ВЛИЯНИЕ АЛЮМИНИЯ НА ГОРЕНИЕ ПЕРХЛОРАТА АММОНИЯ С ПОЛИФОРМАЛЬДЕГИДОМ

А. А. Зенин,
А. П. Глазкова, О. И. Лейпунский, В. К. Боболов
(Москва)

Большинство работ по горению металлов посвящено изучению горения одиночных частиц и, как правило, фотографическим методом [1—6]. Предпринимались также попытки изучить горение металлов в составе твердых ракетных топлив [7—8].

Давис [9] изучил при высоких давлениях горение пороха с очень небольшим содержанием частиц алюминия (чтобы избежать их слияния) и установил, что полнота горения частиц благоприятствует уменьшение их размера и увеличение давления. В настоящей работе изучалось влияние содержания алюминия и размера его частиц на зависимость скорости горения от давления, распределение температуры в зоне горения и тепловой поток излучением от пламени в конденсированную фазу (к-фазу) для стехиометрической смеси перхлората аммония с полифormalдегидом (76—24). Измерения позволили оценить тепловыделение в реакционном слое конденсированной фазы.

Введение алюминия в состав топлива существенно повышает температуру и излучательную способность пламени. Это приводит к значительному увеличению теплового потока излучением, идущего к горящей поверхности. При анализе баланса тепла в к-фазе этот поток необходимо знать.

Имеющиеся в литературе данные по излучательной способности \(Al_2O_3\) настолько противоречивы (см., например, [1, 10—14]), что рассчитать излучение пламени практически невозможно. Поэтому в данной работе применен разработанный нами метод непосредственного определения лучистого потока, идущего от пламени, с помощью микрокалориметров. Микрокалориметр представлял собой медный диск диаметром 2 мм, верхняя поверхность которого была зачернена, а к нижней прикреплялась термопара диаметром 30 мк. Диск помещался в плексигласовую оболочку, а верхняя (рабочая) поверхность диска закрывалась кварцевым стеклом. Калориметр вставлялся в нижнюю часть щитки (диаметром 12 мм, высотой 10 мм), имеющей цилиндрический канал диаметром и высотой 3 мм. Когда горение доходило до канала, на калориметр начинал падать лучистый поток от пламени. (Подробнее об этом методе см. [15].) Величину лучистого потока определяли по скорости нагрева калориметра. Опыты проводили в бомбе постоянного давления, в атмосфере азота, при комнатной температуре.

Распределение температур в зоне горения получалось с помощью тонких (3,5 мк) вольфрам-ренийевых термопар [16, 17], одновременно fotografическим методом [18] измерялась скорость горения. Применялся перхлорат аммония с диаметром частиц меньше 250 мк, полиформа-
мальдегид с молекулярным весом $2 \cdot 10^5$ и алюминий со средним размером частиц ~ 10 мк и тонкодисперсный (0,2 мк), полученный конденсацией паров алюминия в вакууме. В опытах применяли образчики диаметром 7 мм, высотой 30 мм, запрессованные до плотности, близкой к теоретической.

Характер зависимости массовой скорости горения изученных смесей от давления (рис. 1) при добавлении алюминия в интервале давлений 1—50 ат не изменяется, а величина скорости с введением 10 и 20% алюминия возрастает ~ на 20%, при введении 30% Al она падает и становится равной скорости горения смеси без алюминия. Массовая скорость горения для смеси с тонкодисперсным алюминием~1 примерно на 20% выше, чем для смеси с обычным алюминием (10% добавки). Согласно термодинамическому расчету, максимальная температура пламени монотонно растет с увеличением содержания алюминия и составляет для чистой смеси 2800°К, при 10 процентах алюминия — 3260, а при 20% — 3630 и 30% — 3830°К.

Измерение профилей температуры у смесей с алюминием представляет значительные трудности из-за двухфазности газовой зоны и неоднородности температурных потоков, что приводит к сливкому быстрому обрыву (или перегреванию) термопар. Поэтому получить представление об истинном температурном распределении можно только на основе большого статистического материала. Характерные профили температур при 45 ат представлены на рис. 2; температуры в к-фазе распределяются обычным образом, приближаясь к михельсоновскому. Коэффициенты температуровидимости к-фазы изученных систем были определены в интервале температур 0—150°С методом, описанным в работе [16], и равны для чистой смеси 1.2 \cdot 10$^{-3}$, для смеси с 10% Al (10 мк) — 1.7 \cdot 10$^{-3}$, для смеси с 20% Al — 1.9 \cdot 10$^{-3}$ см2/сек.

