УДК 536.1:536.46

СИНТЕЗ КОМПОЗИТОВ ИЗ ПОРОШКОВЫХ СМЕСЕЙ (Ti, C, AI) В УСЛОВИЯХ КОНТРОЛИРУЕМОГО НАГРЕВА

Н. В. Букрина, А. В. Барановский*

Институт физики прочности и материаловедения СО РАН, 634055 Томск, Россия * Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия E-mails: bookr81@mail.ru, nigalisha@gmail.com

Представлены результаты экспериментального исследования синтеза композита из порошковых смесей в режиме теплового взрыва. Сформулирована математическая модель процесса инициирования реакции, в которой учитываются основные физико-химические явления, приводящие к изменению фазового состава прессовки. Показано, что результаты моделирования качественно согласуются с экспериментальными данными.

Ключевые слова: высокотемпературный синтез, тепловой взрыв, математическое моделирование.

DOI: 10.15372/PMTF20190418

Введение. Объемный синтез композитного материала может быть осуществлен в условиях контролируемого нагрева. Такой процесс, происходящий при наличии экзотермических реакций в объеме конденсированной фазы, называется динамическим тепловым взрывом [1–3]. Динамический тепловой взрыв представляет собой реакцию в объеме при изменяющейся во времени температуре или изменяющихся во времени условиях теплообмена. Этот термин был введен в работах [4–6]. В режиме теплового взрыва синтезирован, например, однофазный композит NiAl [7]. Показано, что добавление оксида алюминия оказывает значительное влияние на скорость нагрева, свойства синтезированных продуктов и процесс горения. В [7] также определена критическая концентрация оксида, при превышении которой реакция воспламенения не происходит. Методом высокочастотного индукционного нагрева синтезирован композит TiC–Al [8], имеющий достаточно большую плотность. В процессе синтеза размер зерен практически не изменился по сравнению с их размером в исходных порошках. В [8] также показано, что добавление алюминия в состав порошков может препятствовать распространению трещин.

Результаты моделирования синтеза композитов из порошковых смесей [9–11] позволяют изучать необратимые физические процессы и используются при постановке экспериментов и обработке их результатов, а также при определении оптимальных условий получения композита.

В рамках макрокинетического подхода [12–14] при изучении химических реакций наряду с учетом процессов переноса возможен учет разнообразных тепловых и кинетических процессов, оказывающих влияние на структуру и свойства создаваемых материалов. Мате-

Работа выполнена при финансовой поддержке Российского научного фонда (код проекта 17-19-01425). © Букрина Н. В., Барановский А. В., 2019

Рис. 1. Схема установки для синтеза композитов из порошковых смесей при тепловом взрыве:

1 — обечайка, 2 — кожух для предотвращения нагрева, 3 — крышка, 4 — кольцо, 5 — перемычка, 6 — труба, 7 — термозащита, 8 — уплотнительная прокладка, 9 — втулка для охлаждения, 10 — дно, 11 — токоввод, 12 — прижимной болт, 13 — стержни столика, 14 — газовая трубка, 15 — планка столика, 16 — образец, 17 — переходник для газового ввода, 18 — втулка

матическому моделированию свойств различных гетерогенных систем посвящены работы [15–18].

Целью настоящей работы является исследование изменения температуры при синтезе композитов из порошковых смесей в режиме теплового взрыва.

Методика экспериментальных исследований. Установка, разработанная для исследования процесса синтеза композитов из порошковых смесей в режиме теплового взрыва представляет собой изготовленную из нержавеющей стали марки X18H10T цилиндрическую трубу с запаянным дном (рис. 1), внутренний диаметр которой равен 50 мм, толщина стенки — 3,5 мм. Внутренний объем установки составляет 841 см³. Верхняя часть установки закрывается крышкой, в которой расположены два токоввода для контактов термопары BP20-BP5, а также ниппели для подключения газовых патрубков.

Газ подводится к образцу через газовую трубку внутри установки. Выпуск газа происходит через ниппель, находящийся в крышке. Над дном установки на высоте 50 мм на металлических стержнях подвешены планки столика, на который помещается спрессован-

Рис. 2. Схема высокотемпературного синтеза композита из порошковой смеси: 1 — газ, 2 — смесь порошков; $T_{\rm ff}$ — температура в печи, R_1 , R_2 , R_3 — радиус порошковой прессовки, внутренний и внешний радиусы стальной трубы соответственно

ная смесь порошков. Образец представляет собой цилиндр высотой 30 мм и диаметром 20 мм, состоящий из смеси порошков титана марки ТПП-8, углерода марки П-803 и алюминия марки ПА-4. До начала эксперимента осуществляется продувка внутреннего объема установки аргоном в течение 1 мин со скоростью 4 л/мин. При проведении эксперимента поддерживается постоянное избыточное давление инертного газа, составляющее 10⁵ Па.

