2007. Том 48, № 6

Ноябрь – декабрь

C. 1097 – 1103

УДК 539.193/194

СТРУКТУРА И СПЕКТРЫ 1,3-ДИОКСАНОВ. II. МИКРОВОЛНОВЫЙ СПЕКТР, СТРУКТУРНЫЕ ПАРАМЕТРЫ И РАСЧЕТЫ *АВ INITIO* 2-МЕТИЛ-1,3-ДИОКСАНА

© 2007 А.Х. Мамлеев¹*, Л.Н. Гундерова¹, Р.В. Галеев¹, А.А. Шапкин¹, М.Г. Файзуллин¹, А.П. Никитина², Д.В. Шорников², Е.А. Кантор²

¹Институт физики молекул и кристаллов УНЦ РАН, Уфа ²Уфимский государственный нефтяной технический университет

Статья поступила 13 марта 2007 г.

Исследованы микроволновые спектры пяти изотопомеров с изотопами ¹³С и ¹⁸О в естественной распространенности молекулы 2-метил-1,3-диоксана в диапазоне частот 22—50 ГГц. Идентифицированы вращательные переходы *a*- и *c*-типов с $4 \le J \le 12$. Определены вращательные постоянные, замещенные r_s и эффективные r_o структурные параметры молекулы. Выполнены расчеты 2-метил-1,3-диоксана *ab initio* с оптимизацией структуры молекулы. Результаты квантовохимических расчетов различного уровня сопоставлены с экспериментальными данными.

Ключевые слова: 2-метил-1,3-диоксан, микроволновый спектр, структура, квантовохимические расчеты.

введение

Структурные исследования шестичленных насыщенных циклических соединений представляют интерес в связи с конформационным поведением циклов и заместителей, присоединенных по периметру кольца. Как известно, конформация молекул отражается на реакционной способности и биохимической активности веществ. Конформация 1,3-диоксана (C₄H₈O₂) была установлена методом микроволновой спектроскопии в результате исследования вращательного спектра молекулы основного изотопного состава [1, 2]. Нами [3—5] выполнено исследование микроволновых спектров четырех изотопомеров 1,3-диоксана с изотопами ¹⁸O и ¹³C в разных положениях. Определены замещенные r_s и эффективные r_o структурные параметры кольца молекулы. Проведены квантовохимические расчеты 1,3-диоксана методами теории функционала плотности и теории возмущений. Экспериментальные данные сопоставлены с результатами квантовохимических расчетов различного уровня.

Продолжением этих работ стало изучение метилзамещенных 1,3-диоксанов. Результаты

ние метилзамещенных 1,3-диоксанов. Гезультаты исследования микроволнового спектра молекулы 2-метил-1,3-диоксана основного изотопного состава (${}^{12}C_5H_{10}{}^{16}O_2$) приведены в [6,7]. По экспериментальным значениям вращательных постоянных и компонент дипольного момента сделан вывод о том, что наиболее стабильной конформацией мо-

Стабильная конформация и нумерация атомов 2-метил-1,3-диоксана

^{*} E-mail: mwsm@anrb.ru

лекулы является форма *кресло* с экваториальной ориентацией метильной группы (см. рисунок). В данной статье приведены результаты исследования микроволновых спектров пяти изотопомеров 2-метил-1,3-диоксана с изотопами ¹³С и ¹⁸О ($^{13}C(2)^{12}C_4H_{10}^{16}O_2$, $^{13}C(4)^{12}C_4H_{10}^{16}O_2$, $^{13}C(5)^{12}C_4H_{10}^{16}O_2$, $^{13}C(7)^{12}C_4H_{10}^{16}O_2$, $^{18}O(1)^{12}C_5H_{10}^{16}O)$ в естественной распространенности. Целью настоящего исследования было определение структуры молекулы 2-метил-1,3-диоксана методом микроволновой спектроскопии с применением квантовохимических расчетов разного уровня.

МИКРОВОЛНОВЫЙ СПЕКТР

Исследование выполнено на микроволновом спектрометре в диапазоне частот 22—50 ГГц при температуре поглощающей ячейки ≈ -50 °C и давлении паров вещества $\approx 0,1$ —1 Па. По-грешность измерения частот $\approx 0,05$ МГц. Содержание изотопозамещенных молекул в препарате 2-метил-1,3-диоксана соответствовало естественной распространенности ¹³C ($\approx 1,1$ %) и ¹⁸O ($\approx 0,2$ %).

