ПЕТРОЛОГИЯ И ВЕЩЕСТВЕННЫЙ СОСТАВ РЕДКОМЕТАЛЛЬНЫХ ЩЕЛОЧНЫХ КОМПЛЕКСОВ ЮЖНОЙ ГОБИ (*Монголия*)

Н.В. Владыкин

Институт геохимии им. А.П. Виноградова СО РАН, 664033, Иркутск, ул. Фаворского, 1а, Россия

Ранее в Южной Гоби Монголии были открыты пояс массивов щелочных гранитов и карбонатитовая провинция. Лугингольский массив псевдолейцитовых сиенитов с карбонатитами входил в щелочногранитный пояс. Полученные новые цифры возраста показали, что он на 40 млн лет моложе Хан-Богдинского массива и отделен от щелочно-гранитного пояса крупным разломом. На этом же участке Южной Гоби кроме Лугингольского массива с западной стороны от массива в районе горы Барун-Хасар-Ула В.И. Коваленко обнаружены серия даек щелочных К-шонкинитов с жилой редкометалльного карбонатита, а на северо-востоке от Лугингольского массива нами — серия даек щелочных и нефелиновых сиенитов. Эти данные дают основание выделить интрузивный комплекс К-щелочных пород шонкинитов и лейцитовых сиенитов с ТR-рудоносными карбонатитами верхнепалеозойского возраста. Таким образом, в Южной Гоби выделяются три разновозрастных комплекса щелочных пород. В статье приводятся уточненные геологические карты трех комплексов. Массивы всех трех комплексов являются месторождениями редких элементов (TR, Nb, Zr, Y и P). Детально рассмотрен химический состав силикатных пород комплекса, редкометалльных агпаитовых пегматитов, карбонатитовых и апатитовых редкометалльных руд. На основе идентичности химического, минерального и геохимического редкометалльного составов шонкинитов Барун-Хасар-Ула и Маунтин Пасс (США) и их карбонатитов вместе с карбонатитами Лугингольского массива делается вывод о их принадлежности к единому формационному комплексу Кщелочных пород и карбонатитов. С использованием графиков спектров TR и спайдеровских диаграмм показана общность и различия редкометалльных пород трех комплексов, а также отличия парагенезисов их редкометалльных минералов. Описывается редкий процесс аморфизации редкометалльных минералов, связанный с высокими температурами их кристаллизации в химической обстановке аномальной кремнекислотности в пегматитах Хан-Богдинского массива. Источником первичных магм щелочно-карбонатитовых комплексов является контаминированная мантия ЕМ-2, прошедшая процесс рециклинга, а для агпаитовых щелочных гранитов Хан-Богдо — деплетированная мантия.

Петрология, щелочные граниты, карбонатиты, химический состав, редкометалльные породы, Монголия.

PETROLOGY AND COMPOSITION OF RARE-METAL ALKALINE ROCKS IN THE SOUTH GOBI DESERT (Mongolia)

N.V. Vladykin

Earlier, a belt of alkali-granite plutons and a carbonatite province were discovered in the South Gobi Desert, Mongolia. The Lugingol pluton of pseudoleucitic syenites with carbonatites was assigned to the alkaligranite belt. However, new dating showed that it is 40 Myr younger than the Khan-Bogdo pluton and a large fault separates it from the alkali-granite belt. In the same part of the South Gobi Desert, a dike series of alkaline K-shonkinites with a rare-metal carbonatite vein was found by V.I. Kovalenko west of the Lugingol pluton, near Mt. Baruun Hasar Uula, and a dike series of alkali and nepheline syenites was found by us northeast of the Lugingol pluton. These data give grounds to distinguish an intrusive complex of K-alkaline shonkinites and leucitic syenites with Late Paleozoic REE-bearing carbonatites. Thus, three alkaline-rock complexes of different ages are distinguished in the South Gobi Desert. We present refined geological maps of these complexes. The plutons of all three complexes are deposits of trace elements (REE, Nb, Zr, Y, P). The chemical composition of the silicate rocks of the complex, rare-metal agpaitic pegmatites, and carbonatite and apatite rare-metal ores was considered in detail. Shonkinites from Mt. Baruun Hasar Uula and the Mountain Pass mine (United States) and their carbonatites, along with the Lugingol carbonatites, belong to a single association of K-alkaline rocks and carbonatites, as evidenced by their identical chemical, mineral, and geochemical rare-metal compositions. Rareearth element patterns and spidergrams show similarities and differences between the rare-metal rocks of three complexes as well as paragenetic differences between their rare-metal minerals. A rare process is described - the amorphization of rare-metal minerals, related to their high-temperature crystallization in a medium with abnormal silica contents of the Khan-Bogdo pegmatites. The parental magmas of the alkali-carbonatite complexes were generated from the EM-2 contaminated mantle that had undergone recycling, whereas the parental

magmas of the Khan-Bogdo agpaitic alkali granites were produced from depleted mantle.

Petrology, alkali granites, carbonatites, chemical composition, rare-metal rocks, Mongolia

введение

В ходе работы Советско-Монгольской экспедиции АН СССР и АН МНР (1967—1988 гг.) в Монголии был обнаружен целый ряд щелочных комплексов с редкометалльной минерализацией. Их открытие во многом связано с именем акалемика Вячеслава Ивановича Коваленко и возглавляемой им в то время группой сотрудников лаборатории геохимии редких элементов Института геохимии СО РАН (г. Иркутск). Был выделен Li-F тип редкометалльных гранитов Монголии и впервые обоснован магматический генезис этих образований, считающихся ранее апогранитами [Коваленко и др., 1971; Коваленко, 1977]. Это коренным образом изменило методику поисков редкометалльного сырья. Прекрасным подтверждением этой гипотезы было открытие в 1968 г. субвулканических аналогов редкометалльных Li-F гранитов, названных онгонитами [Коваленко и др., 1970], которые как новый тип пород заняли свое место в петрографической классификации. В том же году при исследовании Хан-Богдинского гранитного массива была определена его агпаитовая щелочно-гранитная природа и открыты несколько участков месторождений Zr, TR, Nb [Коваленко и др., 1977а, б.в]. Здесь же был обнаружен новый минерал — Са-цирконосиликат, получивший название армстронгит [Владыкин и др., 1973], а затем новые минералы — монголит [Владыкин и др., 1985] и коваленкоит [Владыкин и др., 2006]. После изучения более 300 массивов мезозойских гранитов Монголии (1969—1971 гг.) В.И. Коваленко с сотрудниками впервые выделили пять геохимических типов гранитов. В это же время семь массивов щелочных гранитов были объединены в Южно-Гобийский пояс щелочных пород [Коваленко и др., 1973] и обнаружен Лугингольский массив псевдолейцитовых сиенитов с месторождением редкоземельных карбонатитов палеозойского возраста [Коваленко и др., 1974], а в 1975 г. была открыта Южно-Гобийская карбонатитовая провинция мезозойского возраста (7 массивов) с редкоземельным и апатитовым месторождением (Мушугай-Худук) [Коваленко и др., 1976].

В Южно-Гобийском районе Монголии выделялись две рудоносные редкометалльные формации: пояс щелочных гранитов и карбонатитовая провинция [Коваленко и др., 19776]. Лугингольский массив псевдолейцитовых и нефелиновых сиенитов пространственно попадал в пояс щелочных гранитов (рис. 1), хотя по составу пород относился к другому формационному типу. После детальных датировок абсолютного возраста массивов этого пояса выяснилось, что Лугингольский массив на 40 млн лет моложе щелочно-гранитных массивов [Ярмолюк, 1991]. Однако щелочные лейцитовые массивы отдельно в природе не встречаются и вопрос о формационной принадлежности Лугингольского массива оставался до сих пор открытым. Позднее, в 30 км западнее Лугингольского массива в районе горы Барун-Хасар-Ула, монгольским геологом Ц. Цеденом обнаружена дайка редкометалльных карбонатитов с бастнези-

Рис. 1. Схема расположения щелочных массивов в Южно-Гобийском районе.

1 — щелочные граниты, 2 — массивы МZ-карбонатитового комплекса, 3 — массивы РZ-карбонатитового комплекса, массивы: М — Мушугай-Худук, ХБ — Хан-Богдо, Л — Лугингол; 4 — границы между тектоническими блоками. том, а В.И. Коваленко найдены дайки К-шонкинитов. Автором в районе горы Олон-Обо в 40 км к северо-востоку от Лугингольского массива были найдены дайка нефелиновых сиенитов (40 % нефелина) и семь даек щелочных сиенитов. Таким образом, к настоящему времени в этом районе известно три проявления К-щелочных пород, и этого достаточно, чтобы объединить их в самостоятельный формационный тип щелочных пород в Южной Гоби. Кроме того, район этих массивов отделен от Хан-Богдинского массива крупным Дзун-Баинским разломом [Ярмолюк, 1983], который хорошо виден на космоснимке (рис. 2). Мы предлагаем выделять в Южно-Гобийском районе Монголии рудоносные комплексы трех генетических формаций:

1) вулканогенный комплекс К-Na щелочных пород с карбонатитами и нельсонитами с рудоносным объектом Мушугай-Худук мезозойского возраста (120—150 млн лет);

2) интрузивный комплекс К-щелочных пород (шонкинитов и лейцитовых сиенитов) с TR-рудоносными карбонатитами с Лугингольским массивом верхнепалеозойского возраста (250 млн лет);

3) щелочно-гранитный интрузивный комплекс агпаитовых пород с рудоносным Хан-Богдинским массивом верхнепалеозойского возраста (290—300 млн лет) (см. рис. 1).

Все эти комплексы связаны с молодым пермь-карбоновым и юрским рифтогенезом Южной Гоби [Ярмолюк, 1983]. С рудоносными карбонатитами, апатитовыми породами (нельсонитами) и агпаитовыми пегматит-экеритовыми гранитами связаны крупные месторождения TR-F-P и Zr-Nb-TR, уникальные по генезису [Коваленко и др., 1977а, б, в]. Их изучение имеет большое научное и практическое значение.

ЮЖНО-ГОБИЙСКАЯ КАРБОНАТИТОВАЯ ПРОВИНЦИЯ

Эта провинция включает в себя семь объектов, протянувшихся с востока на запад на 300 км.

