УДК 534.222.2

УДАРНАЯ АДИАБАТА ЭМУЛЬСИОННОЙ МАТРИЦЫ НА ОСНОВЕ ВОДНОГО РАСТВОРА АММИАЧНОЙ СЕЛИТРЫ

В. В. Сильвестров, А. С. Юношев, А. В. Пластинин

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск, silver@hydro.nsc.ru

Определена ударная адиабата эмульсионной матрицы на основе водного раствора аммиачной селитры при давлениях до 30 ГПа, существенно превышающих расчетное давление детонации, на которой в диапазоне 13 ÷ 15 ГПа зарегистрирована «скачкообразная» особенность, связанная с возможным разложением эмульсии при высоком ударном давлении.

Ключевые слова: эмульсионная матрица, аммиачная селитра, ударная адиабата, сверхдетонационное давление.

Эта работа является продолжением работы [1], в которой исследовалась ударная сжимаемость эмульсионной матрицы на основе водного раствора аммиачной (АС) и натриевой селитр (НС) и было показано, что ударная адиабата композиции не имеет видимых особенностей при давлениях до 37 ГПа, в 2÷2.5 раза превышающих расчетное давление детонации. Согласно [2] отклонения от «идеального» поведения эмульсионных BB на основе AC/HCэмульсии обусловлены тем, что при высокой температуре металлическая соль натрия разлагается (на нитрит натрия и кислород) с поглощением части детонационной энергии и образованием твердых продуктов реакции с более низкой скоростью реакции, и, следовательно, натриевая селитра в составе чистой эмульсии может рассматриваться как инертная добавка. С этой точки зрения поведение АС-эмульсии при ударном давлении, превышающем детонационное, с исследованием которого и связана данная работа, может существенно отличаться от поведения эмульсий, в состав которых входят соли металлов.

Расчетные параметры детонации ACэмульсии существенно зависят от уравнения состояния (УРС) продуктов взрыва и степени разложения материала матрицы. Согласно [3] расчетные значения скорости детонации D изменяются от 6.55 до 7.5 км/с, давление $p_{\rm CJ}$ от 14 до 18.4 ГПа, температура $T_{\rm CJ}$ — от 974 до 1781 К в зависимости от используемого УРС. Ниже при построении ударной адиабаты продуктов взрыва выбран вариант равновесного расчета по УРС ВКW-R с невозможностью образования дисперсного алмаза ввиду относительно невысоких детонационных давлений и температур, т. е. для АС-эмульсии принято D = 7.08 км/с, $p_{\rm CJ} = 15.8$ ГПа, $T_{\rm CJ} = 1720$ К [3].

Массовый состав исследуемой ACэмульсии: окислитель — водный раствор 77 % аммиачной селитры и 15 % воды; горючее смесь 6 % масла И-20 и 2 % эмульгатора; кислородный баланс композиции составляет -10 %; плотность 1.35 г/см³. В одномерной постановке слой эмульсии (диаметр 80 мм, толщина $\Delta = 5 \div 10$ мм) через экран из дюралюминия толщиной 4 мм нагружался взрывом контактного заряда или ударом пластин из дюралюминия толщиной от 10 до 5 мм, ускоренных взрывом до $2.4 \div 5.0$ км/с. При помощи двух манганиновых датчиков давления, расположенных по центру сборки на границах «передний экран — эмульсия» и «эмульсия — задний экран», регистрировались профиль входного давления $p_{in}(t)$ и время пробега Δt ударной волны по слою эмульсии, необходимое для расчета скорости ударной волны.

Пик давления в первые ≈ 0.2 мкс (рис. 1) обусловлен переходными процессами внутри датчика давления, чувствительный элемент которого с обеих сторон изолирован пленкой из фторопласта толщиной ≈ 0.2 мм. Для построения ударной адиабаты эмульсии использовалось значение давления, отмеченное прямой на рис. 1, которое соответствует входному дав-

Работа поддержана Российским фондом фундаментальных исследований (проект № 12-08-00092-а), программой Президиума РАН № 2.9 и частично грантом Президента РФ (НШ-2695.2014.1).

[©] Сильвестров В. В., Юношев А. С., Пластинин А. В., 2014.

Рис. 1. Профиль давления на входе в образец АС-эмульсии:

толщина слоя эмульсии 11 мм, стрелкой отмечен момент прихода волны разгрузки со стороны свободной поверхности ударника

лению в эмульсии. Более подробно постановка опытов, анализ профилей $p_{in}(t)$ и обработка данных описаны в [1].

На рис. 2 и в таблице приведены результаты по ударному сжатию AC-эмульсии при давлении $5 \div 30$ ГПа. Погрешность измерения давления p_s составляет $\pm 3 \div 5$ %, скорости ударной волны $u_s - \pm 2$ %. До $p_s = 13$ ГПа наши результаты находятся в соответствии с данными [4, 5], полученными при более низком давлении $2 \div 13$ ГПа.