Идентификация линий поглощения, относящихся к изотопомерам с изотопами ¹³С и ¹⁸О, затруднена в связи с их малой интенсивностью. Для облегчения идентификации линий поглощения изотопомеров были проделаны модельные расчеты их спектров. При этом главные моменты инерции изотопомеров вычисляли введением поправок к экспериментальным значениям главных моментов инерции молекулы основного изотопного состава [6,7]. Расчет поправок выполнен для конформации *кресло* с экваториальной ориентацией метильной группы в двух вариантах: с использованием структурных параметров 1,3-диоксана [3—5] и для структурных параметров 2-метил-1,3-диоксана, полученных с помощью квантовохимических расчетов по программам [8]. Отклонения вычисленных таким образом главных моментов инерции монозамещенных молекул от экспериментальных в итоге оказались меньше 1 %.

Таблица 1

usomonomepos e usomonom C										
$J_{K_{-1}'K_{1}'}'' \leftarrow J_{K_{-1}'K_{1}'}'$	${}^{12}C_5H_{10}$	⁵ O ₂	$^{13}C(2)^{12}C_4I$	$H_{10}^{16}O_2$	$^{13}C(4)^{12}C_4I$	$H_{10}^{16}O_2$	$^{13}C(5)^{12}C_4I$	$H_{10}^{16}O_2$	$^{13}C(7)^{12}C_4H_{10}^{16}O_2$	
	f	δ	f	δ	f	δ	f	δ	f	δ
5 _{4 1} ← 4 _{3 1}	39034,56	0,06	38980,90	0.09	38530,69	0,08	38920,55	-0,01	38883,76	0,14
$5_{42} \leftarrow 4_{32}$	39154,53	-0,08	39097,65	-0,07	38655,93	0,09	_	_	38985,61	-0,05
$6_{0.6} \leftarrow 5_{0.5}$	22927,00	-0,04	22861,56	-0,08	22713,16	0,06	22671,43	0,03	22504,85	-0,04
$6_{1.6} \leftarrow 5_{1.5}$	22785,60	0,04	22717,49	0,04	22579,56	-0,07	22518,58	-0,02	22344,34	0,04
$6_{1,5} \leftarrow 5_{0,5}$	36697,55	0,03	36540,73	0,12	36455,55	0,12	_	_	_	_
$6_{2.5} \leftarrow 5_{1.5}$	38369,04	-0,04	38242,40	-0,16	38035,40	-0,15	37952,12	-0,03	37711,12	-0,05
6 _{4,3} ← 5 _{3,3}	43591,06	-0,01	43513,96	-0,06	43066,72	-0,09	43390,72	-0,06	43300,30	-0,04
$6_{4,2} \leftarrow 5_{3,2}$	43158,23	0,04	43091,93	0,09	42617,36	-0,05	42996,22	0,08	42928,21	-0,03
$7_{0,7} \leftarrow 6_{0,6}$	26453,98	-0,05	_	—	26208,61	0,05	26155,55	-0,03	25960,76	0,03
$7_{1,7} \leftarrow 6_{1,6}$	26388,40	0,05	26310,68	0,03	26147,51	0,01	26082,78	-0,01	25882,88	-0,07
$7_{4,4} \leftarrow 6_{4,3}$	30676,82	0,03	30551,27	0,05	30469,74	0,00	30208,29	0,00	29913,06	0,04
$7_{4,3} \leftarrow 6_{4,2}$	30922,35	-0,03	30787,77	-0,10	30731,52	0,04	30421,98	0,01	30108,52	-0,01
8 _{4,5} ← 7 _{4,4}	35126,46	0,01	34983,71	0,01	34886,80	-0,07	34593,91	0,03	34257,92	0,02
8 _{4,4} ← 7 _{4,3}	35732,26	0,00	35568,96	-0,02	35528,75	0,04	_	_	34747,78	0,01
$8_{5,4} \leftarrow 7_{5,3}$	35039,84	0,03	34895,13	0,07	34806,46	0,07	34499,88	0,03	—	—
8 _{5,3} ← 7 _{5,2}	35087,26	-0,04	-	_	34858,19	-0,09	34539,36	-0,03	_	—