Мушугай-Худук — наиболее крупный из них рудоносный объект. Вулканическое поле Мушугай-Худук расположено в 70 км к северо-западу от аймачного центра Даландзадгад. Геологическая карта района представлена на рис. 3. Возраст вулканических полей, интрузивных штоков, небольших массивов щелочных пород — юрский (120—150 млн лет). Выделяются несколько полей вулканических потоков и жерловых вулканических построек различного состава [Самойлов, Коваленко, 1983]. Наиболее ранний вулкан К-Na щелочно-ультраосновного состава сложен переслаивающимися туфолавами, туфобрекчиями и лавовыми потоками мелалейцитит-меланефелинитового состава. Лавы прорывают дайка слюдистых шонкинитов и многочисленные мелкие жилы и дайки кальцитовых и кальцит-флюоритовых карбонатитов. Наиболее крупное вулканическое поле трахитового состава расположено в западной части участка. Оно сложено лавовыми и туфолавовыми потоками, и их рассекают многочисленные дайки (не менее 500 шт.) вулканогенных мелко- до микрозернистых карбонатитов кальцитового и

Рис. 2. Космический снимок территории Южной Гоби.

Хан-Богдинский массив: 1 — Большое кольцо, 2 — Малое кольцо, 3 — Лугингольский массив, 4 — район Барун-Хасар-Ула, 5 — район невскрытого массива, 6 — Дзун-Баинский региональный разлом. Линии — тектонические разломы.

Рис. 3. Схема геологического строения комплекса Мушугай-Худук, по [Самойлов, Коваленко, 1983].

I — четвертичные отложения; *2* — оливиновые базальты; *3* — трахит-латиты (MZ₂tr₄); *4* — трахириодациты-трахитодациты (MZ₂tr₃); *5* — рудоносные участки; *6* — наиболее крупные рудоносные участки; *7* — остатки вулканических аппаратов; *8* — субвулканические трахиты, трахириодациты, сиенит-порфиры; *9* — сиениты; *10* — субщелочные трахиты (MZ₂tr₂); *11* — меланефелиниты — мелалейциты (MZ₂tr₁); *12* — липариты (P₂); *13* — терригенно-вулканогенные, *14* — карбонатные; *15* — сбрососдвиги; *16* — надвиги; *17* — угол падения осадочных толщ.

кальцит-флюоритового составов. В этом же поле имеются штоки апатит-магнетитовых пород (нельсонитов) и апатит-флюорит-магнетит-целестиновых пород [Коваленко и др., 1979]. Здесь же обнажаются несколько мелких вулканических построек тералитов, жерла которых заполнены калиевополевошпатовой брекчией штокверкового типа, которая сцементирована кальцит-флюорит-кварцевым карбонатитом, содержащим до 3 мас. % TR. В полях трахитовых лав обнаружены три небольших штока нефелиновых и щелочных сиенитов, которые, возможно, являются более глубокоэродированными вулканическими постройками, и трахит-фонолитовая лава в них раскристаллизовалась в виде нефелиновых и щелочных сиенитов. Эти раскристаллизованные породы также рассекают дайки кальцитовых и кальцит-флюоритовых карбонатитов. Наиболее поздней магматической породой комплекса является липаритовая дайка, секущая даже карбонатиты. Она расположена в центральной части Мушугайского вулканического поля. Восточная часть поля сложена лавовыми потоками фонолитов, которые перекрывают ранние лавы трахириодацитового состава. Заканчивается восточная окраина поля более молодыми щитовыми вулканами щелочно-базальтового состава.

Представительные анализы силикатных пород Мушугай-Худукского вулканического поля представлены в табл. 1. На классификационной диаграмме щелочи—кремнезем точки составов вулканитов ложатся на щелочную линию (рис. 4), образуя единую серию от щелочно-ультраосновных пород (мелалейцититов-меланефелинитов) с большим полем пород среднего химического состава (различных трахитов, фонолитов и их интрузивных аналогов — щелочных и нефелиновых сиенитов) до пород кислого состава (трахириодацитов-трахилипаритов). Силикатные вулканические породы Мушугай-Худукского поля изучены довольно детально [Самойлов, Коваленко, 1983].

Меньше внимания уделялось фосфатно-карбонатным породам — карбонатитам и апатит-магнетитовым нельсонитам, хотя по ним тоже имеется довольно много аналитической информации [Коваленко и др., 1979; Коваленко и др., 1977а,в]. Эти породы близки по времени образования. Наблюдались как карбонатиты, рассеченные жилами апатит-магнетитовых пород, так и ксенолиты кальцит-флюоритовых карбонатитов в апатитолитах. Среди апатитовых пород можно выделить несколько разновидностей.

1. Два довольно крупных штокообразных или вулканоподобных образования округлой формы размером 30 × 70 м (тело Апатитовое-Верблюд и магнетитовое кольцо).

Компонент	1	2	3	4	5	6	7	8	9	10	11	12	13
SiO ₂	45.1	44.4	44.0	54.1	55.0	56.3	57.0	58.9	61.0	61.7	61.6	67.6	69.8
TiO ₂	1.18	1.10	1.17	1.12	1.13	1.17	1.30	0.80	0.75	0.83	0.59	0.45	0.40
Al ₂ O ₃	14.2	13.9	13.9	16.7	16.1	14.8	15.5	17.6	17.0	17.1	17.2	14.9	14.7
Fe ₂ O ₃	4.08	4.77	4.13	3.80	3.03	3.27	4.61	3.31	3.45	2.26	2.56	0.20	2.87
FeO	4.13	3.05	4.49	2.15	3.51	2.51	1.62	0.72	0.90	2.33	1.25	2.35	0.28
MnO	0.16	0.16	0.15	0.09	0.13	0.10	0.09	0.10	0.06	0.10	0.09	0.10	0.08
MgO	5.04	5.27	6.21	2.91	2.25	2.91	3.66	0.71	0.54	0.59	0.96	0.45	0.33
CaO	8.67	8.34	9.72	4.20	5.21	6.0	4.47	3.96	1.79	1.61	2.04	1.29	0.12
BaO	0.70	0.81	0.60	0.46	0.62	0.50	0.44	0.40	0.36	0.30	0.31	0.06	0.06
SrO	0.89	0.93	0.70	0.54	1.36	0.57	0.40	0.56	0.46	0.44	0.32	0.11	0.07
K ₂ O	3.25	4.09	4.05	5.57	5.53	5.01	4.69	5.55	6.72	6.11	5.53	4.32	5.65
Na ₂ O	4.81	4.73	3.95	5.39	4.05	4.32	4.45	5.10	5.28	5.40	4.64	5.63	5.04
P_2O_5	2.39	1.13	1.19	0.68	0.90	1.04	0.86	0.26	0.27	0.59	0.68	1.13	0.06
$H_2O + CO_2$	4.46	6.06	4.87	1.41	1.12	1.03	0.28	1.80	0.23	1.0	1.79	0.93	0.22
F	0.75	0.85	0.80	0.95	0.23	0.35	0.75	0.40	1.05	0.23	0.12	0.13	0.20
Сумма	100.3	100.2	100.2	100.6	100.3	99.99	100.6	100.4	100.5	100.7	99.7	99.7	100.1
Компонент	14	15	16	17	18	19	20	21	22	23	24	25	26
SiO_2	71.1	56.4	55.5	56.2	56.4	67.3	69.0	55.8	58.3	60.8	60.3	60.4	70.1
TiO ₂	0.40	1.38	1.30	1.40	1.45	0.42	0.44	1.0	0.80	0.62	0.64	0.90	0.28
Al ₂ O ₃	14.0	16.0	15.1	15.9	16.8	11.9	12.1	16.9	18.0	18.0	17.9	16.4	14.4
Fe ₂ O ₃	1.65	4.22	6.43	5.57	5.82	1.67	0.62	2.99	3.44	2.87	2.93	3.40	0.67
FeO	0.28	1.37	0.92	1.26	0.70	1.15	1.29	3.05	2.08	1.29	1.15	1.44	0.43
MnO	0.02	0.07	0.09	0.08	0.08	0.37	0.08	0.13	0.10	0.11	0.08	0.07	0.03
MgO	0.27	2.89	2.66	2.31	1.95	0.55	0.52	2.04	1.49	0.97	0.82	1.38	0.36
CaO	1.11	4.76	6.07	4.72	2.72	2.62	2.48	3.76	2.87	2.53	2.09	2.80	1.40
BaO	0.01	0.45	0.43	0.47	0.73	0.10	0.11	0.49	0.30	0.10	0.15	0.10	0.05
SrO	0.08	0.44	0.37	0.45	0.45	0.22	0.18	0.57	0.56	0.20	0.26	0.20	0.02
K ₂ O	5.51	5.31	4.31	4.64	5.79	7.87	8.09	5.68	5.84	5.83	6.38	5.56	5.93
Na ₂ O	4.81	4.38	4.05	4.43	4.67	1.65	1.67	4.67	5.18	5.35	5.59	5.46	5.03
P_2O_5	0.06	0.90	0.90	0.95	0.81	0.15	0.12	1.13	0.34	0.12	0.16	0.21	0.20
$H_2O + CO_2$	0.51	0.47	1.47	0.41	1.01	0.46	0.92	2.15	0.69	0.24	0.86	1.17	0.48
											1		
F	0.25	0.65	0.50	0.85	0.75	2.0	1.50	0.12	0.35	0.40	0.30	0.30	0.40

Таблица 1. Химический состав силикатных пород (мас. %) вулканического поля Мушугай-Худук

Примечание. 1—3 лавы меланефелинитов-мелалейцититов, 4 — жильный шонкинит, секущий меланефелинит, 5 и 21 — субвулканический тералит (жерло вулкана), 6—11 — лавы трахитов, Восточное поле, 12—14 — лавы санидиновых трахириодацитов Западного поля, 15—18 — лавы фонолитов Западного поля, 19, 20 — стекловатые трахилипариты Восточного поля. Штоки небольших интрузивных массивов: 22 — нефелиновых сиенитов, 23, 25 — щелочных сиенитов, 26 — кварцевых сиенитов. Данные химического анализа, аналитик Г.А. Погудина, ИГХ СО РАН.

