УДК 541.128

Роль синглетного молекулярного кислорода в реакциях окисления толуола на ванадий-молибденовых каталитических системах

М. В. ВИШНЕЦКАЯ¹, И. С. ТОМСКИЙ²

¹Российский государственный университет нефти и газа им. И. М. Губкина, Ленинский проспект, 65, Москва 119991 (Россия)

E-mail: mvvishnetskaya@mail.ru

²Институт проблем нефти и газа Сибирского отделения РАН, ул. Октябрьская, 1, Якутск 677980 (Россия)

E-mail: istomsky@yandex.ru

(Поступила 04.08.10; после доработки 26.04.11)

Аннотация

Установлено, что катализаторы на основе оксидов ванадия и молибдена проявляют активность в генерации синглетной формы молекулярного кислорода. На смешанных оксидах состава $xV_2O_5 \cdot yMoO_3$ основной реакцией является не одноэлектронное окисление, а присоединение по двойной связи, причем предпочтительно в *мета*-положение. Показано, что окисление толуола на индивидуальных оксидах ванадия и молибдена протекает по независимым маршрутам: на V_2O_5 окисление реализуется преимущественно по бензольному кольцу, в то время как на MoO_3 – по боковой цепи.

Ключевые слова: синглетный кислород, толуол, гетерогенный катализ, оксиды металлов

введение

При рассмотрении механизмов прямого окисления углеводородов молекулярным кислородом [1-4] ключевую роль играет природа активных частиц, принимающих участие в окислительных превращениях. Исследования в этом направлении проводились, главным образом, в условиях низкотемпературного гомогенного катализа, тогда как наиболее важные промышленные процессы проводятся при повышенных температурах и в присутствии гетерогенных катализаторов.

К настоящему времени экспериментальный и теоретический материал по селективному парофазному каталитическому окислению толуола, а также данные о способности катализаторов генерировать активные формы молекулярного кислорода свидетельствуют о наличии определенных связей между ними. В особенности это касается гетерогенных катализаторов на основе таких переходных металлов, как ванадий и молибден. Однако до настоящего времени систематические исследования природы активных частиц, которые принимают участие в парциальном окислении ароматических углеводородов на гетерогенных катализаторах, не проводились.

Цель данной работы – выявление связи между способностью смешанных оксидов $xV_2O_5 \cdot yMoO_3$ генерировать активную форму молекулярного кислорода 1O_2 и их селективностью в окислении толуола.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Окисление толуола проводили на индивидуальных оксидах ванадия, молибдена и смешанных оксидах $xV_2O_5 \cdot yMoO_3$ (молярные соотношения 3:1, 3:2, 1:1, 2:3, 1:3), а также на механической смеси индивидуальных оксидов ванадия и молибдена в соотношении 1:3. Образцы V_2O_5 и MoO_3 готовили термическим разложением метаванадата и метамолибдата аммония соответственно при 400-500 °C в течение 5 ч. Двойной оксид $xV_2O_5 \cdot yMoO_3$ готовили соосаждением из насыщенного водного раствора метаванадата и метамолибдата аммония, взятых в необходимом соотношении, с последующим термическим разложением (аналогично индивидуальным оксидам). Удельная поверхность приготовленных образцов составляла 5–6 м²/г.

Рентгенограммы образцов получали на приборе ДРОН-3 (Си K_{α} -излучение). Каталитические исследования проводили с реактором проточного типа со стационарным слоем катализатора в интервале температур 300–500 °С при атмосферном давлении и объемной скорости подачи сырья 0.5-1 ч⁻¹. Образцы оксидов металлов (0.25-0.5 г) помещали в реактор в смеси с измельченным кварцем (1.5 м³/г). Толуол в реактор подавался в смеси с воздухом при молярном соотношении толуол : кислород, равном 1 : 10 и 1 : 6; общая скорость подачи паровоздушной смеси составляла 90 мл/мин.

