2016. Том 57, № 1

Январь – февраль

C. 145 – 150

УДК 548.736

РЕНТГЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ ПРЕВРАЩЕНИЯ [Cu(NH₃)₄](ReO₄)₂ В [Cu(NH₃)₂(µ-ReO₄)₂]_n

С.А. Громилов^{1,2}, А.П. Тютюнник³, Д.А. Пирязев^{1,2}, П.Е. Плюснин^{1,2}, С.В. Коренев^{1,2}

¹Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск, Россия E-mail: grom@niic.nsc.ru

²Новосибирский национальный исследовательский государственный университет, Россия ³Институт химии твердого тела УрО РАН, Екатеринбург, Россия

Статья поступила 27 февраля 2015 г.

Проведено *in situ* рентгенографическое исследование комплексной соли [Cu(NH₃)₄](ReO₄)₂ при нагревании до 500 К. Показано, что продукт полученный при этой температуре представляет собой новую кристаллическую фазу [Cu(NH₃)₂(μ -ReO₄)₂]_n: a = 14,7523(3), b = 5,8559(1), c = 5,6290(1) Å, $\beta = 111,387(1)^{\circ}$, V = 452,799(2) Å³, пр. гр. C2/m, Z = 2, $d_x = 4,386$ г/см³. Координационный полиэдр атома Cu — искаженный октаэдр, образованный двумя атомами азота (Cu—N 2,195 Å) и четырьмя атомами кислорода (Cu—O 2,306 Å). Структура построена из бесконечных цепочек [Cu(NH₃)₂(μ -ReO₄)₂]_n, кратчайшие контакты между которыми N(H)...O 2,82 Å.

DOI: 10.15372/JSC20160117

Ключевые слова: медь, перренат, термолиз, рентгенофазовый анализ, рентгеноструктурный анализ, кристаллохимия.

Термическое разложение двойных комплексных солей открывает широкие возможности для синтеза металлических и оксидных продуктов в нанокристаллическом состоянии [1—7]. Как показывают эти исследования, фазовым составом конечных продуктов можно активно управлять путем подбора условий (атмосфера, температура, скорость нагревания и охлаждения). Это еще в большей мере относится и к промежуточным продуктам, на различных этапах может быть получен широкий спектр фаз, включая и аморфные (например, [8]). В ряде случаев промежуточные продукты не поддаются рентгенографической идентификации, т.е. можно говорить об образовании новых фаз. Описание кристаллической структуры таких фаз осложняется тем, что они являются поликристаллическими. Цель настоящей работы состояла в изучении одного из таких продуктов, который был получен при нагревании комплексной соли [Cu(NH₃)₄](ReO₄)₂. Кристаллическая структура этой соли была изучена в работах [9, 10].

Рентгенографическое исследование продукта, полученного при термическом разложении $[Cu(NH_3)_4](ReO_4)_2$ в атмосфере гелия (513 K, скорость нагревания 10 K/мин), показало, что образуется не идентифицированная кристаллическая фаза. Был установлен устойчивый вид дифрактограмм образцов, полученных в нескольких параллельных опытах. Кроме этого, аналогичная фаза может быть получена при нагревании $[Cu(NH_3)_4](ReO_4)_2$ до 500 K на воздухе или в атмосфере водорода. Согласно данным термогравиметрического исследования (термовесы TG 209 F1 Iris® фирмы NETZSCH), потеря веса навески исходной соли соответствует потере двух молекул аммиака, что хорошо согласуется с данными элементного анализа.