Экспериментальные значения частот f (MГц), разности между экспериментальными и вычисленными значениями частот δ (МГц) 2-метил-1,3-диоксана основного изотопного состава и монозамещенных изотопомеров с изотопом¹³С

Экспериментальные значения частот $f(M\Gamma \mu)$, разности между экспериментальными и вычисленными значениями частот $\delta(M\Gamma \mu)$ изотопомера 2-метил-1,3-диоксана с изотопом¹⁸O

$J''_{K_{-1}'K_{1}''} \leftarrow J'_{K_{-1}'K_{1}'}$	f	δ	$J_{K_{-1}''K_{1}''}'' \leftarrow J_{K_{-1}'K_{1}'}'$	f	δ	$J_{K_{-1}'K_{1}''}'' \leftarrow J_{K_{-1}'K_{1}'}'$	f	δ
$8_{1,7} \leftarrow 7_{1,6} \\ 8_{2,7} \leftarrow 7_{2,6} \\ 8_{4,5} \leftarrow 7_{4,4}$	32836,04 32381,98 35005,86	-0,04 0,05 0,18	$9_{1,8} \leftarrow 8_{1,7}$ $9_{2,8} \leftarrow 8_{2,7}$ $10_{0,10} \leftarrow 9_{0,9}$	36246,99 36009,38 36756,87	-0,02 -0,02 0,02	$11_{2,9} \leftarrow 10_{2,8} \\ 11_{3,9} \leftarrow 10_{3,8} \\ 11_{5,6} \leftarrow 10_{5,5} \\ 11_{5,6} \leftarrow 10_{5,5} \\ 11_{5,6} \leftarrow 10_{5,5} \\ 10_{5,5} $	46478,14 45844,27 49431,89	-0,02 0,11 -0,06
$8_{4,4} \leftarrow 7_{4,3}$	35726,59 -	_0,08 _	$10_{1,10} \leftarrow 9_{1,9}$	36753,26	-0,04 -	$12_{2,10} \leftarrow 11_{2,9} \\ 12_{3,10} \leftarrow 11_{3,9}$	49830,71 49486,79	-0,12 0,06

Таблица З

Вращательные постоянные A, B, C (МГц) и главные моменты инерции (коэффициент преобразования 505379,1) I_a, I_b, I_c (a.e.м. Å²) молекулы 2-метил-1,3-диоксана основного изотопного состава и пяти изотопомеров с изотопами ¹³С и ¹⁸О

-	Изотопомер								
Параметр	${}^{12}C_5H_{10}O_2$	$^{13}C(2)$	$^{13}C(4)$	$^{13}C(5)$	$^{13}C(7)$	$^{18}O(1)$			
,	4(50,100(0))	4(52,002(7)	4502.024(6)						
A	4658,123(3)	4653,892(7)	4593,024(6)	4654,752(3)	4657,663(5)	4543,666(46)			
В	2503,222(2)	2491,894(3)	2488,432(3)	2462,158(2)	2436,759(3)	2500,398(5)			
C	1783,949(2)	1778,887(4)	1767,347(3)	1763,533(2)	1749,996(3)	1766,228(4)			
I_a	108,4941(1)	108,5928(2)	110,0319(1)	108,5727(1)	108,5049(1)	111,2272(11)			
I_b	201,8914(1)	202,8093(3)	203,0914(2)	205,2586(2)	207,3981(3)	202,1194(4)			
I_c	283,2924(3)	284,0985(6)	285,9536(5)	286,5720(3)	288,7887(4)	286,1347(6)			
N	16	14	16	13	13	13			
σ	0,05	0,09	0,08	0,04	0,06	0,09			

П р и м е ч а н и е. В скобках приведены погрешности в единицах последней значащей цифры, соответствующие стандартному отклонению; *N* — число экспериментальных частот, включенных в обратную задачу; σ — стандартное отклонение частот (МГц).