Жидкие продукты реакции анализировали на хроматографе Cambridge GC-95, снабженном ПИД, капиллярной колонкой (50 м) с фазой FFAP. Газообразные продукты анализировали на хроматографе "Кристаллюкс-4000M", снабженном катарометром, набивной колонкой (5 м) с активированным углем. Анализ малеинового ангидрида и бензойной кислоты проводили растворением полученных продуктов в воде и последующим титрованием на титраторе АТП-02 раствора 0.1 M NaOH.

Окисление толуола кислородом воздуха на исследуемых катализаторах протекало с образованием бензальдегида, малеинового ангидрида (МА) и оксидов углерода (CO_x). Помимо этих продуктов зарегистрировано образование небольших количеств (менее 1 мас. %) гидрохинона, антрахинона и др. Для установления вклада гидрохинона как основного промежуточного продукта, образующего МА, приготовлены и исследованы реакционные смеси с массовой долей гидрохинона 2–10 %. По данным материального баланса по углероду, потери не превышали 2 мас. %.

Количество ${}^{1}\text{O}_{2}$ определяли струевым методом при остаточном давлении воздуха, примерно равном 1 кПа, и линейной скорости потока 260 см/с [5]. Навеску катализатора помещали в кварцевый реактор, обладающий малой тепловой инерцией. На выходе из реактора воздух охлаждался до комнатной температуры и поступал в ячейку, где активный кислород селективно реагировал с хемилюминесцентным красителем. Интенсивность хемилюминесценции регистрировали фотоумножителем ФЭУ-79.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 1 приведены данные по конверсии толуола, выходам МА и БА в зависимости от состава $xV_2O_5 \cdot yMoO_3$ при различных температурах, а также данные по генерации синглетного кислорода. Видно, что для оксида ванадия выход МА максимален при 400 °C, далее он снижается. Выход бензальдегида для V_2O_5 максимален при 300 °C, а при 500 °C он равен нулю. На оксиде молибдена с повышением температуры выход бензальдегида воз-

ТАБЛИЦА	1
---------	---

Сводные данные по окислению толуола $x \mathrm{V}_2\mathrm{O}_5 \cdot y\mathrm{MoO}_3$ при различных соотношениях x:y

x : y	Количество ¹ О ₂ (N), 10 ¹³ молекул/г		Степень конверсии толуола, мол. %		Выход, мол. %							
					Малеиновый альдегид			Бензальдегид				
	Температура, °С											
	300	400	500	300	400	500	300	400	500	300	400	500
1:0	1.1	2.0	4.6	3.1	89.9	89.5	0	30.9	29.0	3.1	0	0
3:1	0	5.1	18.5	8.5	89.3	97.2	0	32.5	16.0	8.5	0	0
3:2	5.5	6.7	15.0	17.8	99.9	100.0	0	33.9	18.5	17.8	7.1	0
1:1	2.3	8.0	14.2	24.3	99.8	100.0	0	47.8	26.9	24.3	16.4	0
2:3	7.0	3.9	8.5	20.0	100.0	89.8	0	36.4	34.6	20.0	8.4	0
1:3	5.0	3.2	3.8	19.2	42.9	82.0	0	11.5	21.4	19.2	8.1	6.7
0:1	0	0	0.1	0.2	6.6	39.0	0	0	0	0.2	3.8	30.3

растает. Образования МА на этом катализаторе не происходило.

Таким образом, окисление толуола на индивидуальных оксидах протекает по различным маршрутам: на V_2O_5 окисление реализуется преимущественно по бензольному кольцу, а на MoO_3 – по боковой цепи.

