УДК 533.6.013.125

ВЛИЯНИЕ РАСПРЕДЕЛЕННОГО ВДУВА ГАЗА НА АЭРОДИНАМИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕЛА ВРАЩЕНИЯ В СВЕРХЗВУКОВОМ ПОТОКЕ

В. М. Фомин, В. И. Запрягаев, А. В. Локотко, В. Ф. Волков

Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск E-mail: lok@itam.nsc.ru

Приводятся результаты экспериментального и численного исследований влияния вдува газа через проницаемую пористую поверхность на коэффициент лобового сопротивления тела вращения типа конус — цилиндр в условиях обдува сверхзвуковым потоком в диапазоне значений числа Маха $M_h = 3 \div 6$. Показано, что вдув газа через пористый носовой конус при расходах газа, составляющих $6 \div 8$ % расхода набегающего потока в сечении миделя, приводит к уменьшению коэффициента лобового сопротивления приблизительно на $5 \div 7$ %. При этом вклады уменьшения сопротивления головной части модели и повышения донного давления в общее снижение сопротивления примерно одинаковы. Вдув газа через пористый донный торец при расходе, составляющем приблизительно 1 %, приводит к повышению донного давления в три раза и уменьшению коэффициента лобового сопротивления к озфициента лобового сопротивления в три раза и уменьшению коэффициента лобового сопротивления примерно одинаковы. Вдув газа через пористый донный торец при расходе, составляющем приблизительно 1 %, приводит к повышению донного давления в три раза и уменьшению коэффициента лобового сопротивления в общее снижение одинаковы. Вдув газа через пористый донный торец при расходе, составляющем приблизительно 1 %, приводит к повышению донного давления в три раза и уменьшению коэффициента лобового сопротивления, а при расходе, приближенно равном 5 %, — к возникновению зоны сверхзвукового течения в донной области.

Ключевые слова: сверхзвуковое течение, тело вращения, носовой конус, газопроницаемый пористый материал, коэффициент лобового сопротивления.

Введение. Вдув газа (встречный, боковой или в донную область) с поверхности тел при обтекании их сверхзвуковым потоком может быть использован для тепловой защиты тел, возвращающихся в плотные слои атмосферы, а также для изменения их аэродинамических характеристик. Известны результаты экспериментальных [1–3] и численных [4–6] исследований аэродинамических характеристик тел вращения различного типа при встречном вдуве газа через проницаемую поверхность. Показано, что при расходе вдуваемого газа, составляющем несколько процентов расхода набегающего потока в сечении миделя, коэффициент лобового сопротивления уменьшается. Сильный вдув газа через пористый донный торец приводит к уменьшению коэффициента лобового сопротивления и может вызывать образование сложного (сверхзвукового при наличии дозвуковой зоны) течения в донной области.

В настоящей работе, являющейся продолжением [7], проведены экспериментальное и численное исследования, результаты которых уточняют известные данные о массообмене на поверхностях проницаемых пористых материалов в условиях обдува сверхзвуковым потоком.

Модель и методика эксперимента. Эксперименты проводились в сверхзвуковой аэродинамической трубе Т-313 Института теоретической и прикладной механики СО РАН

Рис. 1. Схема установки модели в рабочей части аэродинамической трубы: 1 — корпус модели; 2 — носовой конус; 3 — пилон; 4 — балка аэродинамических весов; ВВД — воздух высокого давления

с размерами рабочей части $0.6 \times 0.6 \times 2.0$ м при числах Маха $M_h = 3.02$; 4.03; 5.95 и отнесенных к диаметру модели ($d_M = 100$ мм) числах Рейнольдса $\text{Re} = 3.5 \cdot 10^6$; $5.0 \cdot 10^6$; $0.8 \cdot 10^6$ соответственно.