Моноизотопозамещение каждого из семи тяжелых атомов в 2-метил-1,3-диоксане приводит к появлению пяти вращательных спектров. Это связано с тем, что молекула 2-метил-1,3диоксана симметрична (симметрия C_s) относительно плоскости, проходящей через атомы C(2), C(5) и C(7) (см. рисунок). В силу симметрии спектры монозамещенных изотопомеров с изотопом ¹³C в положениях 4 и 6, а также с изотопом ¹⁸O в положениях 1 и 3 идентичны, поэтому интенсивности их линий поглощения удвоены по сравнению с интенсивностями линий в спектрах других изотопомеров.

Методом радиочастотного—микроволнового двойного резонанса были идентифицированы спектральные линии монозамещенных молекул с изотопом ¹³С, соответствующие вращательным переходам *a*- и *c*-типов с $4 \le J \le 8$. Для изотопомера с изотопом ¹⁸О идентифицированы вращательные переходы только *a*-типа с $7 \le J \le 12$. Интенсивности *c*-переходов и *a*-переходов с J < 7 для изотопомера с ¹⁸О оказались слишком слабыми, чтобы их можно было надежно идентифицировать. Экспериментальные значения частот идентифицированных переходов приведены в табл. 1, 2.

Параметры, описывающие спектры, определены с использованием гамильтониана Уотсона в квартичном приближении центробежного искажения [9]:

$$H_{R} = AP_{Z}^{2} + BP_{X}^{2} + CP_{Y}^{2} - \Delta_{J}P^{4} - \Delta_{JK}P^{2}P_{Z}^{2} - \Delta_{K}P_{Z}^{4} - 2\delta_{J}P^{2}(P_{X}^{2} - P_{Y}^{2}) - \delta_{K} \left[P_{Z}^{2}(P_{X}^{2} - P_{Y}^{2}) + (P_{X}^{2} - P_{Y}^{2})P_{Z}^{2} \right].$$
(1)

Параметр	Эксперимент	MP2/6-31G**	B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	B3PW91/ aug-cc-pVDZ	B3PW91/ 6-31G**
A	4658,123(3)	4661,11	4655,08	4662,61	4668,71
В	2503,222(2)	2516,40	2497,08	2498,39	2510,03
C	1783,949(2)	1791,97	1778,53	1779,79	1787,51
μ_a	1,43(1)	1,72	1,27	1,41	1,38
μ_b	0,00	0	0	0	0
μ_c	1,15(1)	1,37	0,95	1,12	1,03
μ	1,84(2)	2,20	1,59	1,80	1,72

Вращательные постоянные A, B, C (МГц) для основного изотопомера, компоненты дипольного момента μ_a , μ_b , μ_c и полный дипольный момент μ (в Д) молекулы 2-метил-1,3-диоксана

Ранее [7] для молекулы 2-метил-1,3-диоксана основного изотопного состава по экспериментальным значениям частот 83 переходов с $J \le 40$ нами получены следующие значения констант центробежного искажения: $\Delta_J = 0,150(3)$, $\Delta_{JK} = 0,218(4)$, $\Delta_K = 0,624(8)$, $\delta_J = 0,0394(5)$, $\delta_K = 0,292(6)$ кГц. При обработке спектров (см. табл. 1, 2) варьировали вращательные постоянные *A*, *B*, *C* при фиксированных значениях констант центробежного искажения, принятых равными соответствующим константам молекулы основного изотопного состава. Спектроскопические параметры для всех исследованных изотопомеров приведены в табл. 3.

СТРУКТУРА И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Математическое моделирование структуры 2-метил-1,3-диоксана выполнено с использованием комплекса программ GAUSSIAN [8]. Расчеты производились *ab initio* методами разного уровня. В табл. 4 приведены экспериментальные и вычисленные *ab initio* методами MP2/6-31G(*d*, *p*), B3LYP/6-31G(2*df*, *p*), B3PW91/6-31G**, B3PW91/aug-cc-pVDZ значения вращательных постоянных и компонент дипольного момента основного изотопомера 2-метил-1,3диоксана. Эти методы дали наиболее близкие к эксперименту результаты. Из табл. 4 следует, что метод B3PW91/aug-cc-pVDZ лучше других методов воспроизводит экспериментальные данные. Отклонения вычисленных этим методом значений вращательных постоянных от экспериментальных не превышают 0,3 %, а для значений компонент дипольного момента не выходят за рамки 3 %. Структура 2-метил-1,3-диоксана, полученная методом B3PW91/aug-cc-pVDZ, была использована в качестве исходной для определения r_0 -структуры молекулы.