Включение V_2O_5 в MoO₃ во всех случаях приводит к повышению степени конверсии толуола. При этом по степени конверсии образцы с содержанием оксида ванадия более 50 мол. % фактически не отличаются от образцов чистого V_2O_5 . По данным табл. 1, включение уже 25 мол. % оксида ванадия способствует значительному увеличению выхода бензальдегида при низких температурах. Зависимость выхода бензальдегида от содержания MoO₃ в смешанных оксидах носит экстремальный характер: максимальный выход наблюдается при 300 и 400 °C для образца, содержащего 50 мол. % MoO₃, а при 500 °C – для образца с молярной долей MoO₃ 100 %.

Данные РФА образцов $xV_2O_5 \cdot yMoO_3$ указывают на образование многофазовых систем. Так, для образца с содержанием 25 мол. % V_2O_5 выявлены три фазы с преобладанием фазы MoO_3 . После повышения содержания V_2O_5 до 40 мол. % наблюдаются четыре фазы, доминирующая фаза – V_2MoO_8 . В случае образца с содержанием V_2O_5 50 мол. % начинает формироваться фаза V_2O_5 , вклад которой возрастает по мере увеличения содержания оксида ванадия, причем интенсивность линий, соответствующих фазе V_2MoO_8 , ослабевает. Для образца с 75 мол. % V_2O_5 основной фазой становится уже V_2O_5 .

Для уточнения влияния фазового состава приготовлен образец механической смеси индивидуальных оксидов ванадия и молибдена (75 мол. % MoO₃). Степень конверсии толуола на образце механической смеси при 400 °C составляет 15 мол. %, а при 500 °C – 70 мол. %. Эти данные меньше по сравнению со степенью конверсии на соосажденном образце, но на 10 мол. % превышают величину, рассчитанную по аддитивной схеме из данных для индивидуальных MoO₃ и V₂O₅. Несмотря на меньшую степень конверсии толуола на механической смеси, выход бензальдегида для нее в шесть раз выше по сравнению с соосажденным образцом и полностью совпадает с результатами для индивидуального MoO₃. Необходимо отметить, что характер зависимости выхода бензальдегида от температуры в точности совпадает с таковым для индивидуального МоО₃ и противоположен поведению соосажденного образца. Выход МА (500 °C) оказался одинаковым для образцов, полученных соосаждением и механическим смешением. Наибольшее различие наблюдается при сравнении выходов СО_r: на механической смеси даже при 500 °C реакция полного окисления протекает лишь на 14 мол. %, в то время как на соосажденном образце - на 54 мол. %. Это существенно превышает расчетную аддитивную оценку, составляющую всего 22 мол. %. Необходимо также подчеркнуть, что нами приведены значения выхода СО_{*x*} в реакции полного окисления, т. е. с учетом оксида, выделяющегося при образовании МА.

Однако данные рентгенофазового анализа и ЭПР не могут объяснить различий в маршрутах окисления на оксидных ванадий-молибденовых катализаторах. По-видимому, в образовании МА и бензальдегида принимают участие разные окислители.

Предположение об участии синглетной формы молекулярного кислорода в реакциях окисления, протекающих на оксидных катализаторах, впервые было сделано авторами [6]. Позже [7] была обнаружена способность V₂O₅ и MoO₃ генерировать ¹O₂. Однако совершенно различная химическая природа этих оксидов не позволила сформировать единого мнения о механизмах такой генерации.

В табл. 1 приведены данные хемилюминесцентного определения количества генерируемого в газовую фазу ${}^{1}\text{O}_{2}$ с $x\text{V}_{2}\text{O}_{5} \cdot y\text{MoO}_{3}$. Наибольшее количество ¹О₂ генерируется на $V_2O_5 \cdot MoO_3$ и V_2O_5 , а на MoO_3 синглетный кислород не обнаружен. По данным ЭПР [8], с повышением содержания оксида ванадия возрастает и доля парамагнитных центров V⁴⁺. Ионы VO²⁺ могут образоваться, скорее всего, при восстановлении V⁵⁺ аммиаком в процессе термического разложения метаванадата аммония. С другой стороны, ванадий (V₂O₅) легко переходит в четырехвалентное состояние, при этом выделяется синглетный кислород. Переход Мо⁶⁺ в Мо⁵⁺ в спектрах ЭПР не зарегистрирован, что соответствует данным хемилюминесцентного анализа по генерации синглетного кислорода с MoO₃.