Рассматривалась модель тела вращения типа конус — цилиндр диаметром $d_{\rm M} = 100$ мм и длиной $l_{\rm M} = 550$ мм с затупленным по радиусу конусом (рис. 1). Полуугол раствора конуса $\beta = 25^{\circ}$, относительный радиус затупления $r^0 = r_c/r_{\rm M} = 0,2$. Использовались сменные конусы: гладкий непроницаемый и проницаемый пористый, изготовленный методом самораспространяющегося высокотемпературного синтеза из композиции порошкового материала никель — хром — алюминий. Открытая пористость материала составляла приблизительно 60 %, средний размер каналов приближенно равен 100 мкм. Конфигурации пористого и непроницаемого конусов были идентичными. Донный торец корпуса модели был выполнен в двух вариантах: непроницаемый либо с проницаемой пористой вставкой. Площадь фронтальной проекции пористой носовой вставки составляет 64 % площади миделя, площадь пористой донной вставки — 67,2 %.

Модель устанавливалась в рабочей части трубы на боковом пилоне, который в свою очередь крепился на балке аэродинамических весов внешнего типа (весов, расположенных в камере давления вне рабочей части аэродинамической трубы). В пилоне имелся канал, по которому воздух высокого давления подводился внутрь модели. В магистрали подачи воздуха было установлено стандартное расходомерное устройство на основе сужающей диафрагмы, в месте присоединения трубопровода к чувствительным частям аэродинамических весов имелась силовая развязка.

В экспериментах измерялись весовые характеристики модели, донное давление (в одной точке в центре днища), давление и температура в корпусе модели, расход воздуха на

вдув. С помощью теневого прибора ИАБ-451 осуществлялась визуализация донного течения. Весовые характеристики определялись с помощью аэродинамических механических весов внешнего типа с погрешностью, составлявшей приблизительно 0,1 % диапазона, в котором проводились измерения. Температура торможения вдуваемого воздуха была практически равна температуре торможения набегающего потока, составлявшей приблизительно 280 К. Эксперименты проводились при нулевом угле атаки.

При расчете коэффициента лобового сопротивления c_x площадь миделя модели выбиралась в качестве характерной площади, независимым параметром являлся относительный расход вдуваемого газа $\bar{G} = G_j/G_h$ (G_j — расход вдуваемого воздуха; $G_h = 0.397 S_{\rm M} p_{0h} q(\lambda_h) / \sqrt{T_{0h}}$ — расход набегающего потока в сечении миделя [8]; $S_{\rm M}$ – площадь миделя модели; p_{0h} — давление торможения в рабочей части; $q(\lambda_h)$ — газодинамическая функция; T_{0h} — температура торможения).

Результаты экспериментов. Рассматривалась зависимость коэффициента лобового сопротивления c_{xi} модели от относительного расхода \bar{G} при вдуве воздуха через носовой конус в случае газонепроницаемого донного торца при числе Маха потока $M_h = 3,02$ (рис. 2). В значение c_{xi} входит значение сопротивления поддерживающего пилона, поэтому при анализе рассматриваются не абсолютные значения c_{xi} , а их изменения в зависимости от относительного расхода воздуха на вдув. На рис. 2 (кривая 1) видно, что сначала значения коэффициента c_{xi} уменьшаются с 0,8963 при $\bar{G} = 0$ до минимального значения, равного 0,8744, при $\bar{G} \approx 0,077$, а при дальнейшем увеличении расхода на вдув значения c_{xi} увеличиваются. Величина максимального уменьшения коэффициента c_{xi} составляет $\Delta c_{xi} = 0,0219$. Для модели с непроницаемым носовым конусом и при исключении влияния пилона величина уменьшения коэффициента лобового сопротивления относительно "базового" значения $c_{x0} = 0,5329$ [7] равна $\Delta c_{xi} = 0,0219/0,5329 = 0,041$ (4,1 %).