Апатитовое тело от контакта к центру сложено мелкозернистым трахитоидным апатитолитом, состоящим на 95 % из удлиненных кристаллов апатита, в интерстициях присутствует разложившаяся стекловатая изотропная масса. В центре тела размером 2×3 м залегает магнетитолит, состоящий из агрегатов кристаллов магнетита и слюды (5 %). Апатитолиты содержат от 7 до 15 мас. % TR. От контакта с вмещающими породами к центру апатитовые породы становятся более мелкозернистыми (закаленными), притом концентрации TR в них закономерно возрастают до наивысших значений — 15 мас. %. В самих апатитах максимальные концентрация TR достигают 8 %, остальные редкоземельные элементы содержатся в изотропной основной массе.

Второе тело расположено в 200 м в юго-западном направлении от Апатитового. Оно сложено также апатитолитами со слюдой и магнетитом. Магнетит образует кольцо диаметром 10 м при ширине

Рис. 4. Классификационная диаграмма щелочи—кремнезем (мас. %) для пород района Мушугай-Худук.

I — меланефелиниты-мелалейцититы, *2* — трахиты, сиениты, *3* — трахириодациты-трахилипариты.

1—1.5 м. Этот магнетитолит состоит из агрегата крупных дендритовидных, удлиненных по одному из углов октаэдра кристаллов магнетита. Размер октаэдров 5—10 см. Такие текстурные особенности апатита и магнетита свидетельствуют об их быстрой кристаллизации из расплава. Высокие температуры образования апатит-магнетитовых пород и их кристаллизация из расплав-флюида были подтверждены детальными термобарогеохимическими исследованиями [Андреева, 2000].

2. Несколько даек апатит-магнетитовых пород мощностью от 0.2 до 3 м и протяженностью до десятков метров. Они сложены апатитом с магнетитовыми эндоконтактовыми оторочками. В центральной части крупных тел этих пород встречаются обособления агрегатов целестина и барита до 0.3 м.

3. Жильное тело мелкозернистых флюорит-магнетит-апатитовых пород с целестином. Ширина тела 5—20 м и протяженность с юга на север до 500 м. Южный контакт тела срезан разломом, по которому внедрилась дайка красного трахилипарита. На всей протяженности тела имеются несколько коренных выходов этих пород с варьирующими содержаниями главных минералов. Эти породы содержат до 2—4 мас. % TR, 5—10 мас. % фтора, 10—20 мас. % SrO и 10—20 мас. % Р₂O₅. Возможно, эти образования являются новым типом рудоносных пород. Представительные анализы химического состава пород рудного комплекса Мушугай-Худук представлены в табл. 2, а содержания редких элементов в табл. 3 и 4.

По минеральному составу среди карбонатитовых проявлений Мушугай-Худукского поля также можно выделить несколько разновидностей. Все карбонатитовые жилы (дайки) — лейкократовые. Наиболее распространены мелко- и микрозернистые кальцитовые карбонатиты. Это тела, внедрившиеся по мелким трещинам в трахитовом потоке. Их мощность от 10 до 50 см и протяженность 5—30 м. Сложены они кальцитом. Из второстепенных минералов присутствуют апатит, магнетит, флюорит и редко кварц. Карбонатит, секущий апатитовую дайку (участок Тералитовый), обогащен монацитом. Встречена одна карбонатитовая дайка, содержащая до 20 мас. % калиевого полевого шпата.

В западной части трахитового поля имеется мощная дайка карбонатита, протяженностью до 1 км и мощностью до 1 м, которая сложена мелкозернистым кальцитом с кавернозными пустотами. Она рассечена поперек протяженности многочисленными тектоническими трещинами, по которым, возможно, тело перемещалось в вертикальном направлении. В самой западной части этой дайки имеется участок 2-метровой протяженности, сложенный сферолитоподобными агрегатами доломитового состава, которые сцементированы кальцитовой основной массой (см. табл. 2, ан. 10). В двух метрах от доломитового участка эта дайка сечется дайкой сиенит-порфира.

Другая разновидность карбонатитов — кальцит-флюоритовая. Флюорит образует идиоморфные кристаллы кубического габитуса в кальцитовой основной массе. Из других минералов в этих карбонатитах встречены апатит и магнетит. Карбонатиты мелко- и микрозернистые. Развиты они в тех же участках, что и кальцитовые карбонатиты. Геологические и петрографические данные свидетельствуют о