[©] Громилов С.А., Тютюнник А.П., Пирязев Д.А., Плюснин П.Е., Коренев С.В., 2016

1	17 71	1 1	2 (9) (3) (9)		
Температура, К	300	350	390	400	
<i>a</i> , Å	6,5286(16)	6,5404(5)	6,5565(9)	6,544(7)	
<i>b</i> , Å	6,8411(17)	6,8735(5)	6,9135(11)	6,912(8)	
<i>c</i> , Å	7,5106(18)	7,5332(7)	7,5476(10)	7,577(6)	
α, град.	67,372(8)	67,211(3)	67,346(7)	66,96(3)	
β, град.	79,896(9)	79,896(9)	79,781(6)	79,90(4)	
ү, град.	70,958(9)	71,093(3)	71,205(7)	71,56(4)	
<i>V</i> , Å ³	292,20(12)	294,85(4)	298,33(8)	298,7(6)	
Пр. группа	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	<i>P</i> -1	
Ζ	1	1	1	1	
$d_{\rm выч}, \Gamma/{\rm cm}^3$	3,592	3,560	3,518	3,514	
μ, мм ⁻¹	22,493	22,291	22,031	22,007	
<i>F</i> (000)	283	283	283	283	
Интервал Ө, град.	3,37—32,93	3,30—30,59	2,93—31,20	3,29—31,43	
Диапазон индексов Мил-	$-9 \le h \le 5,$	$-9 \le h \le 7,$	$-7 \le h \le 8$,	$-9 \le h \le 6,$	
лера	$-9 \le k \le 10,$	$-10 \le k \le 6,$	$-9 \le k \le 6,$	$-10 \le k \le 10,$	
	$-11 \le l \le 8$	$-8 \le l \le 11$	$-9 \le l \le 10$	$-10 \le l \le 7$	
Число измер. / независ. рефлексов	2619 / 1834	2873 / 1508	2051 / 1365	2560 / 1493	
Число независ. рефлексов с $I \ge 2\sigma(I)$	1675	1381	1161	1316	
$R_{\rm uhterp}, \%$	3,11	4,80	2,78	3,35	
$R_1(wR_2), \%$	4,76 (12,38)	3,40 (7,54)	4,94 (10,33)	6,12 (16,91)	
$R_1(wR_2)$ для $I ≥ 2\sigma(I)$, %	4,36 (11,94)	3,11 (7,31)	4,07 (9,89)	5,62 (16,53)	
S по F^2	1,057	1,066	1,114	1,042	
Cu—N, Å	2,030(7), 2,010(9)	2,029(5), 2,000(6)	2,041(10), 2,046(9)	2,014(13), 2,024(12)	
∠N—Си—N, град.	88,1(3)	88,0(2)	88,8(4)	88,0(6)	
Re—O, Å 1,703(8)—1,721		1,703(6)—1,724(5)	1,688(10)—1,719(11)	1,676(14)—1,698(14)	
∠О—Re—О, град.	107,4(4)—110,9(5)	107,6(3)—111,0(4)	107,9(5)—111,3(6)	105,0(8)—112,2(9)	
CuO, Å	2,506(7)	2,508(6)	2,528(9)	2,539(12)	

Кристаллоструктурные характеристики [Cu(NH₃)₄](ReO₄)₂

Элементный анализ образцов на содержание H и N выполнен на приборе Euro EA 3000. Анализ на сумму металлов проводили, восстанавливая образец, помещенный в кварцевую лодочку в реакторе в токе водорода при 873 K с последующей продувкой реакционного объема гелием. Для $CuRe_2H_6N_2O_8$ (598,02 а.е.м.) вычислено, %: H 1,01, N 4,68, Cu+Re 72,90. Найдено, %: H 1,1, N 4,7, Cu+Re 72,7.

Инфракрасные спектры снимали *ex situ* на ИК-Фурье спектрометре Scimitar FTS 2000 в области волновых чисел 400—4000 см⁻¹ в таблетках КВг. В ИК спектрах продуктов, нагретых до 500 К, наблюдается появление полосы колебаний при 510—512 см⁻¹, что свидетельствует о наличии связи Си—О.

Для изучения процесса образования новой фазы были проведены высокотемпературные *in situ* исследования мононокристалла [Cu(NH₃)₄](ReO₄)₂ (дифрактометр Bruker X8 APEX, MoK_{α}-излучение, $\lambda = 0,71073$ Å, графитовый монохроматор, азотная температурная приставка Cryostream 800 Plus). Установлено, что исходная структура сохраняется вплоть до 400 K, при этой температуре монокристаллы сохранялись в течение 3—4 ч. Рентгеноструктурные данные, полученные в интервале 300—400 K, представлены в табл. 1. Там же приведены значения основных межатомных расстояний и валентных углов. Уточнение проведено по комплексу про-

Puc. 1. Дифрактограммы (Bruker X8 APEX, MoK_α-излучение, Cryostream 800 Plus), полученные при нагревании поликристаллического образца [Cu(NH₃)₄](ReO₄)₂ до 440 (*a*) и 480 K (*б*). Полнопрофильное уточнение выполнено с использованием программы Powder Cell [4].

Вертикальными штрихами возле горизонтальной оси показаны теоретические положения дифракционных рефлексов, внизу — разностная кривая

грамм SHELXL-97 [11]. Положения атомов Н локализованы геометрически и уточнены в приближении жесткого тела ("метод наездника").

Для выяснения деталей процесса превращения кристаллов [Cu(NH₃)₄](ReO₄)₂ было проведено *in situ* исследование поликристаллов в интервале 390—500 К с шагом 10 К. Образец был приготовлен в капилляре. Установлено, что в условиях эксперимента соль претерпевает превращение без аморфизации в интервале 440—500 К. Полученные дифрактограммы показаны на рис. 1: первая (440 K) соответствует исходной [Cu(NH₃)₄](ReO₄)₂, вторая (480 K) хорошо согласуется с дифрактограммой Mn(ReO₄)₂·2H₂O [12], что позволило в дальнейшем использовать эту структуру [14, № 402992; 15] в качестве стартовой модели.