На значения коэффициента c_{xi} модели существенное влияние оказывает донное давление на торце ее корпуса. Известно, что относительное давление p_b/p_h (p_b — донное давление; p_h — статическое давление в потоке) зависит от состояния пограничного слоя на расположенных выше по потоку участках поверхности, которое в свою очередь зависит от числа Рейнольдса Re и от массы газа, подводимой в донную область или выше по потоку [9, 10]. Зависимость отношения давлений p_b/p_h от \bar{G} при $M_h = 3,02$ показана на рис. 3 (кривая 1). Видно, что в отсутствие вдува через носовой конус $p_b/p_h = 0,408$. При значении числа Рейнольдса Re $\approx 2 \cdot 10^7$, вычисленном по длине корпуса модели, это значение p_b/p_h хорошо согласуется с данными [9] при одних и тех же числах Маха и Рейнольдса и относительном радиусе затупления конуса $r^0 = 0,2$, а также с данными [10] для вращающихся снарядов. Эти результаты подтверждают достоверность выполненных измерений.

По мере увеличения расхода вдуваемого воздуха донное давление понижается до значения $p_b/p_h = 0.40$ при $\bar{G} = 0.039$, а затем увеличивается. Определим вклад, который вносит увеличение донного давления в уменьшение коэффициента c_{xi} . Очевидно, что если расчет c_{xi} проводится относительно площади миделя модели, то коэффициентом донного сопротивления является коэффициент донного давления $c_{pb} = (p_b - p_h)/q_h (q_h = 0.5 \varkappa p_h M_h^2 -$ скоростной напор).

Значению относительного расхода $\bar{G} = 0$ и значению $\bar{G} = 0,077$, при котором достигается минимум c_{xi} за счет вдува, соответствуют значения коэффициента донного давления $c_{pb} = -0,0919$; -0,0905. Относительное изменение этих значений составляет $\bar{c}_{pb} = (-0,0919 - (-0,0905))/(-0,0919) = 0,0144$ (1,44 %). Это позволяет определить величину уменьшения коэффициента лобового сопротивления при вдуве через пористый носовой конус только за счет уменьшения сопротивления головной части тела: $\Delta c_{xi} = 4,10 - 1,44 = 2,66$ %.

Рис. 2. Зависимость коэффициента лобового сопротивления модели от расхода через пористый нос в отсутствие вдува в донную область при различных значениях числа Маха потока:

 $1 - M_h = 3,02; 2 - M_h = 4,03; 3 - M_h = 5,95$

Рис. 3. Зависимость относительного донного давления на торце корпуса модели от расхода через пористый нос в отсутствие вдува в донную область при различных значениях числа Маха потока:

 $1 - M_h = 3,02; 2 - M_h = 4,03$

На рис. 2 (кривая 2) показано изменение коэффициента c_{xi} модели при вдуве воздуха через пористый носовой конус в случае непроницаемого днища при числе Маха потока $M_h = 4,03$. Как и при $M_h = 3,02$, вдув воздуха в носовую часть приводит к уменьшению лобового сопротивления, достигающего минимума в диапазоне значений относительного расхода $5 \div 8$ %. Относительное уменьшение составляет $\Delta c_{xi} = (0,7532 - 0,7153)/0,7532 =$ 0,05 (5 %). Очевидно, что если это уменьшение отнести к величине c_{x0} — коэффициенту лобового сопротивления модели без учета влияния поддерживающих устройств (для числа Маха $M_h = 4,03$ такое вычисление не проводилось), то уменьшение c_x будет еще более значительным.

На рис. 3 (кривая 2) показано изменение относительного донного давления p_b/p_h при $M_h = 4,03$. Видно, что вдув в носовую часть модели приводит к практически монотонному повышению донного давления. Изменение коэффициента давления c_{pb} в диапазоне значений $\bar{G} \approx 0 \div 0,0575$ (при $\bar{G} = 0,0575$ коэффициент c_{xj} минимальный) составляет 2,8 %. Таким образом, величина уменьшения коэффициента лобового сопротивления модели при вдуве через носовой конус только за счет уменьшения сопротивления головной части составляет 5,0-2,8=2,2 %.