После загрузки и продувки устройство помещается в предварительно нагретую до температуры 830 °C печь, где происходит постепенный нагрев образца до температуры, при которой начинаются реакции, сопровождающиеся тепловым взрывом. Полученные в эксперименте термограммы имеют вид, характерный для термограмм, полученных при синтезе композита в режиме теплового взрыва [19, 20].

Математическая модель. В соответствии с условиями эксперимента нагрев образца по высоте происходит однородно, поэтому можно ограничиться одномерной постановкой задачи в цилиндрической системе координат. Схема высокотемпературного синтеза композита из порошковой смеси при тепловом взрыве приведена на рис. 2. В математической модели высокотемпературного синтеза химических соединений при тепловом взрыве учитывается нагрев излучением порошковой прессовки в стальной цилиндрической трубе. В кинетических законах для скоростей химических реакций учитывается возможность торможения реакций в слое продуктов синтеза.

Уравнение теплопроводности для смеси порошков имеет вид

$$c_1 \rho_1 \frac{\partial T_1}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} \left(\lambda_1 r \frac{\partial T_1}{\partial r} \right) + W_{ch}.$$
 (1)

В качестве граничных условий используются условие симметрии

$$r = 0: \qquad \frac{\partial T_1}{\partial r} = 0 \tag{2}$$

и условие теплообмена со стенками камеры за счет излучения в соответствии с законом Стефана — Больцмана

$$r = R_1: \qquad \lambda_1 \frac{\partial T_1}{\partial r} = \sigma \varepsilon_1 (T_2^4(R_2, t) - T_1^4). \tag{3}$$

Уравнение теплопроводности для стенок трубы аналогично уравнению (1), но не содержит источник тепла.

Граничные условия на стенках камеры имеют вид

$$r = R_2: \qquad \lambda_2 \frac{\partial T_2}{\partial r} = \sigma \varepsilon_2 (T_1^4(R_1, t) - T_2^4(R_2, t)),$$

$$r = R_3: \qquad \lambda_2 \frac{\partial T_2}{\partial r} = \sigma \varepsilon_2 (T_w^4 - T_2^4).$$
(4)

В (1)–(4) λ_1 , λ_2 — теплопроводность материалов прессовки и стенок камеры, Вт/(см · K); c_1 , c_2 — теплоемкость прессовки и стенок трубы соответственно, Дж/(г · K); ρ_1 , ρ_2 — плотность прессовки и стенок трубы соответственно, г/см³; ε_1 , ε_2 — степень черноты прессовки порошков и стенок камеры; σ — постоянная Стефана — Больцмана, Дж/(с · см² · K⁴); W_{ch} — суммарное тепловыделение в химических реакциях.

Полагаем, что теплофизические свойства камеры и прессовки постоянны, а от температуры зависит только теплопроводность прессовки. Зависимость теплопроводности чистых элементов порошковой прессовки от температуры аппроксимируется полиномом с коэффициентами, выбранными в соответствии со справочными данными [21]:

$$\lambda_{\rm Ti} = 0,368\,73 - 7,738\,86 \cdot 10^{-4}T_1 + 1,059\,11 \cdot 10^{-6}T_1^2 - 4,439\,89 \cdot 10^{-10}T_1^3,$$

$$\lambda_{\rm C} = 0,007\,37 + 3,494\,05 \cdot 10^{-5}T_1 - 1,740\,68 \cdot 10^{-8}T_1^2.$$

Полагаем, что теплофизические свойства прессовки зависят от пористости [22]:

$$c_1\rho_1 = c_{10}\rho_{10}(1-\theta), \qquad \lambda_1 = \lambda_{10}\exp\left(-\frac{1.5\theta}{1-\theta}\right),$$

пористость изменяется в соответствии с кинетическим законом

$$\frac{d\theta}{dt} = k_0 \varphi(\theta) \exp\left(-\frac{E_a}{RT_1}\right).$$

Теплофизические свойства порошковой прессовки определяются по правилу смеси [23]. Карбиды различного состава образуются в результате следующих реакций [24]:

I. $Ti + C \rightarrow TiC$. II. $2Ti + C \rightarrow Ti_2C$. III. $TiC + Ti_2C \rightarrow Ti_3C_2$. IV. $Ti + TiC \rightarrow Ti_2C$.