При очень малом содержании оксида ванадия (2 мол. %) все ионы V⁴⁺ изолированы, и такие образцы не проявляют активности в генерации синглетного кислорода и образовании МА. Следовательно, для образования МА при окислении толуола необходимы именно ассоциаты оксида ванадия, которые формируются при содержании оксида ванадия более 40 мол. %.

Данные по количеству образовавшихся оксидов углерода СО, в реакции полного окисления (т. е. с учетом оксида, выделяющегося при образовании МА) показывают, что введение небольших количеств оксида молибдена (до 25 мол. %) усиливает реакции полного окисления, характерные для индивидуального V₂O₅. Можно предположить, что увеличение количества СО_r, т. е. полное окисление МА, при увеличении содержания оксида ванадия до 40 мол. % связано с переходом изолированных центров в ассоциаты. Последующее уменьшение концентрации СО_r может быть обусловлено появлением центров V⁵⁺ и увеличением их концентрации. Не исключено, что именно с этим обстоятельством связано повышение количества синглетного кислорода, генерируемого с поверхности смешанных оксидов, по сравнению с чистым оксидом ванадия.

Полученные результаты однозначно указывают на ключевую роль фазового состава катализаторов при окислении толуола. Судя по одинаковому выходу МА, генерацию синглетного кислорода осуществляют, по-видимому, в основном фазы V_2O_5 и VO₂, а присутствие фазы V_2MOO_8 содействует полному окислению субстратов. Возможно, десорбция субстратов с V₂MoO₈ по каким-то причинам затруднена, что и приводит к их полному окислению.

Сопоставив эти данные с результатами каталитических превращений, можно сделать вывод о том, что образование МА и бензальдегида протекает по различным независимым маршрутам: в образовании бензальдегида участвует триплетная форма кислорода, в то время как для получения МА необходима синглетная форма.

Обычно полагают [1-3], что толуол сначала окисляется до бензальдегида и затем до бензойной кислоты. Далее по реакции декарбоксилирования образуется бензол, который через гидрохинон дает МА и оксиды углерода. Нам было важно установить, действует ли такой механизм, предложенный для серебряного катализатора, и на рассмотренных системах. Во-первых, необходимо отметить отсутствие в продуктах реакции даже следов бензола. Во-вторых, гидрохинон при потенциометрическом титровании действительно обнаружен в следовых количествах. Следовательно, при его добавлении в реакционную смесь можно было ожидать увеличения выхода МА, однако этого не происходило. Отсюда следует, что окисления толуола до МА по предлагаемому в литературе механизму не происходит, и гидрохинон является конечным, а не промежуточным продуктом окисления толуола.

На основании полученных данных предложена схема окисления толуола на ванадийсодержащих оксидных катализаторах (схема 1).

Схема 1.

Рис. 1. Зависимость выхода мале
инового ангидрида (МА) от количества генерируемого ${}^{1}O_{2}$
на $xV_{2}O_{5}\cdot yMoO_{3}$ при 400 °C.

Первые две стадии, приводящие к образованию бензальдегида и бензойной кислоты, протекают независимо от способности катализатора генерировать ${}^{1}O_{2}$. Тогда при относительно низкой активности катализатора в генерации синглетной формы кислорода бензальдегид и бензойная кислота далее окисляются лишь в незначительной степени, т.е. будут основными продуктами окисления толуола. Но в случае большого количества генерированного ${}^{1}O_{2}$ окисление протекает более глубоко, и основным продуктом становится MA, а далее и CO_x.