Эффективная r_0 -структура 2-метил-1,3-диоксана (табл. 5) определена путем подгонки методом наименьших квадратов структурных параметров молекулы к экспериментальным значениям 18 моментов инерции с использованием программы STRFIT [10]. При подгонке относительные положения атомов водорода были фиксированы. Стандартное отклонение вычисленных моментов инерции от экспериментальных составило $\sigma = 0,0049$ (а.е.м. Å²). В табл. 5 для сравнения приведена структура молекулы, полученная методом B3PW91/aug-cc-pVDZ. Отличия в длинах связей двух структур не превышают 0,003 Å, а для углов составляют не более 1,1°.

По экспериментальным значениям вращательных постоянных (см. табл. 3) методом Крейчмана—Костейна [11,12] определены r_s -координаты атомов углерода и кислорода 2-метил-1,3-диоксана в системе главных осей инерции молекулы основного изотопного состава (табл. 6). Для атомов углерода во втором, пятом и седьмом положениях, расположенных в плоскости симметрии молекулы (a, c) (см. рисунок) координата b принята равной нулю. Для сравнения в табл. 6 приведены также координаты тяжелых атомов, найденные *ab initio* и подгонкой (r_o -координаты).

Из табл. 6 следует, что r_s -, r_o - и *ab initio* координаты в основном согласуются между собой. Отклонения вычисленных подгонкой и разными квантовохимическими методами значений ко-

	1 1				
Параметр	B3PW91/aug- cc-pVDZ	<i>г</i> _о -структура	Параметр	B3PW91/aug- cc-pVDZ	<i>г</i> _о -структура
C(2)—O(3)	1,411	1,409(4)	H(10)—C(4)—O(3)	106,3	105,8
O(3)—C(4)	1,423	1,425(5)	H(11)—C(5)—C(4)	110,3	110,4
C(4)—C(5)	1,524	1,527(3)	H(12)—C(5)—C(4)	109,7	109,7
C(2)—C(7)	1,508	1,509(5)	H(15)—C(7)—C(2)	109,6	109,6*
C(2)—H(8)	1,112	1,112*	H(16)—C(7)—C(2)	109,8	109,8*
C(4)—H(9)	1,107	1,107*	H(15)—C(7)—H(16)	109,1	109,1*
C(4)—H(10)	1,097	1,097*	H(16)—C(7)—H(17)	109,2	109,2*
C(5)—H(11)	1,100	1,100*	O(1) - C(2) - O(3) - C(4)	-60,8	-61,0
C(5)—H(12)	1,099	1,099*	C(2) - O(3) - C(4) - C(5)	56,8	57,3
C(7)—H(15)	1,097	1,097*	O(3) - C(4) - C(5) - C(6)	-52,2	-53,3
C(7)—H(16)	1,097	1,097*	C(7) - C(2) - O(3) - C(4)	179,4	179,7
O(1)—C(2)—O(3)	111,8	112,0(4)	C(2) - O(1) - O(3) - C(4)	125,6	125,4
C(2)—O(3)—C(4)	111,5	111,4(5)	C(5) - C(4) - C(6) - O(1)	-132,2	-131,1
O(3) - C(4) - C(5)	110,6	110,1(5)	H(8) - C(2) - O(3) - C(4)	58,2	58,5
C(4)—C(5)—C(6)	108,7	108,4(3)	H(9) - C(4) - O(3) - C(2)	-64,7	-64,6
C(7)—C(2)—O(3)	108,6	108,3(5)	H(10) - C(4) - O(3) - C(2)	178,7	178,6
H(8)—C(2)—O(1)	108,1	108,4	H(11)—C(5)—C(4)—O(3)	-173,2	-174,2
H(9)—C(4)—O(3)	109,4	110,5	H(12) - C(5) - C(4) - O(3)	67,6	66,6

Структурные параметры (длины связей в Å, углы в град.) молекулы 2-метил-1,3-диоксана

Примечание. В скобках приведены погрешности в единицах последней значащей цифры; * — фиксированные в подгонке параметры.