				-								
Компонент	1	2	3	4	5	6	7	8	9	10	11	12
SiO ₂	23.5	17.2	25.7	3.61	5.4	21.1	6.91	38.3	50.0	30.8	47.5	32.6
TiO ₂	0.05	0.05	0.15	0.10	0.05	0.09	0.05	0.05	0.05	0.10	0.05	0.13
Al ₂ O ₃	0.43	1.12	3.39	0.44	0.53	5.36	0.54	0.32	0.45	0.23	0.22	3.91
Fe ₂ O ₃	1.02	0.68	1.01	1.46	0.53	0.10	0.17	0.34	0.46	0.34	0.53	3.82
FeO	0.80	0.17	0.18	2.05	0.18	0.71	0.36	0.89	1.87	0.88	0.17	0.86
MnO	0.55	0.20	0.44	1.10	0.47	0.93	0.12	0.54	0.85	0.23	0.24	0.44
MgO	1.80	0.29	0.84	17.04	0.68	0.24	0.64	3.22	2.44	0.44	0.60	0.58
CaO	33.04	42.76	31.80	27.36	45.21	36.95	25.01	21.73	18.03	35.04	18.90	26.36
BaO	1.38	0.17	2.42	0.28	1.79	2.95	1.82	10.19	1.34	6.22	2.57	0.09
SrO	0.22	0.19	0.22	0.33	2.47	0.22	22.94	0.20	0.33	0.31	1.27	0.17
K ₂ O	0.00	н.о.	1.22	0.19	0.09	0.15	0.12	0	0	0.16	0	2.86
Na ₂ O	0.08	0.03	0.68	0.97	0.11	0.13	0.10	0	0.02	0.23	0	0.29
H ₂ O	0.12	0.90	1.25	1.39	0.49	1.59	0.21	1.13	1.28	1.13	0.61	1.29
CO ₂	32.28	33.70	27.81	41.01	18.17	24.18	12.89	15.96	16.64	8.09	9.58	24.41
P ₂ O ₅	0.27	1.35	1.22	0.27	0.22	0.63	0.95	0.00	0.23	2.01	1.28	0.00
SO_4	0.82	0.15	1.45	1.20	11.41	1.30	20.46	0.69	2.15	1.61	6.08	0.20
TR	0.55	0.10	0.23	0.14	1.26	0.50	2.30	0.84	1.25	3.30	4.50	0.61
F	1.70	1.40	0.90	2.10	18.80	5.80	8.50	11.00	5.50	20.10	10.20	2.30
Сумма	99.90	99.86	100.5	100.2	99.95	100.4	100.5	100.8	100.7	100.4	99.90	99.91
Компонент	13	14	15	16	17	18	19	20	21	22	23	24
Компонент SiO ₂	13 26.6	14 23.6	15 21.3	16 5.22	17 11.8	18 19.2	19 32.8	20 19.5	21 4.53	22 7.42	23 10.5	24 41.7
Компонент SiO ₂ TiO ₂	13 26.6 0.10	14 23.6 0.07	15 21.3 0.15	16 5.22 0.55	17 11.8 0.20	18 19.2 0.05	19 32.8 1.60	20 19.5 1.20	21 4.53 0.35	22 7.42 0.45	23 10.5 0.97	24 41.7 0.35
Компонент SiO ₂ TiO ₂ Al ₂ O ₃	13 26.6 0.10 3.28	14 23.6 0.07 5.02	15 21.3 0.15 5.40	16 5.22 0.55 2.97	17 11.8 0.20 2.85	18 19.2 0.05 2.51	19 32.8 1.60 2.31	20 19.5 1.20 2.45	21 4.53 0.35 2.21	22 7.42 0.45 5.20	23 10.5 0.97 5.93	24 41.7 0.35 1.09
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃	13 26.6 0.10 3.28 4.11	14 23.6 0.07 5.02 4.45	15 21.3 0.15 5.40 2.15	16 5.22 0.55 2.97 29.70	17 11.8 0.20 2.85 35.18	18 19.2 0.05 2.51 19.37	19 32.8 1.60 2.31 22.39	20 19.5 1.20 2.45 19.35	21 4.53 0.35 2.21 7.50	22 7.42 0.45 5.20 9.42	23 10.5 0.97 5.93 15.61	24 41.7 0.35 1.09 5.73
$\begin{tabular}{c} \hline Komtoheht \\ SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \end{tabular}$	13 26.6 0.10 3.28 4.11 0.36	14 23.6 0.07 5.02 4.45 0.89	15 21.3 0.15 5.40 2.15 0.90	16 5.22 0.55 2.97 29.70 3.77	17 11.8 0.20 2.85 35.18 0.53	18 19.2 0.05 2.51 19.37 1.07	19 32.8 1.60 2.31 22.39 1.10	20 19.5 1.20 2.45 19.35 1.41	21 4.53 0.35 2.21 7.50 0.70	22 7.42 0.45 5.20 9.42 2.10	23 10.5 0.97 5.93 15.61 2.07	24 41.7 0.35 1.09 5.73 1.08
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO	13 26.6 0.10 3.28 4.11 0.36 0.39	14 23.6 0.07 5.02 4.45 0.89 0.05	15 21.3 0.15 5.40 2.15 0.90 0.53	16 5.22 0.55 2.97 29.70 3.77 0.42	17 11.8 0.20 2.85 35.18 0.53 0.28	18 19.2 0.05 2.51 19.37 1.07 0.13	19 32.8 1.60 2.31 22.39 1.10 0.36	20 19.5 1.20 2.45 19.35 1.41 0.78	21 4.53 0.35 2.21 7.50 0.70 0.10	22 7.42 0.45 5.20 9.42 2.10 0.10	23 10.5 0.97 5.93 15.61 2.07 0.11	24 41.7 0.35 1.09 5.73 1.08 0.02
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO SrO	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18 0.22	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20
Kompoheht SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO SrO K ₂ O	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18 0.22 3.66	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26 0.50	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14
Komnohehtt SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO SrO K ₂ O Na ₂ O	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18 0.22 3.66 0.93	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26 0.50 0.43	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.47
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17 1.23	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26 0.21	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18 0.22 3.66 0.93 0.34	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33 1.73	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26 0.50 0.43 1.12	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23 3.43	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22 1.86	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11 2.39	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38 1.83	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53 3.55	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35 1.30	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.47 3.12
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17 1.23 24.06	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26 0.21 7.83	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18 0.22 3.66 0.93 0.34 21.23	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33 1.73 0.88	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26 0.26 0.43 1.12 1.47	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23 3.43 1.90	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22 1.86 0.49	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11 2.39 9.00	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38 1.83 0.37	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53 3.55 0.58	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35 1.30 0.30	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.20 0.14 0.47 3.12 12.01
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17 1.23 24.06 0.00	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26 0.21 7.83 8.04	15 21.3 0.15 5.40 2.15 0.90 0.53 0.84 32.35 6.18 0.22 3.66 0.93 0.34 21.23 0.38	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33 1.73 0.88 20.41	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26 0.50 0.43 1.12 1.47 14.69	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23 3.43 1.90 18.88	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22 1.86 0.49 14.01	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11 2.39 9.00 7.91	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38 1.83 0.37 26.99	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53 3.55 0.58 18.51	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35 1.30 0.30 17.38	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.20 0.14 0.47 3.12 12.01 1.27
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17 1.23 24.06 0.00 1.07	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26 0.21 7.83 8.04 9.27	$\begin{array}{c} 15\\ 21.3\\ 0.15\\ 5.40\\ 2.15\\ 0.90\\ 0.53\\ 0.84\\ 32.35\\ 6.18\\ 0.22\\ 3.66\\ 0.93\\ 0.34\\ 21.23\\ 0.38\\ 1.15 \end{array}$	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33 1.73 0.88 20.41 1.09	$\begin{array}{c} 17\\ 11.8\\ 0.20\\ 2.85\\ 35.18\\ 0.53\\ 0.28\\ 1.31\\ 18.88\\ 2.46\\ 0.26\\ 0.50\\ 0.43\\ 1.12\\ 1.47\\ 14.69\\ 1.30\\ \end{array}$	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23 3.43 1.90 18.88 2.51	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22 1.86 0.49 14.01 0.33	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11 2.39 9.00 7.91 0.50	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38 1.83 0.37 26.99 1.50	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53 3.55 0.58 18.51 6.50	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35 1.30 0.30 17.38 6.40	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.47 3.12 12.01 1.27 4.83
$\label{eq:solution} \begin{array}{c} \mbox{Kompoheht}\\ \mbox{SiO}_2\\ \mbox{TiO}_2\\ \mbox{Al}_2 \mbox{O}_3\\ \mbox{Fe}_2 \mbox{O}_3\\ \mbox{Fe}_2 \mbox{O}_3\\ \mbox{Fe}_2 \mbox{O}_3\\ \mbox{Fe}_0\\ \mbox{MgO}\\ \mbox{CaO}\\ \mbox{BaO}\\ \mbox{SrO}\\ \mbox{K}_2 \mbox{O}\\ \mbox{Ma}_2 \mbox{O}\\ \mbox{H}_2 \mbox{O}\\ \mbox{CO}_2\\ \mbox{P}_2 \mbox{O}_5\\ \mbox{SO}_4\\ \mbox{TR}\\ \end{array}$	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17 1.23 24.06 0.00 1.07 0.41	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26 0.21 7.83 8.04 9.27 2.50	$\begin{array}{c} 15\\ 21.3\\ 0.15\\ 5.40\\ 2.15\\ 0.90\\ 0.53\\ 0.84\\ 32.35\\ 6.18\\ 0.22\\ 3.66\\ 0.93\\ 0.34\\ 21.23\\ 0.38\\ 1.15\\ 1.00\\ \end{array}$	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33 1.73 0.88 20.41 1.09 2.52	17 11.8 0.20 2.85 35.18 0.53 0.28 1.31 18.88 2.46 0.26 0.26 0.43 1.12 1.47 14.69 1.30 5.64	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23 3.43 1.90 18.88 2.51 1.11	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22 1.86 0.49 14.01 0.33 6.24	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11 2.39 9.00 7.91 0.50 6.38	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38 1.83 0.37 26.99 1.50 10.70	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53 3.55 0.58 18.51 6.50 5.58	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35 1.30 0.30 17.38 6.40 6.34	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.20 0.14 0.47 3.12 12.01 1.27 4.83 3.75
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 26.6 0.10 3.28 4.11 0.36 0.39 0.68 32.13 0.82 0.13 2.50 0.17 1.23 24.06 0.00 1.07 0.41 3.30	14 23.6 0.07 5.02 4.45 0.89 0.05 0.60 20.27 6.08 10.50 1.50 0.26 0.21 7.83 8.04 9.27 2.50 0.20	$\begin{array}{c} 15\\ 21.3\\ 0.15\\ 5.40\\ 2.15\\ 0.90\\ 0.53\\ 0.84\\ 32.35\\ 6.18\\ 0.22\\ 3.66\\ 0.93\\ 0.34\\ 21.23\\ 0.38\\ 1.15\\ 1.00\\ 3.00\\ \end{array}$	16 5.22 0.55 2.97 29.70 3.77 0.42 1.49 22.58 2.24 3.41 0.37 0.33 1.73 0.88 20.41 1.09 2.52 1.10	$\begin{array}{c} 17\\ 11.8\\ 0.20\\ 2.85\\ 35.18\\ 0.53\\ 0.28\\ 1.31\\ 18.88\\ 2.46\\ 0.26\\ 0.50\\ 0.43\\ 1.12\\ 1.47\\ 1.469\\ 1.30\\ 5.64\\ 1.50\\ \end{array}$	18 19.2 0.05 2.51 19.37 1.07 0.13 0.24 22.16 3.45 3.11 0.08 0.23 3.43 1.90 18.88 2.51 1.11 1.60	19 32.8 1.60 2.31 22.39 1.10 0.36 1.02 14.08 0.66 0.14 0.31 0.22 1.86 0.49 14.01 0.33 6.24 1.00	20 19.5 1.20 2.45 19.35 1.41 0.78 1.12 25.23 0.96 0.11 0.25 0.11 2.39 9.00 7.91 0.50 6.38 2.10	21 4.53 0.35 2.21 7.50 0.70 0.10 0.07 35.12 3.76 2.84 0.02 0.38 1.83 0.37 26.99 1.50 10.70 1.50	22 7.42 0.45 5.20 9.42 2.10 0.10 0.11 25.27 2.65 9.96 0.04 0.53 3.55 0.58 18.51 6.50 5.58 4.90	23 10.5 0.97 5.93 15.61 2.07 0.11 0.10 21.56 2.07 9.26 0.02 0.35 1.30 0.30 17.38 6.40 6.34 3.30	24 41.7 0.35 1.09 5.73 1.08 0.02 0.72 4.74 3.04 0.20 0.14 0.47 3.12 12.01 1.27 4.83 3.75 3.30

Химический состав карбонатитов и апатитовых пород (мас. %) района Мушугай-Хулук

Таблица 2.

Примечание. В № 24 определено 14 мас. % РbО. 1, 2, 3 — кальцитовый карбонатит с кварцем, 4 — доломитовый карбонатит, 5—7 — флюорит-кальцитовый карбонатит, 8—11 — кальцит-флюоритовый карбонатит с кварцем, 12—14 – полевошпат-кальцитовая брекчия, иногда с целестином, 15 — кальцит-полевошпат-флюоритовый карбонатит, жильный, 16—20 — магнетит-апатитовые породы (нельсониты), 21 — апатитолит, 22, 23 — апатит-флюорит-магнетитовая порода с целестином, 24 — ярозит-церусситовый туф. Данные химического анализа, аналитик Л.Н. Матвеева, ИГХ СО РАН.