На рис. 1. приведена зависимость выхода МА от количества генерируемого ${}^{1}O_{2}$ на $xV_{2}O_{5} \cdot yMoO_{3}$. На основании этих данных можно сделать вывод, что оптимальное количество ${}^{1}O_{2}$ для образования МА составляет $4.2 \cdot 10^{13}$ молекул/г. Для ${}^{1}O_{2}$ в настоящее время предполагается два реакционных маршрута: одноэлектронное окисление [9, 10] и присоединение по π -связи с образованием пероксидов [12].

Для толуола одноэлектронное окисление приводит к образованию катион-радикала, известного как сильнейшая СН-кислота в ацетонитриле, р $K_a \approx 58$ [13]). Следующим этапом будет депротонирование катион-радикала толуола и появление радикала толуола:

Далее радикал толуола может реагировать с триплетной формой кислорода и образовывать бензальдегид:

В случае, если бы это был основной маршрут реакции ${}^{1}O_{2}$, то выход бензальдегида должен быть симбатен количеству синглетной формы кислорода. Однако экспериментальные данные этот тезис не подтверждают, поскольку на $V_{2}O_{5}$ и на $xV_{2}O_{5} \cdot yMoO_{3}$ с повышением температуры выход бензальдегида уменьшается, несмотря на увеличение количества ${}^{1}O_{2}$.

Таким образом, для ${}^{1}O_{2}$ на $V_{2}O_{5}$ и $xV_{2}O_{5} \cdot yMoO_{3}$ основным маршрутом взаимодействия с молекулой толуола является присоединение по двойной связи, причем в основном в *мета*-положение. Вопрос о причине такого предпочтения в реакционном маршруте ${}^{1}O_{2}$ остается открытым, и ответ на него могут дать квантово-химические расчеты.

ЗАКЛЮЧЕНИЕ

Показано, что при окислении толуола молекулярным кислородом образование МА и бензальдегида протекает по независимым маршрутам: в образовании бензальдегида участвует кислород, который находится на поверхности катализатора, в то время как для получения МА необходима синглетная форма. Установлено, что генерацию синглетного кислорода осуществляют в основном фазы V₂O₅ и VO₂, а присутствие фазы V₂MoO₈ содействует полному окислению субстратов.

СПИСОК ЛИТЕРАТУРЫ

- 1 Zhu J., Anderson S. T. L. // J. Chem. Soc. Faraday Trans. 1. 1989. Vol. 85. P. 3629.
- 2 Zhu J., Andersson S. T. L. // Appl. Catal. 1989. Vol. 53. P. 251.
- 3 Ponzi M., Duschatzky C., Carrascull A., Ponzi E. // Appl. Catal. A: Gen. 1998. Vol. 169. P. 373.
- 4 Yan Zh., Andersson S. T. L. // Appl. Catal. 1990. Vol. 66. P. 149.
- 5 Романов А. Н., Руфов Ю. Н. // Журн. физ. химии. 1998. Т. 72. С. 2094.
- 6 Dmuchovsky B., Freerks M. C., Pierron E. D., Munch R. H., Zienty F. B. // J. Catal. 1965. Vol. 4. P. 291.

- Завьялов С. А., Мясников И. А., Завьялова Л. М. // Докл. АН СССР. 1982. Т. 284. С. 378.
 Томский И. С., Вишнецкая М. В., Кокорин А. И. //
- 8 Томский И. С., Вишнецкая М. В., Кокорин А. И. // Хим. физика. 2008. Т. 27, № 7. С. 67.
- 9 Белецкая И. П., Махоньков Д. И. // Усп. химии. 1981. Т. 50, № 6. С. 1007.
- 10 Kochi J. K., Tang R. T., Bernath T. // J. Am. Chem. Soc. 1973. Vol. 95. P. 7114.
- 11 Stockmann M., Konietzni F., Notheis J. U., Vossc J., Keunec W., Maier W. F. // Appl. Catal. A: Gen. 2001. Vol. 208. P. 343.
- 12 Тодрес З. А. Ион-радикалы в органическом синтезе. М.: Химия, 1986. 238 с.