Таблица б

		-					
Атом	Координата	r _s	r _o	MP2/ 6-31G(<i>d</i> , <i>p</i>)	B3LYP/ 6-31G(2 <i>df</i> , <i>p</i>)	B3PW91/ 6-31G**	B3PW91/ aug-cc-pVDZ
O(1)	а	0,289(5)	0,298(5)	0,299	0,297	0,296	0,296
	b	1,167(1)	1,168(1)	1,173	1,168	1,168	1,169
	с	0,177(8)	0,174(9)	0,177	0,169	0,172	0,178
C(2)	а	0,904(2)	0,908(2)	0,907	0,910	0,907	0,911
	b	0	0	0	0	0	0
	с	-0,326(5)	-0,325(5)	-0,330	-0,327	-0,326	-0,321
O(3)	а	0,289(5)	0,298(5)	0,299	0,297	0,296	0,296
	b	-1,167(1)	-1,168(1)	-1,173	-1,168	-1,168	-1,169
	с	0,177(8)	0,174(9)	0,177	0,169	0,172	0,178
C(4)	а	-1,072(1)	-1,075(1)	-1,077	-1,074	-1,072	-1,075
	b	-1,236(1)	-1,238(1)	-1,233	-1,241	-1,237	-1,238
	с	-0,199(8)	-0,202(7)	-0,206	-0,197	-0,199	-0,197
C(5)	а	-1,818(1)	-1,819(1)	-1,811	-1,825	-1,819	-1,823
	b	0	0	0	0	0	0
	с	0,292(5)	0,292(5)	0,299	0,290	0,291	0,280
C(6)	а	-1,072(1)	-1,075(1)	-1,077	-1,074	-1,072	-1,075
	b	1,236(1)	1,238(1)	1,233	1,241	1,237	1,238
	с	-0,199(8)	-0,202(7)	-0,206	-0,197	-0,199	-0,197
C(7)	а	2,352(1)	2,354(1)	2,358	2,358	2,352	2,358
	b	0	0	0	0	0	0
	С	0,105(14)	0,105(14)	0,099	0,111	0,107	0,099

Экспериментальные и вычисленные координаты a, b, c (Å) атомов углерода и кислорода в системе главных осей инерции молекулы 2-метил-1,3-диоксана основного изотопного состава

П р и м е ч а н и е. В скобках приведены погрешности в единицах последней значащей цифры, вычисленные по формуле Костейна $\delta(x) = 0.0015/x$ [14].

1101

Параметр	2-Метил- 1,3-диоксан	1,3-Диоксан [5]	Параметр	2-Метил- 1,3-диоксан	1,3-Диоксан [5]
C(2)—O(3)	1,412(4)	1,405(5)	O(1)C(2)O(3)	111,5(4)	112,8(5)
O(3)—C(4)	1,414(6)	1,417(6)	C(2)O(3)C(4)	111,4(3)	110,6(3)
C(4)—C(5)	1,524(3)	1,527(4)	O(3)C(4)C(5)	110,2(3)	110,2(3)
C(2)—C(7)	1,510(5)	_	C(4)C(5)C(6)	108,4(3)	108,5(4)
O(1)O(3)	2,334(1)	2,341(3)	C(7)C(2)O(3)	108,4(3)	_
C(4)C(6)	2,472(1)	2,478(2)	α	54,7(8)	55,6(8)
C(2)C(4)	2,334(2)	2,320(2)	β	48,8(6)	48,6(8)
C(2)C(5)	2,791(3)	2,773(3)	γ	124,2(8)	_
C(5)C(7)	4,174(2)	—			

Замещенные r_s структурные параметры молекул 1,3-диоксана и 2-метил-1,3-диоксана

П р и м е ч а н и е. В скобках приведены погрешности в единицах последней значащей цифры.

ординат тяжелых атомов 2-метил-1,3-диоксана от соответствующих им r_s -координат либо лежат в пределах указанных погрешностей, либо незначительно их превышают. Как известно [12, 13], замещенная r_s -структура является промежуточной между равновесной r_e и эффективной r_o структурами. Различие между этими структурами обусловлено эффектом нулевых колебаний. Близость структур говорит о том, что для данной молекулы влияние нулевых колебаний на значения структурных параметров незначительно.