Скорость химического тепловыделения вычисляется по формуле

$$W_{ch} = \sum_{i=1}^{4} Q_i \varphi_i,$$

где Q_i — тепловыделение в *i*-й реакции, Дж/моль; φ_i — скорости реакций.

Скорости реакций определяются в соответствии с законом действующих масс:

$$\varphi_1 = k_1 Y_1 Y_2, \qquad \varphi_2 = k_2 Y_1^2 Y_2, \qquad \varphi_3 = k_3 Y_3 Y_4, \qquad \varphi_4 = k_4 Y_1 Y_3.$$

Здесь $k_i = k_{0i} \exp(-E_{ai}/RT_1) \exp(-sY)$ (i = 1, ..., 4), моль/(см³·с); множитель $\exp(-sY)$ учитывает торможение реакций в слое продукта; E_{ai} — энергия активации, кДж/моль; R — универсальная газовая постоянная; s — параметр торможения; $Y = Y_3 + Y_4 + Y_5$ суммарная массовая доля продуктов реакции; Y_1 , Y_2 , Y_3 , Y_4 , Y_5 — массовые доли Ti, C, TiC, Ti₂C, Ti₃C₂.

Рис. 3. Расчетная (a) и экспериментальная (b) зависимости температуры в системе от времени:

 $1-r=0,\ 2-r=R_2$

На основе стандартных уравнений баланса запишем формально-кинетические уравнения для определения массовой доли чистых соединений и продуктов синтеза [24]:

$$\frac{dY_1}{dt} = -k_1Y_1Y_2 - 2k_2Y_1^2Y_2 - k_4Y_1Y_3, \qquad \frac{dY_2}{dt} = -k_1Y_1Y_2 - k_2Y_1^2Y_2,$$
$$\frac{dY_3}{dt} = k_1Y_1Y_2 - k_3Y_3Y_4 - k_4Y_1Y_3, \qquad \frac{dY_4}{dt} = k_2Y_1^2Y_2 - k_3Y_3Y_4 + k_4Y_1Y_3, \qquad \frac{dY_5}{dt} = k_3Y_3Y_4.$$

В начальный момент времени температуры прессовки T_1 и стенок камеры T_2 , температура в печи $T_{\rm n}$, а также массовые доли элементов в прессовке заданы:

t = 0: $T_1 = T_2 = T_0$, $T_{\pi} = T_w$, $Y_1 = Y_{01}$, $Y_2 = Y_{02}$.

Тепловая задача решалась численно с использованием неявной разностной схемы и метода прогонки. Уравнения кинетики аппроксимировались явно-неявной разностной схемой. В расчетах приняты значения теплофизических параметров элементов, взятые из справочной литературы [21]. Значения кинетических параметров реакций рассчитаны с помощью известных термодинамических методов. Способ расчета описан в работе [25]. Другие параметры, использованные в расчетах, имели следующие значения [21, 25]: $\lambda_2 = 0.26 \text{ Br/(cm} \cdot \text{K}), c_2 = 0.586 \text{ Дж/(r} \cdot \text{K}), c_{\text{Ti}} = 0.54 \text{ Дж/(r} \cdot \text{K}), c_C = 0.71 \text{ Дж/(r} \cdot \text{K}), \rho_2 = 7.92 \text{ г/см}^3, \rho_{\text{Ti}} = 4.505 \text{ г/см}^3, \rho_C = 2.25 \text{ г/см}^3, E_{aI} = 66,667 \text{ кДж/моль}, E_{aII} = 172,401 \text{ кДж/моль}, E_{aIII} = 104,235 \text{ кДж/моль}, E_{aIV} = 132,845 \text{ кДж/моль}, Q_I = 184\,100 \text{ Дж/моль}, Q_{II} = 120\,600 \text{ Дж/моль}, Q_{III} = -163\,280 \text{ Дж/моль}, Q_{IV} = -63\,900 \text{ Дж/моль}.$

Согласно справочным данным [26] значения степени черноты стали находятся в широком диапазоне. Конкретное значение этой величины в расчетах выбиралось таким образом, чтобы расчетное значение температуры соответствовало данным эксперимента. Влияние этого параметра на температуру не исследовалось. В расчетах значения степени черноты материала камеры и прессовки приняты одинаковыми: $\varepsilon_1 = \varepsilon_2 = 0,4$.