				ранов		аи-лудук				
Элемент	1	2	3	4	5	6	7	8	9	10
Be	3.04	2.91	1.85	1.52	2.78	2.15	1.31	14.47	7.45	8.37
Sc	1.97	1.78	4.71	3.88	11.58	3.15	0.99	3.43	2.23	1.13
V	982.2	1025	57.50	59.99	82.75	57.42	9.79	44.05	41.68	30.60
Cr	17.62	53.67	14.06	54.23	32.29	38.65	4.46	22.21	10.87	15.45
Co	17.82	13.48	0.69	1.66	5.31	1.60	1.27	1.85	2.38	1.27
Ni	14.23	15.42	3.05	6.75	10.38	8.97	1.16	4.17	5.77	4.00
Cu	8.58	27.95	1.62	4.46	11.65	4.09	19.56	5.27	5.87	5.75
Zn	817.8	579.9	29.92	70.46	132.8	88.89	34.40	1013	86.71	113.7
Ga	29.50	36.07	2.96	3.69	4.05	3.54	3.72	13.53	18.12	8.56
Ge	0.35	0.38	0.06	0.10	0.20	0.10	0.12	0.68	0.62	0.34
Rb	12.18	19.47	3.56	8.53	41.89	5.42	4.11	102.7	126.5	64.43
Sr	1391	1149	9176	14337	5830	8747	1643	1489	2065	1844
Y	515.8	314.2	615.7	672.3	517.6	723.9	467.7	199.7	141.5	209.8
Zr	37.08	23.49	0.15	0.17	2.36	1.12	48.32	196.3	212.6	135.5
Nb	34.53	26.37	0.73	1.50	6.77	0.66	18.15	20.69	32.79	13.44
Mo	10.69	5.15	3.42	4.19	6.23	4.28	45.75	137.4	9.13	73.92
Sn	14.08	13.31	0.28	0.14	1.06	0.20	1.45	1.74	1.99	1.28
Sb	0.98	1.13	0.33	0.13	0.69	0.15	21.77	2.95	0.71	4.72
Cs	2.40	8.44	0.76	1.76	1.92	2.75	1.68	3.72	3.28	1.71
Ba	65.93	69.84	213.9	620.3	458.5	303.4	9468	13706	15452	17505
La	3764	2009	4632	4936	3823	5486	11438	4814	3202	6811
Ce	10628	5353	11748	12819	10659	12454	19710	7734	5252	8328
Pr	1052	498.9	1227	1363	1042	1470	1426	520.3	353.8	523.4
Nd	3668	1752	4239	4682	3655	5006	3673	1412	964.9	1275
Sm	466.2	213.9	547.1	569.0	471.6	632.4	331.4	129.8	89.90	102.3
Eu	47.32	24.85	75.38	84.19	68.20	88.40	51.43	28.25	19.88	21.15
Gd	243.7	120.1	331.6	345.9	253.6	332.1	194.7	76.14	53.30	65.53
Tb	23.04	11.84	32.34	33.69	24.55	32.20	16.03	6.36	4.22	4.80
Dy	108.1	58.02	140.6	147.8	113.8	153.6	71.03	31.34	20.38	23.20
Но	19.15	10.30	22.92	23.72	19.68	25.96	12.23	5.79	3.87	4.44
Er	40.93	23.89	54.98	57.26	42.04	56.68	28.42	13.88	8.58	10.80
Tm	5.55	3.10	6.50	6.74	5.54	7.46	4.13	2.14	1.31	1.63
Yb	29.30	16.94	37.67	39.70	28.15	38.27	24.90	12.19	7.30	9.81
Lu	3.72	2.30	4.79	5.00	3.62	4.88	3.04	1.72	1.03	1.37
Hf	2.67	1.30	2.52	2.03	2.52	2.32	1.65	5.10	5.22	3.17
Та	0.69	0.36	0.38	0.37	0.42	0.38	0.25	0.84	1.65	0.54
W	11.94	2.44	0.79	0.77	0.95	0.93	33.11	28.22	23.85	15.57
Tl	0.25	0.25	0.12	0.34	0.56	0.18	1.05	0.72	0.91	0.58
Pb	27.38	21.15	19.89	39.50	38.20	83.84	132701	2465	178.7	389.1
Th	637.0	287.3	318.3	362.8	276.5	412.6	278.2	85.44	77.13	45.34
U	50.10	34.58	23.48	28.15	19.58	34.83	499.8	164.7	24.31	53.08

Содержание редких элементов (г/т) в апатитовых породах и туфах района Мушугай-Худук

Примечание. 1—6 — апатитовые породы центрального поля, 7 — ярозит-церусситовый туф, 8—10 — туфобрекчия с обломками полевых шпатов и мелкими выделениями флюорита. Данные анализа ACP-MS, аналитики Е.В. Смирнова и А.Ю. Митрофанова, ИГХ СО РАН, 2010 г.

Таблица 3.

вулканическом происхождении карбонатитов и их магматический генезис доказан термобарогеохимическими исследованиями [Андреева, 2000]. Недавно на вулкане Олдоньи-Ленгай в Центральной Африке кроме К-Na-карбонатитов были обнаружены и кальцит-флюоритовые, похожие на карбонатиты массива Мушугай-Худук [Зайцев, Петров, 2008]. Третья разновидность карбонатитов — кальцит-флюорит-кварцевая. Жерла небольших вулканов тералитового состава заполнены минерализованной брекчией калишпатового состава, которая по многочисленным трещинам насыщена жилами и прожилками кварц-кальцит-флюоритового состава штокверкового типа. Возможно, эта разновидность карбонатитов образовалась из эксплозивной газово-гидротермальной смеси, в которую при понижении температуры перешел карбонатитовый расплав-флюид. Эти породы содержат до 3 мас. % TR.

В западной части трахитового поля нами наблюдались эксплозивные образования необычного состава. В 1 км к северу от протяженной карбонатитовой дайки, за перевалом имеется еще один участок с карбонатами. На северной периферии этого поля встречены несколько субширотных даек мощностью 2-4 м и протяженностью до десятков метров. Это дайки граносиенит-порфиров и спекшихся игнембритов. Среди них имеются дайки сложного строения [Владыкин, 1997, 1999]. Первая дайка мощностью до 4 м. Ее северный контакт с трахитовым потоком сложен стеклами трахилипаритового состава с вкрапленниками калиевого полевого шпата, кварца и слюды мошностью 0.5—1 м (см. табл. 1, ан. 19-20). Центральная часть дайки представлена своеобразным туфобрекчиевым материалом желтого цвета эксплозивного генезиса, типа карбонатитовых туфов (см. табл. 2, ан. 11). Имеются две текстурные разновилности этих образований. Олна из них представляет собой туфобрекчию с более плотными обломками того же вещества желтого цвета, а другая — кавернозный (пузырчатый) туф, очень легкий, с черными точками дендритов магнетита (?) или оксидов марганца. Желтое пелитовое вещество по составу отвечает Рь-содержащему ярозиту. Кроме ярозита в большом количестве (до 20—30 мас. %) встречен первичный карбонат свинца — церуссит. Он образует прозрачные мелкие зерна и их агрегаты розоватого цвета до 1 мм, равномерно рассеянные в породе. Встречаются отдельные зерна до 3—5 мм. Содержание PbO в этом туфе 15—18 мас. % и до 5 мас. % TR (см. табл. 3, ан. 7). Кроме ярозита и церуссита в породе обнаружены в небольшом количестве магнетит, опаловидный неупорядоченный кристобаллит, флюорит, барит, кальцит. Южная часть дайки сложена ожелезненным флюоритизированным пирокластом. Он состоит из обломков трахилипаритовых стекол, трахит-полевошпатовых лав с большим количеством мелких темно-синих кристаллов флюорита кубического габитуса. Обломки часто пропитаны бурым марганцовистым агрегатом. Эти породы также обогащены TR, Pb, Ba (см. табл. 3, ан. 7, 8, 9). Южнее в трахитовых лавах встречены прожилки микрозернистых флюорит-барит-кристобалитовых пород черно-фиолетового цвета. Мощность этих прожилков 5-10 см и протяженность 20-30 м. Флюорит образует ограненные кубические микрокристаллы темно-синего цвета. В этих прожилках содержится до 3 % TR. Содержания Sr, Ba, Pb, Y также повышенные. Концентрации редких элементов в этих необычных породах приведены в табл. 4. Эти Pb-TR сульфатно-карбонатные туфы и флюорит-бариткристобалитовые породы формировались на заключительной стадии эруптивно-гидротермальной вулканической деятельности и во многом по генезису напоминают вулканогенные руды Томторского массива [Владыкин, Торбеева, 2005; Владыкин, 2009]. Спектры ТК и спайдер-диаграммы редких элементов пород рудного комплекса Мушугай-Худук приведены на рис. 5, a, b.

Интрузивный комплекс К-щелочных пород шонкинитов и лейцитовых сиенитов с TR рудоносными карбонатитами верхнепалеозойского возраста. Данный комплекс представлен тремя магматическими проявлениями. Это — Лугингольский массив псевдолейцитовых сиенитов с карбонатитами, Цеденовское проявление (Барун-Хасар Ула) даек шонкинитов с карбонатитовой жилой и дайки нефелиновых и щелочных сиенитов в 40 км северо-восточнее Лугингольского массива в районе г. Олон-Обо.

Лугингольский массив центрального типа [Коваленко и др., 1974] имеет округлую форму, площадь 10 км². Массив прорывает толщу сланцев, которые у контакта ороговикованы и пронизаны различными породами жильной серии и карбонатитовыми жилами. Из-за темного цвета роговиков массив хорошо просматривается на космических снимках. Возраст массива, определенный по циркону и баделииту в лаборатории ИГи ГД РАН, равен 253—258 млн лет. Главной фазой массива являются гастингситовые нефелинсодержащие и псевдолейцитовые сиениты. В центральной гипсометрически приподнятой части массива наблюдается коренной выход крупнозернистых лейцититов, постепенно сменяющихся нефелиновыми сиенитами. В калиевых породах такого состава обычно первым кристаллизуется лейцит, который всплывает в более тяжелой магме и скапливается в апикальной части массива, а затем он постепенно растворяется в этой же магме. Встречены и более ранние породы, вскрытые в центральной части массива в виде крупного ксенолита и более мелкие ксенолиты в районе южного эндоконтакта. В первом случае это — щелочной габброид (возможно, калишпатизированный пироксенит), во втором — это биотитовые шонкиниты. Геологическая карта массива представлена на рис. 6. Для внутреннего строения массива характерно развитие большого количества радиальных и, в меньшей степени, кольцевых трещин, которые заполнены породами жильной серии. Наиболее ранние из них — три дайки

а — вулканогенные микрозернистые породы флюорит-барит-кристобалитового состава, *б*: *1* — ярозит-церусситовые туфы и туфобрекчии с обломками полевых шпатов и мелкими выделениями флюорита, *2* — карбонатиты; *в*: *1* — карбонатиты Лугингольского массива, *2* — карбонатиты массива Маунтин Пасс.