 Δ , MM p_s , $\Gamma \Pi a$ u_s , KM/C $u_p, \kappa m/c$ V/V_0 6.15.74.001.060.7366.09.54.681.500.6795.68.5 4.73 1.330.71910.113.55.731.750.69511.0 13.45.921.680.71713.41.640.729 9.86.045.319.86.682.200.6715.729.47.532.890.616

Экспериментальные данные для АС-эмульсии

Анализ результатов для эмульсионной матрицы на основе водного раствора аммиачной и натриевой селитр, полученных ранее [1], и данных для матрицы на основе водного раствора только аммиачной селитры, полученных в этой работе, выявил существенную разницу в поведении композиций при давлениях более 13 ГПа, которые близки или превышают расчетные значения давления детонации [3]. Если результаты для ударной адиабаты чистой AC/HC-эмульсии хорошо приближались гладкой кривой в диапазоне $p_s = 1 \div 37$ ГПа, рассчитанной по разработанному уравнению состояния нереагирующей матрицы [1], то для ACэмульсии — только при $p_s \leq 13$ ГПа (кривые 2

Рис. 2. Ударная адиабата эмульсионной АС-матрицы:

1 — данные авторов, 2 — расчет по УРС матрицы [1], 3 — [4], 4 — [5], 5 — точка Чепмена — Жуге [3], 6 — ударная адиабата продуктов взрыва по модели [9], 7 — прямая Рэлея, D = 7.08 км/с

на рис. 2). При более высоком давлении экспериментальные данные для AC-эмульсии значимо отклоняются от расчетной ударной адиабаты инертной эмульсии в сторону адиабаты продуктов взрыва промежуточного состава.

Три точки при $p_s = 13$ ГПа получены в одних условиях опыта и иллюстрируют разброс данных, обусловленный разницей образцов эмульсии: при изготовлении эмульсии и ее размещении в измерительном объеме в нее неизбежно подмешивается небольшое неконтролируемое количество пузырьков воздуха. Не следует исключать неравновесный характер процесса разложения эмульсии, отражающий кинетику превращения в пределах временного разрешения датчиков. Также возможна зависимость результатов измерений от скорости ударника, что приводит к вариациям интенсивности инициирующей ударной волны.

На плоскости «ударная (u_s) — массовая (u_p) скорость» при $u_p \approx 1.7$ км/с наблюдается скачок ударной скорости величиной $\Delta u_s \approx$ 0.7 км/с (рис. 2,a). Эффект аналогичен зарегистрированному ранее для малочувствительного состава PBX 9502 на основе TATE [6-8]: вблизи детонационного давлении на ударной адиабате появляется особенность — небольшой скачок. В случае PBX 9502 экспериментальные точки для пересжатой детонации лежат на ударной адиабате продуктов взрыва, проходящей через точку Чепмена — Жуге, параметры которой определены в опыте и соответствуют 100%-й степени реагирования. Для состава РВХ 9502 скачок ударной скорости Δu_s достигает 1.2 км/с (см. рис. 1, 2 из [6]).

Для АС-эмульсии при сверхдетонационном давлении экспериментальные точки лежат существенно ниже расчетной точки Чепмена — Жуге и ударной адиабаты продуктов взрыва при 100%-й степени реагирования (кривые 6 на рис. 2) и скачок ударной скорости меньше из-за меньшего выделения энергии. Давление в химическом пике оценивается в 27 ГПа. Оценка положения ударной адиабаты продуктов взрыва эмульсии (кривые 6 на рис. 2) выполнена по модели политропного газа [9]. Следует отметить, что положение этих кривых определяется параметрами точки Чепмена — Жуге, которые, в свою очередь, зависят от выбора УРС продуктов взрыва. В предположении, что при взрывном разложении квадрат изменения скорости ударной волны относительно скорости на инертной ударной адиабате пропорционален

выделяющейся энергии, получим грубую оценку: при $p = 13 \div 15$ ГПа выделяется $10 \div 20$ % энергии детонации.

Наблюдаемая особенность связана с выделением энергии $\Delta q(p, \Delta t)$ за время Δt действия импульса давления p в материале, способном к экзотермическому превращению при давлении, выше порогового значения $p_{th} \approx 13 \Gamma \Pi a$. Но эта энергия ограничена по величине, для эмульсионного BB — значением $\Delta q \leq 2 \div 3$ кДж/г [3]. При $p > p_{th}$ и $\Delta q > 0$ ударная адиабата продуктов взрыва промежуточного состава в координатах ударная — массовая скорость отклоняется «вверх» от ударной адиабаты «инертного» материала. При еще более высоком давлении дополнительное выделение энергии становится малым по сравнению с внутренней энергией вещества за фронтом ударной волны и ударная адиабата продуктов взрыва стремится к ударной адиабате «инертного» вещества по аналогии с поведением состава PBX 9502 [6–8].