В газовой фазе распределение температуры удается записать лишь до момента выхода из строя термопары. Следует отметить появление небольших пульсаций температуры начиная с 2000°С. В некоторых опытах осциллограммы имели необычный вид; после небольшого подъема температуры наблюдалось плато, которое связано, по-видимому, с задерживанием термопары жидкой каплей алюминия, находящегося на поверхности.

Добавление к составу алюминия приводит прежде всего к тому, что ухудшается повторяемость профилей температур, что свидетельствует, вероятно, об исчезновении равномерного, послойного, горения; frontend

1 Заметим, кстати, что в одном из опытов с тонкодисперсным алюминием при давлении 14 ат наблюдался переход горения во взрыв. Так же, согласно работе [19], наблюдался переход горения перхлората аммония во взрыв при добавлении к нему небольшого количества тонкодисперсного алюминия.
горения движется неравномерно, с замедлениями и ускорениями, в соотношении с местной температуропроводностью к-фазы. Это, в свою очередь, связано с тем, что алюминий вводится в виде относительно крупнодисперсных частиц (в среднем 10 мк). Действительно, при введении тонкодисперсного алюминия (10%, 0,2 мк) повторяемость профилей становится столь же хорошей, как и у смеси без алюминия.

Градиент температуры в газовой фазе \((\varphi_n) \) у поверхности возрастает при введении алюминия (10%), особенно тонкодисперсного. Одна из причин этого явления может заключаться в увеличении теплопроводения в газовой фазе за счет горения алюминия.

<table>
<thead>
<tr>
<th>Параметры</th>
<th>(P = 25 \text{ atm})</th>
<th>(P = 45 \text{ atm})</th>
<th>Стандартная ошибка</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi_n), %</td>
<td>1,91</td>
<td>1,06</td>
<td>1,36</td>
</tr>
<tr>
<td>(T_n), °С</td>
<td>630</td>
<td>630</td>
<td>680</td>
</tr>
<tr>
<td>(q_1), кал/см² - сек</td>
<td>3,0</td>
<td>2,0</td>
<td>5,0</td>
</tr>
<tr>
<td>(q_2), кал/с</td>
<td>1,4</td>
<td>1,3</td>
<td>1,5</td>
</tr>
<tr>
<td>(Q_1), кал/с</td>
<td>190</td>
<td>125</td>
<td>210</td>
</tr>
<tr>
<td>(\varphi_{1}), %</td>
<td>13</td>
<td>25</td>
<td>14</td>
</tr>
<tr>
<td>(\varphi_{2}), %</td>
<td>1</td>
<td>7</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Температура поверхности изученных смесей \(T_n \) измерялась с помощью термопар с груженками [20] в интервале давлений 10—50 ат. У всех изученных смесей \(T_n \) в этом интервале давлений растет от \(\sim 400 \) до \(\sim 700 \)°С. Введение алюминия практически не отражается на этом значении \(T_n \). Температуры поверхности, полученные при обработке осциллоGRAMM температурных профилей (по излому), имеют большой разброс. При этом при давлении 45 ат наблюдается тенденция к обраZованiu двух групп значений \(T_n \) (особенно заметно это для смеси без алюминия), причем нижняя группа точек близка к \(T_n \), чистого перхлората аммония [17]. Естественно при этом предположить, что это температура разложения перхлората аммония в водяном горении. Остальные точки располагаются в промежутке между \(T_n \), измеренными термопарой с грузиками, и нижней группой. Большой разброс значений \(T_n \) не является неожиданным, если иметь в виду сложность структуры поверхности. При измерении \(T_n \) с помощью термопар с грузиками термопарой, естественно, попадает на наиболее выступающие части поверхности и записывает поэтому максимальные значения \(T_n \) соответствующие, по-видимому, температуре разложения полиформальдегида.

В процессе записи температурного профиля заделанной в образец термопарой она может выйти на поверхность или вблизи кристаллов перхлората и в этом случае запись температуры разложения последнего или вблизи частиц полиформальдегида (или алюминия) и в этом случае она покажет более высокую температуру поверхности (но не выше \(T_n \), записанной термопарами с грузиками). При 10 ат \(T_n \), за- писанные обоими методами, совпадают и составляют 400—500°С. Результаты измерений \(T_n \) и \(\varphi_n \) приведены в табл. 1.