Результаты исследования. Из приведенных ниже результатов исследования следует важность учета распределения температуры в системе. Эволюция температуры в прессовке и стенках камеры при тепловом взрыве представлена на рис. 3. Видно, что в течение нескольких минут нагрев стенок камеры происходит практически по линейному закону (кривая 2 на рис. 3,a), прессовка прогревается медленнее (кривая 1). Начиная

Рис. 4. Распределения температуры по координате r в различные моменты времени: a— в стенках трубы (1 - t = 24 c, 2 - t = 25 c, 3 - t = 26 c, 4 - t = 27 c); 6, 6— в прессовке (1 - t = 380 c, 2 - t = 382 c, 3 - t = 384 c, 4 - t = 386 c, 5 - t = 780 c, 6 - t = 800 c)

с момента времени t = 10 мин в прессовке наблюдается резкое увеличение температуры, что соответствует тепловому взрыву.

В расчетах время воспламенения не соответствует зафиксированному в эксперименте (см. рис. $3, \delta$). Возможно, это обусловлено тем, что параметры, взятые из литературы и используемые в расчете, не в полной мере соответствуют реальным процессам, происходящим при синтезе композитов из порошковых смесей. Также в данной работе не учитывается нагрев вследствие конвекции, который может оказывать значительное влияние на процесс синтеза.

На рис. 4,*a*,*б* показано распределение температуры в системе до теплового взрыва. В стенках камеры и прессовке имеет место градиент температуры. Вследствие высокой теплопроводности стали труба быстро прогревается. В прессовке реакция начинается вблизи нагреваемой поверхности, а затем распространяется вглубь образца. В процессе синтеза характер распределения температуры в прессовке изменяется (рис. 4,*6*). Затем прессовка остывает и градиент температуры увеличивается, что приводит к неоднородному распределению элементов в синтезированном образце.

На рис. 5 показано изменение фазового состава прессовки во времени при тепловом взрыве. Начальная массовая доля элементов в прессовке составляет: Ті — 0,85, С — 0,15. В результате химической реакции образуется карбид титана. Массовая доля остальных

Рис. 5. Зависимости массовых долей Ti (1), C (2), TiC (3) от времени при тепловом взрыве

Рис. 6. Распределение массовой доли TiC по координате *r* в прессовке при тепловом взрыве:

a — 700 c \leqslant t \leqslant 705 c (1 — t = 700 c, 2 — t = 705 c), δ — 770 c \leqslant t \leqslant 790 c (1 — t = 770 c, 2 — t = 775 c, 3 — t = 780 c, 4 — t = 790 c)

образующихся веществ незначительна и на рис. 5 не приводится. На рис. 6 представлено распределение карбида титана по координате r. В начальные моменты времени карбид образуется вблизи нагреваемой поверхности спрессованного образца, а после завершения реакции наибольшая концентрация карбида наблюдается в центральных областях прессовки. Следует отметить, что реакция образования карбида в данных условиях не происходит до конца. Помимо карбида титана в синтезированном образце остаются неизрасходованные титан и углерод.

Выводы. В работе предложена математическая модель синтеза композитов из порошковых смесей в условиях контролируемого нагрева, позволяющая определить фазовый состав синтезированного композита. Предложенная модель может быть использована для определения оптимального режима получения композита с необходимым составом.

Авторы выражают благодарность А. Г. Князевой за полезные замечания, сделанные при обсуждении работы, и О. Н. Крюковой за предоставленные результаты термодинамических расчетов.