Для получения новой фазы в достаточном количестве навеску [Cu(NH₃)₄](ReO₄)₂ нагревали до 500 К в атмосфере гелия со скоростью 10 К/мин. Далее рентгенографическое исследование проводили *ex situ* при комнатной температуре (дифрактометр STOE STADI-P, Cu K_{α_1} -излучение, геометрия "на прохождение", позиционно-чувствительный детектор "mini PSD", диапазон 5— 120° 20, шаг 0,02° 20, Центр коллективного пользования "Рентгеноструктурный анализ" Института химии твердого тела УрО РАН). В качестве внешнего эталона использовали образец поликристаллического кремния (a = 5,43075(5) Å). Для идентификации возможных примесных фаз использовали базу дифракционных стандартов PDF-2 [12]. Так, по нескольким уширенным пикам было установлено наличие в образце примеси (NH₄)ReO₄ на уровне 2 вес.%.

При проведении рентгеноструктурного анализа использовали программу EXPO 2013 [16]. Полнопрофильное уточнение проведено по программе GSAS [17, 18]. Профиль дифракционных отражений аппроксимировали функцией псевдо-Войта: $I(2\theta) = \eta \cdot L(2\theta) + (1 - \eta) \cdot G(2\theta)$ (η — коэффициент смешения; L и G — функции Лоренца и Гаусса соответственно), а угловую зависимость ширины линий соотношением: (FWHM)² = $Utg^2\theta + Vtg\theta + W$, где FWHM — полная ширина линии на половине максимума. Уровень фона задавали в виде комбинации из пятнадцати полиномов Чебышева. Изотропные тепловые факторы кислорода, азота и водорода были связаны и уточнялись как одна переменная. Атомы водорода были заданы геометрически. Уточнение проведено до $wR_p = 5,17$, $R_p = 3,73$, CHI² = 10,24, $R(F^2) = 3,14$ %. Результат представлен на рис. 2. Кристаллографические характеристики: a = 14,7523(3), b = 5,8559(1), c = 5,6290(1) Å, $\beta = 111,387(1)^\circ$, V = 452,799(2) Å³, пр. гр. C2/m (№ 12), Z = 2, $d_x = 4,386$ г/см³. Координаты базисных атомов и их изотропные тепловые факторы даны в табл. 2. Кристаллоструктурные данные и характеристики уточнения депонированы в Неорганический банк кристаллоструктурных данных ICSD (Fachinformationszentrum Karlsruhe, B-76344 Eggenstein—Leopoldshafen, Germany; e-mail crysdata@fiz-karlsruhe.de) [14] под № 429256.

147

Вертикальными штрихами возле горизонтальной оси показаны теоретические положения дифракционных рефлексов [Cu(NH₃)₂(µ-ReO₄)₂]_n (верхний ряд) и (NH₄)ReO₄ (нижний ряд). Внизу показана разностная кривая

Таблица 2

Атом	x/a	y/b	z/c	$U_{\rm i}/U_{\rm e} \cdot 100$	Атом	x/a	y/b	z/c	$U_{\rm i}/U_{\rm e} \cdot 100$
Re	0,63044(8)	0	0,41311(20)	2,29(18)	O(2)	0,6680(9)	0	0,7388(23)	5,25(28)
Cu	0	0	0	2,06(23)	O(3)	0,7266(8)	0	0,3288(20)	5,25(28)
O(1)	0,0648(5)	0,2667(12)	0,3186(13)	5,25(28)	Ν	0,1253(12)	0	0,8778(28)	5,25(28)

Координаты атомов и их тепловые факторы [Cu(NH₃)₂(µ-ReO₄)₂]_n

Рис. 3. Фрагменты кристаллических структур: бесконечная цепочка $[Cu(NH_3)_2(\mu-ReO_4)_2]_n$ (атомы водорода не показаны) (*a*); координация атома меди в структуре комплексной соли $[Cu(NH_3)_4](ReO_4)_2$ при 300 К (δ) (Cu—N_{cp} 2,015 Å)

Рис. 4. Проекции кристаллической структуры [Cu(NH₃)₂(µ-ReO₄)₂]_n в направлении оси *Y*. Штриховыми линиями показана система контактов между цепочками N(H)...O 2,82 Å