На рис. 2 (кривая 3) показано изменение коэффициента c_{xi} в случае вдува воздуха через носовой конус при $M_h = 5,95$. При $\bar{G} \approx 0,065$ величина уменьшения коэффициента лобового сопротивления равна $\Delta c_{xi} \approx 0,009$. С увеличением относительного расхода коэффициент сопротивления увеличивается.

Рис. 4. Зависимости коэффициента лобового сопротивления модели (a) и относительного донного давления на модели (δ) от расхода через пористое днище корпуса модели в случае непроницаемой носовой части при $M_h = 4,03$

Отмеченная выше особенность — уменьшение лобового сопротивления тела в некотором диапазоне значений расхода при встречном выдуве газа — объясняется влиянием следующих факторов: уменьшения сопротивления трения за счет увеличения толщины пограничного слоя [11], изменения эффективной формы головного участка тела [1, 12], увеличения донного давления. Последующее увеличение сопротивления при увеличении расхода объясняется наличием силы реакции истекающего газа и увеличением площади миделя эффективного тела.

При использовании непроницаемого носового конуса и вдуве газа через пористое днище коэффициент лобового сопротивления монотонно уменьшается до значений, равных значению расхода вдуваемого газа $\bar{G} \approx 0,06$. На рис. 4,*a* приведена зависимость $c_{xi} = f(\bar{G})$, полученная при продувке модели в потоке ($M_h = 4,03$). Уменьшение коэффициента c_{xi} обусловлено двумя факторами: повышением донного давления и наличием реактивной силы истекающей струи.

На рис. 4,6 представлена зависимость относительного донного давления p_b/p_h в случае вдува газа через пористое днище от относительного расхода при $M_h = 4,03$. Наблюдается резкое повышение донного давления от значения $p_b/p_h = 0,28$ при $\bar{G} = 0$ до значения $p_b/p_h = 0,62$ при малом расходе вдуваемого газа ($\bar{G} \approx 0,01$). При дальнейшем увеличении расхода донное давление монотонно понижается и при $\bar{G} \approx 0,055$ достигает почти такого же уровня ($p_b/p_h = 0,293$), как и в отсутствие вдува, что обусловливает увеличение коэффициента сопротивления (см. рис. 4,*a*). При этом в донной области возникает течение, имеющее достаточно сложную структуру, которая видна на теневой фотографии (рис. 5,*a*).

На рис. 5,*a*,*б* видны следующие особенности структуры течения: веер волн разрежения, краевой скачок (согласно терминологии [13]), конусообразная зона, ограниченная прямыми линиями (характеристиками), и область, ограниченная полусферической линией. Рассмотрим возможные режимы течения в каждой зоне. Для обоснования дальнейших выводов ниже приведены значения измеренных в эксперименте параметров в размерном виде: статическое давление в рабочей части аэродинамической трубы $p_h = 6,2566$ кПа; донное давление на оси днища $p_b = 1,8338$ кПа; давление в корпусе модели перед пористой вставки $S_b = 0,0053$ м² (диаметр вставки равен 82 мм); расход воздуха через пористую вставку $G_j = 0,0943$ кг/с; температура в корпусе модели $T_{\kappa} = 274$ К.

Можно предположить, что в зонах 3, 5 реализуется сверхзвуковой режим течения. Подобный режим — возникновение сверхзвукового течения при истечении газа из пористого материала — описан в работе [14]. С помощью приведенных выше параметров можно определить число Маха в этой зоне путем вычисления газодинамической функции $y(\lambda)$ с использованием таблиц [8]. Для приведенных выше значений параметров эксперимента газодинамическая функция принимает значение

$$y(\lambda) = \frac{G_j \sqrt{T_{\kappa}}}{0.397 S_b p_b} = 4.11.$$

Этому значению $y(\lambda)$ соответствует число Маха М $\approx 1,83$. Это число Маха соответствует также углу наклона характеристик 4 [8]. Волновая структура области 3, а также отношение давлений $p_b/p_h = 0,293$ (параметр нерасчетности) характеризуют истечение из пористой вставки, эквивалентное истечению перерасширенной струи.