Определенные по r_s -координатам атомов (см. табл. 6) структурные параметры 2-метил-1,3диоксана интересно сравнить с r_s -структурными параметрами 1,3-диоксана [5] (табл. 7). Как видно из табл. 7, расхождения между соответствующими r_s -структурными параметрами двух молекул для фрагмента O(1)O(3)C(4)C(5)C(6) не превышают 0,003 Å для связей и 0,2° для углов. Отличия в параметрах для фрагмента O(1)C(2)O(3) значительнее. Следует отметить увеличение связи C(2)—O(3) в 2-метил-1,3-диоксане на 0,007 Å, а также уменьшение углов O(1)C(2)O(3) на 1,3° и α (см. рисунок) на 0,9° по сравнению с соответствующими значениями в 1,3-диоксане. Это означает, что в 2-метил-1,3-диоксане фрагмент O(1)C(2)O(3) более вытянут и уплощен. Указанные изменения приводят к увеличению в 2-метил-1,3-диоксане по сравнению с 1,3-диоксаном расстояний C(2)...C(4) и C(2)...C(5) на 0,014 и 0,018 Å соответственно и уменьшению расстояния O(1)...O(3) на 0,007 Å. Таким образом, замещение атома водорода во втором положении метильной группой заметно повлияло на строение 1,3-диоксанового кольца.

ЗАКЛЮЧЕНИЕ

Исследованы вращательные спектры 2-метил-1,3-диоксана основного изотопного состава и пяти изотопомеров с изотопами ¹⁸O(1), ¹³C(2), ¹³C(4), ¹³C(5), ¹³C(7). По экспериментальным значениям моментов инерции определены r_s и r_o -структурные параметры молекулы. Экспериментально установлено влияние замещения атома водорода во втором положении метильной группой на строение 1,3-диоксанового кольца. Результаты квантовохимических расчетов 2-метил-1,3-диоксана методами теории функционала плотности и теории возмущений хорошо согласуются с экспериментальными данными.

СПИСОК ЛИТЕРАТУРЫ

- 1. Kewley R. // Canad. J. Chem. 1972. 50. P. 1690 1697.
- 2. Lowe R.S., Kewley R. // J. Mol. Spectr. 1976. 60. P. 312 323.
- 3. Файзуллин М.Г., Галеев Р.В., Гундерова Л.Н. и др. // Вестник Башк. ун-та. 2006. № 2. С. 29 32.
- 4. Файзуллин М.Г., Галеев Р.В., Гундерова Л.Н. и др. // Электронный журнал "Исследовано в России". 2006. **154**. С. 1431 1435. http://zhurnal.ape.relarn.ru/articles/2006/154.pdf.

- 5. Мамлеев А.Х., Гундерова Л.Н., Галеев Р.В. и др. // Журн. структур. химии. 2007. **48**, № 3. С. 501 506.
- 6. Мамлеев А.Х., Галеев Р.В., Гундерова Л.Н. и др. // Электронный журнал "Исследовано в России". 2005. 25. С. 267 274. http://zhurnal.ape.relarn.ru/articles/2005/025.pdf.
- 7. Мамлеев А.Х., Галеев Р.В., Гундерова Л.Н. и др. // Журн. структур. химии. 2006. **47**, № 2. С. 373 375.
- 8. Frisch M.J., Nrucks G.W., Schlegel H.B. et al. Gaussian-03; Gaussian Inc, Pittsburgh PA, 2003.
- 9. Watson J.K.G. // J. Chem. Phys. 1967. 46. P. 1935.
- 10. Kisiel Z. Programs for ROtational SPEctroscopy (PROSPE), http://info.ifpan.edu.pl/~kisiel/prospe.htm.
- 11. Kraitchman J. // Amer. J. Phys. 1953. 21. P. 17 24.
- 12. Costain C.C. // J. Chem. Phys. 1958. 29. P. 864 874.
- 13. Watson J.K.G. // J. Mol. Spectroscop. 1973. 48. P. 479.
- 14. Costain C.C. // Trans. Amer. Cryst. Assos. 1966. 2. P. 157.