. Эксперименты с горящей струей пропан-бутана показали возможность применения вращающегося диска в качестве горелочного устройства для получения тепла от излучения раскаленного диска и продуктов сгорания.

Список литературы

- 1. Пат. 2256861 РФ, МПК⁵¹ F28D 11/02. Способ организации течения рабочей среды и энергообразующее устройство роторного типа для его осуществления / Баев В.К., Фомин В.М., Чусов Д.В., Фролов А.Д., Макарюк Т.А., Исмагилов З.Р., Пармон В.Н., Керженцев М.А., Шикина Н.В.; патентообладатель НИУ «Ин-т теоретической и прикладной механики СО РАН», НИУ «Институт катализа им. Г.К. Борескова СО РАН». № 2003109354/06; заявл. 10.10.2004; опубл. 20.07.2005, Бюлл. № 20.
- 2. Zhang Y., Bray K.N.C. Characterization of impinging jet flames // Combustion and Flame. 1999. Vol. 116. P. 671–674.
- 3. Malikov G.K., Lobanov D.L., Malikov K.Y., Listenko V.G., Viskanta R., Fedorov A.G. Direct flame impigment heating for rapid thermal material processing // Int. J. Heat Mass Transfer. 2001. Vol. 44, No. 9. P. 1751–1758.
- Chander S., Ray A. Flame impingement heat transfer: a review // Energy Conversion and Management. 2005. Vol. 46. P. 2803–2837.
- 5. Баев В.К., Бажайкин А.Н. Стабилизация диффузионных пламен импактных и встречных топливных струй // Физика горения и взрыва. 2016. Т. 52, № 5. С. 23–32.
- 6. Баев В.К., Ясаков В.А. Исследование устойчивости диффузионного пламени // Изв. СО АН СССР. 1969. Вып. 1, № 3. С. 38-42.
- **7. Баев В.К., Бажайкин А.Н.** Особенности взаимодействия осесимметричной газовой струи с преградой из высокопроницаемого материала // Письма в Журнал технической физики. 2017. Т. 43, вып. 5. С. 68–75.

Статья поступила в редакцию 15 июня 2018 г., после доработки — 6 февраля 2019 г., принята к публикации 28 февраля 2019 г.