ЛИТЕРАТУРА

- 1. Барзыкин В. В., Гонтковская В. Т., Мержанов А. Г., Худяев С. И. К нестационарной теории теплового взрыва // ПМТФ. 1964. № 3. С. 118–125.
- 2. Филимонов В. Ю., Кошелев К. Б. Адиабатический тепловой взрыв в дисперсных конденсированных системах с ограниченной растворимостью реагентов в слое продуктов // Физика горения и взрыва. 2013. Т. 9, № 4. С. 91–100.
- 3. Евстигнеев В. В., Смирнов Е. В., Афанасьев А. В. и др. Динамический тепловой взрыв в механически активированных порошковых смесях // Ползунов. вестн. 2007. № 4. С. 162–167.
- 4. Мержанов А. Г., Струнина А. Г. Закономерности теплового взрыва в условиях нагрева с постоянной скоростью // Науч.-техн. проблемы горения и взрыва. 1965. № 1. С. 59–68.
- 5. Струнина А. Г., Гонтковская В. Т., Мержанов А. Г. Динамические режимы теплового взрыва. 3. Температурное поле при нагреве и вопросы перехода от воспламенения к зажиганию // Физика горения и взрыва. 1965. Т. 1, № 3. С. 36–40.
- Мержанов А. Г. Неизотермические методы в химической кинетике // Физика горения и взрыва. 1973. Т. 9, № 1. С. 4–36.
- Zhu X., Zhang T., Morris V., Marchant D. Combustion synthesis of NiAl/Al₂O₃ composites by induction heating // Intermetallics. 2010. V. 18. P. 1197–1204.
- 8. Shon I.-J. Simultaneous synthesis and consolidation of nanocrystalline Al–TiC composite by high-frequency induction heating // Ceramics Intern. 2016. V. 42. P. 15113–15118.
- Lapshin O. V., Smolyakov V. K. Thermal explosion in mechanically activated Ti–C system // Intern. J. Self-Propagat. High-Temperature Synthesis. 2016. V. 25, N 3. P. 135–138.
- 10. Некрасов Е. А., Тимохин А. М., Пак А. Т. К теории безгазового горения с фазовыми превращениями // Физика горения и взрыва. 1990. Т. 26, № 5. С. 79–85.
- 11. Стельмах Л. С., Жиляева Н. Н., Столин А. М. Математическое моделирование тепловых режимов СВС-компактирования // Инж.-физ. журн. 1992. Т. 63, № 5. С. 623–629.
- Семенов Н. Н. Тепловая теория горения и взрывов // Успехи физ. наук. 1940. Т. 23, вып. 3. С. 251–292.
- 13. Зельдович Я. Б. Теория горения и детонации. М.: Изд-во АН СССР, 1944.
- 14. **Франк-Каменецкий Д. А.** Диффузия и теплопередача в химической кинетике. М.: Изд-во АН СССР, 1947.
- 15. Смоляков В. К. Влияние структурных изменений на горение прессовок металлических порошков в газе // Физика горения и взрыва. 1988. Т. 24, № 3. С. 18–26.
- 16. **Лапшин О. В., Овчаренко В. Е.** Влияние стадии нагрева на условия воспламенения порошковой смеси никеля с алюминием // Физика горения и взрыва. 2000. Т. 36, № 5. С. 22–26.
- 17. Чащина А. А., Князева А. Г. Режимы распространения твердофазной реакции в щели между двумя инертными пластинами // Физ. мезомеханика. 2004. Т. 7, № S1-1. С. 82–88.
- 18. Прокофьев В. Г., Смоляков В. К. Нестационарные режимы горения безгазовых систем с легкоплавким инертным компонентом // Физика горения и взрыва. 2002. Т. 38, № 2. С. 21–25.
- 19. Корчагин М. А. Тепловой взрыв в механически активированных низкокалорийных составах // Физика горения и взрыва. 2015. Т. 51, № 5. С. 77–86.
- 20. Корчагин М. А., Аввакумов Е. Г., Лепезин Г. Г., Винокурова О. Б. Тепловой взрыв и самораспространяющийся высокотемпературный синтез в механически активированных смесях SiO₂–Al // Физика горения и взрыва. 2014. Т. 50, № 6. С. 21–27.
- 21. **Физические** величины: Справ. / Под ред. И. С. Григорьева, Е. З. Мейлихова. М.: Энергоатомиздат, 1991.

- Knyazeva A. G., Buyakova S. P. Mathematical model of three-layer composite synthesis during hot isostatic pressing // AIP Conf. Proc. 2016. V. 1783. P. 020092-1-020092-4. DOI: 10.1063/1.4966385.
- Мэттьюз Ф. Композитные материалы. Механика и технология / Ф. Мэттьюз, Р. Ролингс. М.: Техносфера, 2004.
- 24. Князева А. Г., Коростелева Е. Н., Крюкова О. Н. и др. Физические закономерности синтеза порошков композитов на основе титана для аддитивных технологий // Машиностроение: сетевой электрон. науч. журн. 2017. Т. 5, № 4. С. 3–13.
- 25. Крюкова О. Н., Князева А. Г. Формально-кинетические параметры реакций при осаждении карбидных покрытий на Fe и Si // Изв. вузов. Физика. 2014. Т. 57, № 9/3. С. 113–117.
- 26. Михеев М. А. Основы теплопередачи. М.: Энергия, 1977.

Поступила в редакцию 1/X 2018 г., после доработки — 14/I 2019 г. Принята к публикации 28/I 2019 г.