лейцитовых сиенитов (лейцитофиров). Лейцит в них распался на калишпат и кальсилит или нефелин, поэтому мы их называем псевдолейцитовыми. Мощность даек 0.5—2 м и простираются они на 0.1— 1 км. Две из них закаленные со стекловатой основной массой. Эти дайки секутся радиальными дайками призматически-зернистых трахитоидных нефелиновых сиенитов. Мощность закаленных лейцитовых порфиров 0.5—1 м и протяженность 100—500 м. В западной части массива встречена дайка меланократового нефелинового сиенита, обогащенного биотитом. Ее мощность до 5 м и протяженность 200 м. Более поздние дайки от темно-зеленых до черных псевдолейцитовых тингуаитов внедрялись по радиальным трещинам и имеют вертикальные контакты. Это мелкозернистые (до стекловатых) породы мощностью до 1 м и протяженностью 0.1—2 км. В центральной части массива обнаружена наиболее поздняя дайка липаритов (кварцевых порфиров), которая сечет все породы массива. Дайка имеет субмеридио-

		1	r ···r	I			- I		5115		
Элемент	1	2	3	4	5	6	7	8	9	10	11
Be	2.11	10.31	8.54	5.73	22.83	10.71	14.51	12.21	12.43	23.30	6.84
Sc	2.21	2.66	0.82	0.75	0.83	3.20	13.55	0.67	2.64	3.09	0.36
Ti	119.4	1734	308.4	271.2	111.7	376.6	204.9	95.78	85.07	90.80	199.1
V	48.32	28.76	15.86	49.16	25.35	66.31	41.77	39.62	75.28	59.77	26.50
Cr	49.37	45.75	42.87	40.98	41.66	44.15	46.27	46.43	23.66	28.11	65.43
Со	2.01	1.83	0.82	2.04	0.53	1.16	1.02	1.10	1.64	1.97	2.15
Ni	13.56	4.29	1.42	3.49	2.18	2.16	2.91	9.86	25.08	3.59	46.10
Cu	6.55	3.93	0.75	5.22	2.33	4.52	4.79	1.28	4.31	2.69	11.20
Zn	53.79	948.1	17.51	41.42	37.28	71.88	88.69	63.84	66.79	26.29	88.78
Ga	0.83	11.28	0.93	0.36	0.57	2.09	2.23	0.66	0.67	0.65	0.43
Ge	0.81	1.24	0.07	0.56	0.06	0.22	0.15	0.03	0.14	0.12	3.38
Rb	9.99	72.52	7.10	1.09	5.04	33.09	4.79	4.48	6.57	3.66	0.40
Sr	312.6	1312	1420	827.8	1790	2112	1782	1475	3521	3103	2048
Y	19.41	80.99	115.4	75.74	166.3	124.5	299.3	166.7	268.5	280.7	47.12
Zr	8.78	198.9	124.6	15.19	12.63	10.57	4.04	156.20	1.45	4.12	83.37
Nb	4.17	14.86	4.11	1.39	1.16	0.84	0.10	1.16	2.81	0.98	0.67
Mo	12.48	24.51	4.50	12.34	15.86	18.20	3.66	95.12	92.29	87.21	75.06
Sn	0.28	1.11	0.20	1.01	1.23	0.39	0.05	0.20	0.34	0.21	0.55
Sb	13.90	8.44	0.25	3.25	1.27	1.58	0.13	7.67	0.15	0.43	3.92
Cs	0.59	3.35	0.75	0.17	0.78	2.28	0.93	1.02	0.89	0.88	0.11
Ba	684.3	16411	15730	5859	12293	13704	14986	13866	14399	14125	14278
La	575.6	1670	2638	1892	5098	3780	6048	6640	7275	7993	2384
Ce	515.3	2142	2873	2249	5536	4525	6926	5857	10984	10293	2018
Pr	39.88	203.6	247.4	209.7	479.2	412.1	647.5	495.0	865.0	913.2	152.4
Nd	84.27	547.6	583.9	495.9	1105	1064	1629	1093	2201	2304	301.9
Sm	7.73	51.82	47.78	45.11	91.00	89.90	152.8	79.72	198.0	213.5	21.18
Eu	2.39	9.21	9.14	10.46	20.88	21.34	28.70	17.62	70.28	58.18	4.54
Gd	3.61	22.63	18.96	18.33	34.58	33.76	61.56	30.37	74.12	81.30	7.83
Tb	0.53	2.43	1.66	1.58	3.14	3.67	5.24	2.36	4.65	5.33	0.79
Dy	2.74	11.74	12.27	8.82	16.74	16.13	35.73	16.41	36.42	38.46	4.30
Но	0.59	2.64	2.68	1.83	3.67	3.44	7.97	3.34	7.00	7.24	0.86
Er	1.52	7.21	7.71	4.52	10.85	8.41	21.70	9.86	18.42	20.20	2.65
Tm	0.23	1.02	1.05	0.62	1.47	1.08	2.80	1.39	2.38	2.50	0.35
Yb	1.47	6.59	6.47	3.63	9.10	6.51	14.07	8.68	13.57	14.25	1.96
Lu	0.17	0.84	0.82	0.41	1.35	0.75	1.91	1.17	1.84	1.88	0.25
Hf	0.16	4.65	0.98	0.17	0.06	0.01	0.06	1.01	0.03	0.04	0.43
Та	0.03	0.57	0.03	0.06	0.10	0.10	0.10	0.10	0.10	0.10	0.10
W	1.09	31.69	4.26	0.47	12.40	11.77	4.64	15.22	18.95	11.90	5.67
Pb	41.11	5188	128.4	143.8	144.6	495.7	97.26	283.2	780.7	1193	181.2
Th	0.24	34.16	9.44	8.80	18.00	16.11	47.48	6.54	4.41	24.02	0.97
U	2.62	105.58	48.77	9.15	94.82	51.34	71.68	36.59	52.95	98.56	20.42

Таблица 4. Содержания редких элементов (г/т) в вулканогенных микрозернистых породах флюорит-барит-кристобалитового состава района Мушугай-Худук

Примечание. Данные анализа ACP-MS, аналитики Е.В. Смирнова и А.Ю. Митрофанова, ИГХ СО РАН, 2009 г.

нальное простирание с падением на запад под углом 30°. Кроме даек силикатных пород в Лугингольском массиве распространены жильные тела карбонатитов. Они имеют широтное простирание с вертикальными контактами. Их мощность от 0.2 до 2 м и протяженность от 5 до 200 м. Распространены они в северной половине массива и за его контактом. По составу — это кальцитовые и кальцит-флюорито-

Рис. 6. Схема геологического строения Лугингольского массива, по [Коваленко и др., 1974] с добавлениями монгольских геологов.

1 — вмещающие сланцы, 2 — приконтактовые роговики, 3 — ксенолиты Fsp-Pl пироксенитов, 4 — нефелиновые сиениты (пуласкиты) ГИФ, 5 — карбонатизированные сиениты ГИФ, 6 — карбонатитовые жилы и дайки, 7 — дайки нефелиновых сиенитов и лейцитовых сиенитов (лейцитофиров), 8 — дайки лейцитовых тингуаитов, 9 — дайки слюдистых сиенитов, 10 — дайка трахилипарита.

вые карбонатиты с фторкарбонатами TR (бастнезитом и синхизитом), содержание которых доходит до 30 мас. %. Карбонатиты секут все породы массива, кроме дайки липарита, взаимоотношения с которой не наблюдались. Вероятно, с карбонатитами связана площадная карбонатизация пород массива. Она затрагивает как породы главной фазы, так и жильные породы в северной половине массива, где в основном и распространены дайки карбонатитов. Массив пробурен скважинами глубиной до 800 м, в керне которых нефелиновые сиениты главной фазы рассекаются жильными сиенитами и карбонатитами. Карбонатизация отмечается отдельными участками до глубины 750 м.

Минеральный состав пород Лугингольского массива. Щелочные габброиды. Это темно-серые среднезернистые породы массивной текстуры. Главные минералы пород — плагиоклаз № 35—40 (60 %), светло-зеленый авгит (15 %), темно-коричневый гастингсит (10 %), биотит (5 %), гомогенный калиевый полевой шпат (5 %) и нефелин (5 %). В небольших количествах встречаются канкринит и акцессорные минералы: сфен, апатит и циркон. Отмечались бесплагиоклазовые разности, содержащие до 50 % анортоклаза. В породе зерна плагиоклаза и темноцветных минералов размерами 2—6 мм цементируются графическим агрегатом щелочного полевого шпата и нефелина с отдельными ксеноморфными зернами канкринита.

Шонкиниты южного эндоконтакта состоят из калиевого полевого шпата — 50 %, пироксена — 30 % и биотита — 20 %.

Нефелинсодержащие сиениты главной фазы представляют собой крупно- и среднезернистые породы с массивной, реже трахитоидной текстурой. Они состоят из щелочного полевого шпата (70—80 %),

нефелина (5—10 %), гастингсита (7—10 %) и зонального плагиоклаза № 10—20 (до 10 %). Из второстепенных минералов встречаются: авгит, канкринит, кальцит и флюорит. Акцессорные минералы представлены апатитом, сфеном и цирконом. Канкринит первичен, распределен в породе равномерно и пространственно не связан с зернами нефелина. В зоне эндоконтакта нефелинсодержащие сиениты становятся биотитовыми, а в районе южного контакта наблюдаются участки, обогащенные до 30 % голубым корундом — сапфиром.

Псевдолейцитсодержащие сиениты по составу близки к нефелинсодержащим, но без плагиоклаза. Это крупнозернистые розовато-серые породы с шаровой или «лейцитовидной» текстурой. Макроскопически они состоят из крупных (до 10—20 см в поперечнике) «вкрапленников» псевдолейцита, сцементированных нефелинсодержащей основной массой. Из других минералов встречаются гастингсит, биотит, сфен и циркон.

Дайковые псевдолейцитовые лейцитофиры — темно-серые породы с крупными (2—8 см в поперечнике) розовыми вкрапленниками псевдолейцита, которые равномерно распределены в породе. Основная масса — мелкозернистая до микрозернистой, стекловатой. Кроме псевдолейцита наблюдаются таблитчатые зерна тонкопертитового щелочного полевого шпата, изометричные зерна нефелина и призматические зерна гастингсита. Вкрапленники псевдолейцита имеют четкую огранку тетрагонтриоктаэдра (см. рис. 6) с резкими границами по отношению к основной массе породы. Сложены они графическим агрегатом щелочного полевого шпата, нефелина (в соотношении приблизительно 3:1), реже плагиоклазом № 15—20, канкринитом, флюоритом и гастингситом.

Лейцитовые тингуаиты — темно-зеленые до черных, нередко порфировые породы с мелкозернистой, иногда стекловатой структурой основной массы. Вкрапленники тингуаитов размерами до 0.5— 2.0 см представлены анортоклазом (1—10%) светло-зеленым авгитом (2—6%), коричневым меланитом (2—4%), нефелином (2—10%), реже анальцимом, псевдолейцитом (кристаллы до 1.5—2.5 см в поперечнике). Основная масса тингуаитов сложена таблитчатым щелочным полевым шпатом и призмами гастингсита, изометричными зернами нефелина и меланита и цементирующими их выделениями канкринита, кальцита и флюорита. Последние равномерно распределены в породе и не обнаруживают метасоматических признаков образования. Реже встречаются тингуаиты, содержащие, кроме описанных выше минералов, арфведсонит и альбит.