На рис. 6 приведены распределения относительного давления $\bar{p} = p/p_h$ и числа Маха по длине донного следа при различных значениях относительного расхода, полученные в численных расчетах при $M_h = 4$. При малом расходе газа на вдув $\bar{G} = 0,017$ (кривая 1 на рис. 6,*a*) относительное донное давление вблизи днища равно $p_b/p_h \approx 0.62$, что хорошо согласуется с экспериментальными данными (см. рис. 4, δ). На рис. 5, δ приведено распределение плотности, полученное в численных расчетах при $\bar{G} = 0.046$. Сравнение

Рис. 6. Распределения относительного давления (*a*) и числа Маха (*б*) по длине донного следа при $M_h = 4$: $1 - \bar{G} = 0.017; 2 - \bar{G} = 0.032; 3 - \bar{G} = 0.046$

шлирен-фотографии (см. рис. 5,a) и результатов численных расчетов (см. рис. 5,b) показывает, что картины течения качественно практически идентичны.

Из рис. 6 следует, что при расходе на вдув $\bar{G} = 0,01 \div 0,02$ имеет место повышенное донное давление с дозвуковой скоростью потока на оси донного следа. При увеличении расхода до значения $\bar{G} = 0,032$ вблизи дница наблюдается ускоряющееся течение, скорость которого переходит через скорость звука, в результате чего понижается донное давление. При $\bar{G} = 0,046$ реализуется развитое сверхзвуковое течение с числом Маха $M \approx 2,4$ и относительным давлением $p/p_h \approx 0,19$, т. е. возникает течение с перерасширением. Зона сверхзвукового течения ограничена линией 6 (см. рис. 5,6), которая представляет собой падающий скачок уплотнения. Согласно [15] при числах Маха перед скачком M < 2,38 и $\varkappa = 1,4$ за падающими и отраженными скачками на осевой линии скорость течения всегда дозвуковая. В этом случае область дозвукового рециркуляционного течения сдвигается вниз по потоку на расстояние, равное длине первой ячейки перерасширенной струи (см. рис. 5, *a*, *б*).

Линии 4 (см. рис. 5,a), отчетливо различимые на рис. 5,a, представляют собой характеристики, сходящие с кромки обечайки, удерживающей пористую вставку в днище корпуса. На рис. 5,a также видно, что вниз по потоку возмущения течения, возникающие при истечении и слиянии множества струек в окрестности пористого днища, затухают. При этом характеристики 4 достаточно четко разграничивают области сильновозмущенного течения (область 3) и слабовозмущенного течения (область 5).

Объяснением возникновения такой структуры течения может служить следующее предположение. Известно, что в ускоряющихся потоках (течениях с отрицательным градиентом давления) происходит ламинаризация. Именно такое течение имеет место в рассматриваемом случае, что подтверждает полученное в результате расчетов распределение давления на оси модели в донной области (см. рис. 6,a). Согласно данным [16] в случае сверхзвукового течения ламинаризация начинается на границах струи и, по-видимому, распространяется вдоль характеристик в ядро потока (см. рис. 5,a).

Таким образом, на основании экспериментальных данных и расчетных оценок можно сделать вывод, что в рассматриваемых условиях (при подводе массы в донную область через проницаемую пористую поверхность и обдуве сверхзвуковым потоком) в донной области возникает сложное течение с локализованной сверхзвуковой зоной.

Заключение. Выполнены экспериментальное и численное исследования аэродинамических характеристик тела вращения типа конус — цилиндр с газопроницаемой поверхностью при наличии поверхностного массообмена в условиях обдува сверхзвуковым потоком при $M_h = 3 \div 6$.