Обсуждаемый эффект аналогичен зарегистрированному около 50 лет назад при исследовании малочувствительных ВВ состава В, баратола, литого ТНТ и прессованного октогена [9, 10] при давлении до 100 ГПа. И только в последние годы на примере состава РВХ 9502 получено детальное описание эффекта на основе широкодиапазонных уравнений состояния взрывчатого состава, продуктов взрыва и модели кинетики детонационного превращения [6, 7].

Отмеченная особенность на ударной адиабате пересжатой АС-эмульсии была неизвестна. Она указывает на начало экзотермической реакции разложения композиции при расчетной температуре ударного нагрева $750 \div 800 \text{ K}$. соответствующей давлению 13÷15 ГПа. Для АС/НС-эмульсии подобная особенность на ударной адиабате [1] не зарегистрирована, поэтому можно говорить о более высокой чувствительности АС-эмульсии к ударному инициированию при сверхдетонационных давлениях. Заметим, что на профилях давления на входе в образец АС-эмульсии при давлении более $13 \div 15$ ГПа с задержкой около 0.5 мкс также появляется подъем давления амплитудой $1 \div 4$ ГПа (см. рис. 1), как и для AC/HCэмульсии [1], который связан с инициированием частичного разложения эмульсии за фронтом ударной волны. Но скорость выделения энергии незначительна и не может поддержать развитие инициирующей волны до детонационной в образце ограниченной толщины при ограниченной длительности инициирующего импульса.

Наличие особенности на ударной адиабате АС-эмульсии при частичном выделении энергии указывает, возможно, на то, что взрывное разложение эмульсии протекает в две стадии: 1) «быстрая» с характерным временем менее 1÷2 мкс (время поддержания давления $13 \div 20 \ \Gamma \Pi a$), в течение которой выделяется до $10 \div 20 \%$ энергии; 2) «медленная», в течение которой выделяется оставшаяся часть энергии. Причиной двухстадийности может быть значительная разница в характерных размерах прослоек горючего $(0.1 \div 0.2 \text{ мкм})$ и капель окислителя $(1 \div 2 \text{ мкм})$. В течение первой стадии происходит окисление горючего в областях пространства размером порядка толщины прослойки горючего. Длительность второй стадии определяется динамическими процессами дробления капель окислителя и перемешивания основной части окислителя с горючим, а также скоростью теплообмена между горячими и более холодными областями эмульсии.

ЛИТЕРАТУРА

- 1. Сильвестров В. В., Юношев А. С., Пластинин А. В., Рафейчик С. И. Ударная сжимаемость эмульсионной матрицы при давлении до 37 ГПа // Физика горения и взрыва. — 2014. — Т. 50, № 4. — С. 110–116.
- Lee J., Sandstrom F. W., Graig B. G., Persson P.-A. Detonation and shock initiation properties of emulsion explosives // Proc. 9th Intern. Detonation Symp. 1989. P. 263–271.

- 3. Одинцов В. В., Пепекин В. И., Кутузов Б. Н. Оценка термодинамической неидеальности детонации эмульсионного ВВ // Хим. физика. — 1994. — Т. 13, № 11. — С. 79–87.
- Ананьин А. В., Колдунов С. А. К исследованию детонационной способности матрицы эмульсионных ВВ // Тр. междунар. конф. «IX Харитоновские тематические научные чтения, 12–16 марта 2007, Саров». — С. 93–96.
- Utkin A. V., Lavrov V. V., Mochalova V. M. Experimental determination of detonation parameters of explosives based on ammonium nitrate // Shock Compression of Condensed Matter 2011; AIP Conf. Proc. 1426. P. 205–208.
- Wescott B. L., Stewart D. S., Davis W. C. Equation of state and reaction rate for condensedphase explosives // J. Appl. Phys. — 2005. — V. 98. — 053514(1–10).
- Menikoff R. Complete EOS for PBX 9502 // LANL Report LA-UR-09-06529. — October 7, 2009.
- Shrokhov E. V. Special points and regions of shock and detonation adiabats of TATB — based explosive // Intern. Conf. «Shock Wave in Condensed Matter», Saint-Petersburg, 1–6 September 2002, Russia. — P. 230–236.
- Skidmore I. C., Hart S. The equation of state of detonation products behind overdriven detonation waves in composition B // Proc. Fourth Symp. (Intern.) on Detonation. — 1965. — P. 47–51.
- Kineke J. H., Jr., West C. E., Jr. Shocked states of four overdriven explosives // Proc. Fifth Symp. (Intern.) on Detonation. — 1970. — P. 533– 543.

Поступила в редакцию 15/I 2014 г.