Нефелиновые сиениты главной фазы и жильные породы подвергаются карбонатизации. При этом нефелин замещается агрегатом шприунштейна и карбоната. Темноцветные минералы частично замещаются оксидами железа и карбонатом.

Кварцевые порфиры, граносиенит-порфиры и липариты. Это розовые порфировые породы с микрозернистой сферолитовой основной массой и иногда с редкими округлыми «оплавленными» вкрапленниками кварца и пертитового калиевого полевого шпата. В основной массе встречаются микролиты калиевого полевого шпата, а также его сферолитовые агрегаты, сцементированные мелкими изометричными зернами кварца.

Карбонатиты образуют жильные тела. По составу они кальцитовые и кальцит-флюоритовые, часто с большим количеством фторкарбонатов TR. Из других минералов встречаются лимонитизированный и неизмененный пирит, калиевый полевой шпат, барит, редко слюда. Карбонатиты, содержащие до 30 % темно-синего флюорита, лимонитизированного пирита 20 % и бастнезита 30 % очень похожи на рудные карбонатиты месторождения TR — Баюнь-Обо, которое находится в Китае в 100 км от Лугингольского массива. Отличаются они только содержаниями кальцита и лимонитизированным пиритом вместо магнетита. Кальцит-бастнезитовые карбонатиты похожи на карбонатиты другого крупного месторождения TR — Маунтин Пасс в США.

Химический состав пород Лугингольского массива и их геохимические особенности. Все породы массива относятся к калиевой серии щелочных пород [Владыкин, 1997, 2009]. Химические составы пород Лугингольского массива представлены в табл. 5. На классификационной диаграмме (см. рис. 7) они попадают в поле щелочных пород и образуют гомодромный ряд. Ксенолиты шонкинитов у южного эндоконтакта Лугингольского массива похожи по химическому составу на ксенолиты шонкинитов, обнаруженные нами в лавах фонолитов Мушугайского поля. Редкие элементы в карбонатитах Лугингольского массива и в карбонатитах Маунтин Пасс приведены в табл. 6, а графики спектров TR и спайдердиаграммы — на рис. 5, *в*. Вариации концентраций редких элементов в карбонатитах Лугингольского массива довольно значительные, но наклон спектров TR и конфигурация спектров редких элементов на спайдер-диаграммах аналогичны. Спектры наиболее обогащенных редкими элементами карбонатитов Лугингольского массива не отличаются от спектров карбонатитов комплекса Маунтин Пасс.

Кроме Лугингольского массива с восточной стороны от Дзун-Баинского регионального разлома известны еще два проявления, которые можно отнести к формации К-щелочных пород (см. рис. 2).

Первое из них — Цеденовское (у горы Барун-Хасар-Ула). Оно находится на мелкосопочнике, который сложен песчаниками, примерно в 30 км западнее Лугингольского массива. Вмещающие поро-

Рис. 7. Классификационная диаграмма щелочи-кремнезем (мас. %).

Лугингольский массив: 1 — Fsp-Pl пироксениты, 2 — различные сиениты, 3 — дайки трахилипаритов; Хан-Богдинский массив: 4 — граниты, 5 — пегматиты; 6 — шонкиниты массива Барун-Хасар-Ула, 7 — шонкиниты массива Маунтин Пасс.

ды — серые песчаники секутся несколькими дайками К-щелочных шонкинитов. Мощность даек 1—3 м и протяженность первые десятки метров. Шонкиниты мелко- и среднезернистые сложены КПШ, слюдой и пироксеном. По химическому составу шонкиниты и слагающие их минералы полностью аналогичны шонкинитам Маунтин Пасс (табл. 5, ан. 19—22 и 24—28), с которыми связано крупнейшее в мире карбонатитовое месторождение редкоземельных элементов. На классификационной диаграмме (см. рис. 7) их составы располагаются вблизи составов шонкинитов Лугингольского массива. Содержания редких элементов (табл. 7) и спектры TR в шонкинитах этих двух объектов тоже аналогичны (рис. 8, *а*). В этом же районе монгольским геологом Ц. Цеденом была найдена жила карбонатита мощностью 1 м и протяженностью 20 м. Карбонатит сложен кальцитом и зеленым бастнезитом. Содержания TR в карбонатите до 30 %. Его химический состав приведен в табл. 5, ан. 19.

Второе проявление находится в 40 км северо-западнее Лугингольского массива в районе горы Олон-Обо. Оно обнаружено автором в 1984 г. В небольшой депрессии выходы нескольких даек субмеридионального простирания. Одна из даек сложена темно-зеленым до черного нефелиновым сиенитом. Мощность ее до 1 м и простирание 30 м. Сложена она нефелином (до 40 %), зеленым амфиболом, слюдой (5 %) и калиевым полевым шпатом. Содержания в породе $K_2O - 9.40$ мас. %, $Na_2O - 8.45$ мас. %. Порода мелкозернистая, с мелкими вкрапленниками нефелина и калиевого полевого шпата и основной массой, состоящей из нефелина, калиевого полевого шпата, а также иголок и агрегатов зеленоватого амфибола и коричневой слюды. Из акцессорных минералов встречаются апатит и циркон. В этой же депрессии встречено около десятка других даек сиенитового состава, того же простирания и мощности. Они состоят из вкрапленников и основной массы полевошпатового состава и небольшого количества (1-5 %) зеленого амфибола. Содержания в породе $K_2O - 5.6$ %, $Na_2O - 6.9$ %. Полевые шпаты насыщены мелкими включениями слюды. Акцессорные минералы представлены апатитом, сфеном и цирконом. Возможно, что эта небольшая депрессия является сиенитовым массивом, перекрытым четвертичными отложениями.

Щелочно-гранитный интрузивный комплекс. Агнаитовые щелочно-гранитные массивы третьего интрузивного комплекса образуют пояс, протянувшийся с востока на запад на многие сотни километров [Коваленко, 1977б]. Он состоит из восьми массивов щелочных гранитов разного размера и различной редкометалльности. Большинство массивов нередкометалльные, слаборедкометалльный Хархадский массив и аномально редкометалльный Хан-Богдинский массив, который мы рассмотрим более подробно.

Самый крупный в мире Хан-Богдинский массив агпаитовых щелочных гранитоидов (более 1500 км²) расположен в южной части пустыни Гоби (Монголия) [Владыкин и др., 1981] в 250 км от аймака Далан-Дзадгада. На северной оконечности массива расположен сомон Хан-Богдо. Массив сформи-