Атом Си находится в центре симметрии (рис. 3, *a*) и координирует два атома азота (Cu—N 2,195(17) Å) и четыре атома кислорода (Cu—O 2,306(7) Å). Для сравнения на рис. 3, *б* показана координация атома Cu в структуре [Cu(NH₃)₄](ReO₄)₂ [2]. Общий вид кристаллической структуры в направлении оси *Y* представлен на рис. 4. Перренат-анионы выполняют роль мостиков, в результате образуются бесконечные цепочки. Таким образом, общую формулу изученной фазы можно записать как [Cu(NH₃)₂(μ -ReO₄)₂]_{*n*}. Несмотря на мостиковую функцию, геометрия перренат-анионов не претерпевает существенных искажений — расстояния Re—O лежат в интервале 1,647(7)—1,711(12) Å, валентные углы O—Re—O отклоняются от тетраэдрических (109,5°) не более чем на 2,6°. Между цепочками наиболее короткие контакты N(H)…O 2,82 Å.

Таким образом, в настоящей работе показано, что при нагревании [Cu(NH₃)₄](ReO₄)₂ выше 450 К начинают удаляться две молекулы аммиака, находящиеся в *транс*-положении. Этот этап полностью завершается к 500 К, в результате чего образуется кристаллическая фаза [Cu(NH₃)₂(µ-ReO₄)₂]_n.

Авторы выражают благодарность к.х.н. С.П. Храненко за любезно предоставленный образец [Cu(NH₃)₄](ReO₄)₂.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Губанов А.И.* Двойные комплексы с тетрамминными катионами предшественники металлических порошков. Автореф. дис. ... канд. хим. наук. Новосибирск: ИНХ СО РАН, 2002.
- 2. *Коренев С.В.* Синтез, строение и физико-химические свойства двойных комплексных солей платиновых металлов с аммиаком и галогенид-ионами. Автореф. дис. ... докт. хим. наук. – Новосибирск: ИНХ СО РАН, 2003.
- 3. *Юсенко К.В.* Двойные комплексные соли гексахлоро-(бромо)металлатов(IV) (Ir, Pt, Os, Re) хлоропентамминов родия(III) и иридия(III). Автореф. дис. ... канд. хим. наук. – Новосибирск: ИНХ СО РАН, 2005.
- 4. Задесенец А.В. Синтез и физико-химическое исследование комплексных солей предшественников ультрадисперсных металлических порошков, содержащих Pt, Pd и некоторые неблагородные металлы. Автореф. дис.... канд. хим. наук. – Новосибирск: ИНХ СО РАН, 2008.
- 5. Плюснин П.Е. Синтез и физико-химическое исследование двойных комплексных солей тетрахлорометаллатов Pd(II), Pt(II) и Au(III). Автореф. дис. ... канд. хим. наук. – Новосибирск: ИНХ СО РАН, 2009.
- 6. *Филатов Е.Ю*. Получение и рентгенографическое исследование наноразмерных биметаллических порошков, содержащих платиновые металлы. Автореф. дис. ... канд. хим. наук. Новосибирск: ИНХ СО РАН, 2009.

- 7. Шубин Ю.В. Формирование и структурно-фазовые превращения наноразмерных биметаллических частиц на основе благородных металлов. Автореф. дис. ... докт. хим. наук. Новосибирск: ИНХ СО РАН, 2009.
- 8. Martynova S.A., Filatov E.Yu., Korenev S.V. et al. // J. Solid. State. Chem. 2014. 212. P. 42 47.
- 9. Wittke O. // Acta Cryst. 1993. A49, Suppl. P. 265.
- 10. *Храненко С.П., Шушарина Е.А., Громилов С.А., Смоленцев А.И.* // Журн. структур. химии. 2009. **50**, № 6. С. 1253 1255.
- 11. Sheldrick G.M. // Acta Crystallogr. 2008. A64, N 1. P. 112 122.
- 12. Kraus W., Nolze G. // J. Appl. Crystallogr. 1996. 29. P. 301 303.
- 13. PDF-2. Powder Diffraction File. International Centre for Diffraction Data. Pennsylvania, USA, 2009.
- Inorganic Crystal Structure Database. / ICSD. Release 2014, Fashinformationszentrum Karlsruhe, D-1754 Eggenstein—Leopoldshafen, Germany, 2014.
- 15. Butz A., Miehe G., Paulus H., Strauss P., Fuess H. // J. Solid. State Chem. 1998. 138. P. 232 237.
- 16. Altomare A., Cuocci C., Giacovazzo C., Moliterni A., Rizzi R., Corriero N., Falcicchio A. // J. Appl. Cryst. 2013. 46. P. 1231 1235.
- 17. Larson A.C., Von Dreele R.B. General Structure Analysis System (GSAS). Los Alamos: National Laboratory, 2004. Report LAUR 86-748.
- 18. *Toby B.H.* // J. Appl. Crystallogr. 2001. **34**. P. 210 213.