Для расчета количества тепла, выделяющегося при горении в к-фазе, кроме потока тепла излучением от пламени, необходимо знать
коэффициенты поглощения (K) поверхности образцов с различным содержанием алюминия. Эти коэффициенты были измерены на погашенных образцах чистой смеси и с 10% алюминия и оказались равными соответственно 0,43 и 0,72.

Отметим попутно, что индикатриса рассеяния погашенных поверхностей имеет чисто диффузный характер. Значения потоков тепла от пламени излучением (q_1, кал/см²·сек), измеренные вышеуказанными микрокалориметрами, приведены также в табл. 1. В этой же табл. приведено количество тепла (q_2), реально приходящее в к-фазу на грамм сгоревшего вещества излучением, т. е. с учетом коэффициента поглощения $K(q_2 = K \frac{q_1}{\rho u}$, где ρu — массовая скорость горения). Результаты измерения потока тепла излучением для чистой смеси хорошо соответствуют расчетной величине и составляют 5 кал/см²·сек. Введение алюминия приводит к резкому (в 6 раз при 10% Al) возрастанию лучистого потока от пламени в конденсированную фазу. Поток тепла излучением возрастает также с увеличением количества (до 20%) вводимого алюминия, однако наблюдается некоторое уменьшение его для тонкодисперсного алюминия и для 30% алюминия.

Количество тепла, выделяемое при горении в к-фазе (Q, ккал/т), рассчитывалось по формуле:

$$Q = C_n (T_n - T_o) - \frac{\lambda_1}{\rho u} \frac{\varphi}{\rho a} - K \frac{q_1}{\rho u}.$$

Значения Q приведены в табл. 1, Q растет с увеличением давления. Заметим, что полученный результат не зависит от прозрачности состава, т. е. от того, поглощается ли приходящее в к-фазу излучение в ее реакционном слое или в основном в более глубоких слоях.

Необходимые для определения тепловых потоков теплопроводностью в к-фазу термические коэффициенты газовой фазы при 700°C рассчитывались из состава продуктов, получаемого параллельно при расчете термодинамической температуры, и приведены в табл. 2. Влияние частиц алюминия на коэффициенты теплоемкости C_p, и теплопроводности λ_1 газовой фазы оценивалось по схеме Русселя [21].

<table>
<thead>
<tr>
<th>Параметры</th>
<th>C_p, ккал/т°C</th>
<th>λ_1, кал/см·сек°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>0,338</td>
<td>1,95 10⁻⁴</td>
</tr>
<tr>
<td>10</td>
<td>0,340</td>
<td>2,10⁻⁴</td>
</tr>
<tr>
<td>20</td>
<td>0,330</td>
<td>2,10⁻⁴</td>
</tr>
<tr>
<td>30</td>
<td>0,310</td>
<td>2,21⁻⁴</td>
</tr>
</tbody>
</table>

Введение алюминия понижает тепловую эффективность к-фазы, притом тем сильнее, чем ниже давление; дальнейшее увеличение содержания алюминия несколько повышает его, оставаясь, однако, меньшим, чем для чистой смеси без алюминия. Дисперсность алюминия практически не влияет на выделение тепла в к-фазе.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Совокупность полученных результатов приводит к предположению, что добавление алюминия к смеси перхлората аммония с полиформальдегидом не изменяет механизма разложения конденсированной фазы при горении. В пользу этого предположения свидетельствует прежде
всего неизменностью максимальной температуры поверхности при фиксированном давлении и с изменением содержания алюминия — 630° при 25 ат и 700°С при 45 ат.

Наблюдаемое падение темловой эффекта в к-фазе с введением алюминия может быть объяснено тем, что алюминий в реакционном слое данной смеси играет, по-видимому (по крайней мере для 10 % добавки), роль инертного балласта, а его реакция в к-фазе при малом времени жизни последней не привносит много тепла. Действительно, при этом предположении 10 % реакционного слоя к-фазы не только не участвуют в теплообмене, но и забирают часть тепла на собственный прогрев и плавление. Расчет с таким предположением показывает, что при 45 ат добавление 10 % алюминия приводит к понижению теплообмена в к-фазе с 210 кал/г для чистой смеси до ~ 167 кал/г, что находится в удовлетворительном согласии с экспериментально полученную величину, составляющую 165 кал/г.