Показано, что в случае вдува газа в донный торец при относительных расходах порядка 5÷6% в донной области возникает зона сверхзвукового течения, замыкаемая скачками, взаимодействующими нерегулярным образом. В результате за прямым скачком уплотнения образуется зона дозвукового течения. Внутри зоны сверхзвукового течения замечена особенность, по-видимому, обусловленная процессом ламинаризации возмущенного потока, образующегося при слиянии множества струек, истекающих из пористой структуры.

ЛИТЕРАТУРА

- 1. **Харченко В. Н.** Влияние интенсивного поперечного потока массы на сопротивление конуса в гиперзвуковом потоке // Изв. АН СССР. Механика жидкости и газа. 1969. № 6. С. 140–143.
- 2. Харченко В. Н. Экспериментальное исследование обтекания острых и затупленных конусов гиперзвуковым потоком гелия при наличии сильного вдува // Изв. АН СССР. Механика жидкости и газа. 1972. № 6. С. 149–153.
- 3. Коваль М. А., Стулов В. П., Швец А. И. Экспериментальное исследование сверхзвукового обтекания затупленных тел с сильным распределенным вдувом // Изв. АН СССР. Механика жидкости и газа. 1978. № 3. С. 84–95.
- 4. **Тейлор Т., Массон Б., Фостер Р.** Сверхзвуковое обтекание конуса конечных размеров при интенсивном вдуве газа через его поверхность // Ракет. техника и космонавтика. 1969. № 7. С. 65–71.
- 5. Антонов В. А., Гришин А. М. Исследование аэродинамики осесимметричных тел в сверхзвуковом потоке при наличии локализованного вдува // ПМТФ. 1982. № 4. С. 86–92.
- Антонов В. А., Гришин А. М., Пахомов Ф. М. Влияние угла атаки на сверхзвуковое обтекание осесимметричных затупленных тел при наличии вдува с поверхности // Изв. АН СССР. Механика жидкости и газа. 1987. № 5. С. 95–101.
- Фомин В. М., Запрягаев В. И., Локотко А. В. и др. Аэродинамические характеристики тела вращения с газопроницаемыми участками поверхности // ПМТФ. 2010. Т. 51, № 1. С. 79–88.
- 8. Абрамович Г. Н. Прикладная газовая динамика. М.: Наука, 1969.
- 9. Захарченко В. Ф., Карданов Ю. Х. Донное давление тел вращения при вдуве газа через их поверхность в сверхзвуковой поток // Изв. АН СССР. Механика жидкости и газа. 1983. № 3. С. 163–167.
- 10. **Чжен П.** Отрывные течения. М.: Мир, 1973. Т. 3.
- 11. Сидняев Н. И. Аэродинамические характеристики гиперзвуковых летательных аппаратов с поверхностным массообменом // Мат. моделирование. 2008. Т. 20, № 6. С. 23–34.
- Сидняев Н. И. Исследование аэродинамических характеристик тел вращения с проницаемым наконечником при обтекании гиперзвуковым потоком // ПМТФ. 2007. Т. 48, № 2. С. 19–26.
- 13. Швец А. И. Газодинамика ближнего следа / А. И. Швец, И. Т. Швец. Киев: Наук. думка, 1976.
- 14. Шрив Р. Сверхзвуковой поток из пористой металлической пластины // Ракет. техника и космонавтика. 1968. № 4. С. 235–236.
- Авдуевский В. С. Газодинамика сверхзвуковых неизобарических струй / В. С. Авдуевский,
 Э. А. Ашратов, А. В. Иванов, У. Г. Пирумов. М.: Машиностроение, 1989.
- 16. **Ковальногов Н. Н.** Прикладная механика жидкости и газа. Ульяновск: Ульян. гос. техн. ун-т, 2010.

Поступила в редакцию 5/IX 2011 г.