Аналогичная картина наблюдается и при других давлениях. Если алюминий является инертным балластом, становится понятным отсутствие влияния его дисперсности на Q.

Некоторое увеличение теплообмена в к-фазе при добавлении 20 % Al по сравнению с 10 % не обязательно следует рассматривать как противоречащее вышеуказанному предположению по следующим соображениям. С увеличением содержания алюминия до 20 %, как это отмечалось некоторыми авторами (см., например, [22]), происходит образование роста на поверхности жидких частиц алюминия. Это приводит к увеличению теплообмена поверхности слоя. В этом случае некоторое тепло, полученное экспериментально как Q, может быть другого происхождения, а именно, оно может быть подведено из газовой фазы. Конечно, предлагаемое объяснение не есть единственно возможное. Не исключено, что при добавлении 20 % Al часть его, находящаяся в к-фазе (особенно это касается наиболее далеко выступающих в пламя частиц), может начать реагировать уже в реакционном слое к-фазы, как это было отмечено для других металлов [23].

Влияние давления на Q можно объяснить, как это делалось раньше [16], тем, что, по крайней мере, часть тепла выделяется в пульсациях и порах к-фазы.

Согласно результатам, приведенным в табл. 1, скорость горения растет с увеличением градиента температуры у поверхности. Однако при анализе баланса тепла установлено, что даже для смесей с алюминием полна тепла, подводимого в к-фазу из газовой посредством теплообмена, по сравнению с теплом, содержащимся в к-фазе, т. е. δ1 (см. табл. 1), не превышает 50%. Следует считать поэтому, что скорость горения определяется совместным действием рассмотренных факторов. Интересно при этом отметить, что, несмотря на резкое возрастание потока тепла излучением при введении алюминия, доля тепла, подводимого в к-фазу излучением, по сравнению с теплом, содержащимся в к-фазе, т. е. δ2 (см. также табл. 1) не превышает 10 %. Введение алюминия приводит в большей степени к увеличению потока тепла в к-фазу посредством теплообменности.

Особое место занимают смеси, содержащие 30 % Al. Для них не удалось записать распределение температуры, по-видимому, из-за наличия сплашивающегося слоя металла на горящей поверхности. Уменьшение скорости горения при введении 30 % алюминия (по сравнению с 10 и 20 %) связано, вероятно, с тем, что при таком количестве добавки часть ее не успевает прореагировать. Возможно, тепловой поток излучения на поверхность в этом случае все-таки возрастает.
ВЫВОДЫ

Изучено влияние содержания алюминия и его дисперсности на го-
рение стехиометрической смеси перхлората аммония с полиформальде-
гидом и установлено:

1. Температура поверхности горящей смеси увеличивается с ростом
dавления и не изменяется при введении алюминия.
2. Градиент температуры в газовой фазе у поверхности и, следо-
вательно, поток тепла теплопроводностью увеличиваются с ростом давле-
ния и с увеличением скорости горения.
3. Тепловыделение в к-фазе растет с увеличением давления и па-
дает при введении алюминия. Предложено объяснение этих явлений.
4. С помощью микроколориметров измерены плотности лучистых
потоков, идущих от пламени горящей смеси в к-фазу. Излучением под-
водится не более 10% тепла от общего его количества.
5. Количество тепла, подводимого в к-фазу теплопроводностью и
излучением от пламени, не превышает 50% общего количества тепла,
приходящегося на 1 г к-фазы.

Поступила в редакцию
1/VIII 1967

ЛИТЕРАТУРА

and Flame, 1963, 7, 3, 297.
7. W. A. Wood. См. ссылки [1—3].
15. A. A. Zenin, A. P. Glazkova and dr. FGV, 216, 4, 2.
19. K. K. Andreev, B. M. Rogozhnikov. Сб. «Теория взрывчатых веществ», М.,
«Высшая школа». См. также K. K. Andreev, «Термическое разложение и горение
20. П. Ф. Похил, Л. Д. Ромоданова, М. М. Белоф. Сб. «Физика взрыва».
1955, № 3.
21. А. Ф. Чудновский. Теплофизические характеристики дисперсных материа-
лов, М., 1962, стр. 81.
22. E. A. Watermeier, W. P. Aungst, S. R. Pfaff. IX-th Symposium on Com-
bustion, 1962.