		_							_			
Компонент	1	2	3	4	5	6	7	8	9	10	11	12
SiO_2	52.1	45.4	55.4	57.3	55.4	52.4	54.4	51.3	51.6	70.9	3.46	7.69
TiO ₂	1.20	2.28	0.32	0.50	0.38	0.48	0.48	0.47	1.06	0.32	0.06	0.12
Al_2O_3	16.0	13.30	20.25	19.29	22.20	21.84	21.84	20.60	20.38	13.83	0.50	1.80
Fe ₂ O ₃	2.13	8.93	1.72	1.00	1.00	1.76	1.02	2.78	1.60	0.83	0.50	1.40
FeO	4.17	3.49	3.59	2.87	1.36	1.99	3.59	2.08	2.33	0.28	0.05	0.04
MnO	0.17	0.53	0.18	0.15	0.10	0.26	0.15	0.19	0.18	0.07	0.36	1.58
MgO	3.15	1.30	0.92	0.42	0.50	1.00	0.79	1.01	0.75	0.53	0.20	0.20
CaO	5.98	14.50	2.45	2.45	1.58	1.75	2.60	4.08	4.57	1.02	59.34	45.13
BaO	0.23	0.30	0.13	0.11	0.20	0.20	0.25	0.23	0.20	0.06	0.10	0.10
SrO	0.30	0.60	0.17	0.14	0.20	0.22	0.27	0.43	0.60	0.03	0.40	0.47
Na ₂ O	5.40	3.58	2.86	3.79	2.83	8.10	5.26	6.67	6.56	3.51	0.46	0.44
K ₂ O	6.50	4.34	10.28	9.93	11.61	8.53	8.53	7.92	7.68	5.18	0.09	0.37
P_2O_5	0.41	0.18	0.13	0.35	0.36	0.10	0.10	0.25	0.32	0.10	0.16	0.06
H ₂ O	1.60	1.38	1.30	1.40	1.85	0.90	1.05	2.00	1.80	3.45	1.13	1.68
F	0.40	0.05	0.52	0.43	0.24	0.54	0.17	0.40	0.35	0.10	18.00	2.70
CO ₂	0.46	0.34	0.68	0.72	0.72	0.66	0.20	0.39	0.38	0.22	22.68	32.62
TR	0.05	0.08	0.07	0.05	0.07	0.09	0.07	0.06	0.06	0.05	0.10	4.70
Сумма	100.11	100.54	100.71	100.70	100.48	100.59	100.67	100.70	100.26	100.43	100.91	100.86
Компонент	13	14	15	16	17	18	19	20	21	22	23	24
Компонент SiO ₂	13 1.03	14 5.97	15 10.0	16 1.03	17 1.37	18 46.2	19 46.9	20 46.2	21 12.9	22 47.7	23 48.6	24 49.5
Компонент SiO ₂ TiO ₂	13 1.03 0.01	14 5.97 0.05	15 10.0 0.12	16 1.03 0.02	17 1.37 0.06	18 46.2 1.13	19 46.9 1.10	20 46.2 1.17	21 12.9 0.09	22 47.7 1.35	23 48.6 1.26	24 49.5 1.17
Компонент SiO ₂ TiO ₂ Al ₂ O ₃	13 1.03 0.01 0.45	14 5.97 0.05 2.01	15 10.0 0.12 1.93	16 1.03 0.02 0.01	17 1.37 0.06 0.01	18 46.2 1.13 16.0	19 46.9 1.10 16.60	20 46.2 1.17 15.70	21 12.9 0.09 1.20	22 47.7 1.35 9.80	23 48.6 1.26 10.60	24 49.5 1.17 9.60
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃	13 1.03 0.01 0.45 1.21	14 5.97 0.05 2.01 7.68	15 10.0 0.12 1.93 23.70	16 1.03 0.02 0.01 0.70	17 1.37 0.06 0.01 0.39	18 46.2 1.13 16.0 4.41	19 46.9 1.10 16.60 4.13	20 46.2 1.17 15.70 3.24	21 12.9 0.09 1.20 4.14	22 47.7 1.35 9.80 3.33	23 48.6 1.26 10.60 3.96	24 49.5 1.17 9.60 5.13
$\begin{tabular}{c} \hline Komпoheht\\ SiO_2\\ TiO_2\\ Al_2O_3\\ Fe_2O_3\\ FeO \end{tabular}$	13 1.03 0.01 0.45 1.21 0.05	14 5.97 0.05 2.01 7.68 0.05	15 10.0 0.12 1.93 23.70 0.05	16 1.03 0.02 0.01 0.70 0.17	17 1.37 0.06 0.01 0.39 0.15	18 46.2 1.13 16.0 4.41 3.49	19 46.9 1.10 16.60 4.13 3.04	20 46.2 1.17 15.70 3.24 3.84	21 12.9 0.09 1.20 4.14 0.10	22 47.7 1.35 9.80 3.33 2.32	23 48.6 1.26 10.60 3.96 3.13	24 49.5 1.17 9.60 5.13 2.05
${\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 1.03 0.01 0.45 1.21 0.05 1.90	14 5.97 0.05 2.01 7.68 0.05 0.40	15 10.0 0.12 1.93 23.70 0.05 1.49	16 1.03 0.02 0.01 0.70 0.17 1.86	17 1.37 0.06 0.01 0.39 0.15 1.54	18 46.2 1.13 16.0 4.41 3.49 0.16	19 46.9 1.10 16.60 4.13 3.04 0.14	20 46.2 1.17 15.70 3.24 3.84 0.14	21 12.9 0.09 1.20 4.14 0.10 0.60	22 47.7 1.35 9.80 3.33 2.32 0.08	23 48.6 1.26 10.60 3.96 3.13 0.09	24 49.5 1.17 9.60 5.13 2.05 0.07
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90
${\rm Komfioheht}$ SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80
${\rm Komfioheht}$ SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99
${\rm Komfioheht}$ SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO SrO	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26
Компонент SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO SrO Na ₂ O	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59
$\begin{tabular}{ c c c c }\hline \hline Komfightometry \\ SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ BaO \\ SrO \\ Na_2O \\ K_2O \\ \end{tabular}$	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12 0.12	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09 0.43	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12 1.08	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03 0.12	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05 0.19	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79 2.64	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19 3.30	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42 2.39	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14 0.62	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09 1.21	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68 1.56	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59 1.56
${\rm Komfioheht}$ SiO ₂ TiO ₂ Al ₂ O ₃ Fe ₂ O ₃ FeO MnO MgO CaO BaO SrO Na ₂ O K ₂ O P ₂ O ₅	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12 0.14	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09 0.43 0.14	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12 1.08 0.23	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03 0.12 0.07	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05 0.19 0.03	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79 2.64 0.84	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19 3.30 0.82	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42 2.39 0.84	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14 0.62 0.19	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09 1.21 1.52	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68 1.56 1.31	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59 1.56 1.31
$\begin{tabular}{ c c c c }\hline \hline Komfioheht \\ SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ BaO \\ SrO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O \end{tabular}$	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12 0.14 3.40	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09 0.43 0.14 2.95	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12 1.08 0.23 4.52	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03 0.12 0.07 4.00	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05 0.19 0.03 2.40	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79 2.64 0.84 3.71	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19 3.30 0.82 3.49	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42 2.39 0.84 2.56	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14 0.62 0.19 0.14	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09 1.21 1.52 3.09	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68 1.56 1.31 2.14	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59 1.56 1.31 1.50
$\label{eq:solution} \hline {Kompoheht} \\ \hline SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ BaO \\ SrO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O \\ F \\ \hline \end{array}$	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12 0.14 3.40 1.90	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09 0.43 0.14 2.95 25.20	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12 1.08 0.23 4.52 1.55	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03 0.12 0.07 4.00 0.32	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05 0.19 0.03 2.40 1.0	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79 2.64 0.84 3.71 0.30	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19 3.30 0.82 3.49 0.50	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42 2.39 0.84 2.56 0.35	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14 0.62 0.19 0.14 2.40	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09 1.21 1.52 3.09 0.80	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68 1.56 1.31 2.14 1.30	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59 1.56 1.31 1.50 0.90
$\begin{tabular}{ c c c c c } \hline Kompoheht \\ SiO_2 \\ TiO_2 \\ Al_2O_3 \\ Fe_2O_3 \\ FeO \\ MnO \\ MgO \\ CaO \\ BaO \\ SrO \\ Na_2O \\ SrO \\ Na_2O \\ K_2O \\ P_2O_5 \\ H_2O \\ F \\ CO_2 \\ \hline \end{tabular}$	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12 0.14 3.40 1.90 34.3	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09 0.43 0.14 2.95 25.20 8.39	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12 1.08 0.23 4.52 1.55 22.03	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03 0.12 0.07 4.00 0.32 37.46	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05 0.19 0.03 2.40 1.0 37.0	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79 2.64 0.84 3.71 0.30 1.55	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19 3.30 0.82 3.49 0.50 1.53	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42 2.39 0.84 2.56 0.35 4.72	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14 0.62 0.19 0.14 2.40 25.72	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09 1.21 1.52 3.09 0.80 5.84	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68 1.56 1.31 2.14 1.30 3.32	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59 1.56 1.31 1.50 0.90 0.94
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	13 1.03 0.01 0.45 1.21 0.05 1.90 2.06 34.88 0.20 0.26 0.12 0.14 3.40 1.90 34.3	14 5.97 0.05 2.01 7.68 0.05 0.40 0.11 42.09 0.30 0.25 0.09 0.43 0.14 2.95 25.20 8.39 14.40	15 10.0 0.12 1.93 23.70 0.05 1.49 0.42 28.39 0.03 0.11 0.12 1.08 0.23 4.52 1.55 22.03 4.24	16 1.03 0.02 0.01 0.70 0.17 1.86 0.41 45.51 0.03 5.24 0.03 0.12 0.07 4.00 0.32 37.46 2.89	17 1.37 0.06 0.01 0.39 0.15 1.54 0.39 37.91 0.03 10.08 0.05 0.19 0.03 2.40 1.0 37.0 6.83	18 46.2 1.13 16.0 4.41 3.49 0.16 4.30 7.80 0.33 0.32 6.79 2.64 0.84 3.71 0.30 1.55 0.42	19 46.9 1.10 16.60 4.13 3.04 0.14 4.20 7.30 0.56 0.28 6.19 3.30 0.82 3.49 0.50 1.53 0.68	20 46.2 1.17 15.70 3.24 3.84 0.14 3.40 7.80 0.22 0.15 7.42 2.39 0.84 2.56 0.35 4.72 0.38	21 12.9 0.09 1.20 4.14 0.10 0.60 5.63 15.59 0.35 0.10 0.14 0.62 0.19 0.14 2.40 25.72 30.11	22 47.7 1.35 9.80 3.33 2.32 0.08 6.40 9.60 0.56 0.13 6.09 1.21 1.52 3.09 0.80 5.84 0.21	23 48.6 1.26 10.60 3.96 3.13 0.09 8.20 6.80 0.66 0.14 7.68 1.56 1.31 2.14 1.30 3.32 0.12	24 49.5 1.17 9.60 5.13 2.05 0.07 8.90 7.80 0.99 0.26 8.59 1.56 1.31 1.50 0.90 0.94 0.16

Таблица 5. Химический состав пород (мас. %) Лугингольского массива, шонкинитов и карбонатитов массива Барун-Хасар-Ула и шонкинитов массива Маунтин Пасс

Примечание. Лугингол: 1 — калишпат-плагиоклазовый пироксенит, 2 — гранат-пироксен-нефелиновый меланосиенит, 3, 4 — пуласкиты ГИФ, 5 — псевдолейцитовый сиенит ГИФ; дайки лейцитофиров: 6 — закаленная, 7 — раскристаллизованная; 8, 9 — дайки лейцитовых тингуаитов, 10 — дайка трахилипарита; карбонатиты: 11 — кальцит-флюоритовый, 12 — кальцитовый, 13 — бастнезит-кальцитовый, 14 — лимонит-бастнезит-флюоритовый, 15 — пирит-кальцитовый, 16 — бастнезит-кальцитовый, 17 — целестин-бастнезит- кальцитовый. Барун-Хасар-Ула: 18—20 — дайки шонкенитов, 21 — кальцит-бастнезитовый карбонатит. Маунтин Пасс: 22—24 — шонкиниты. Данные химического анализа, ИГХ СО РАН, аналитик Л.Н. Матвеева, 1990—2009 гг.

							-						
Эле- мент	1	2	3	4	5	6	7	8	9	10	11	12	13
Be	0.26	0.72	2.40	4.81	1.02	1.31	2.99	2.52	1.19	0.83	1.69	1.37	2.45
Ti	66.6	103.6	8.8	45.3	28.4	150	90.5	_	_			310	243
V	5.99	26.4	398	66.5	18.5	159	82.2	54.10	25.67	7.97	136.3	189	50.5
Cr	3.73	2.30	0.07	8.8	11.6	0.36	14.6	29.83	25.96	3.41	21.54	2.10	38.7
Co	2.45	3.49	5.56	10.3	3.35	3.16	20.0	9.04	1.74	1.71	7.61	3.91	13.2
Ni	17.4	13.1	9.15	17.8	16.0	11.8	18.9	2.51	2.02	3.19	1.20	48.1	60.0
Cu	6.04	3.10	9.40	8.90	4.36	8.57	10.7	6.56	3.95	3.43	4.26	32.3	18.8
Zn	20.1	21.2	166	425	221	183	602	433.3	32.28	852.9	274.4	61.8	258
Rb	2.89	15.09	4.51	13.2	4.30	104	12.6	165.0	21.10	14.37	3.97	1.46	14.1
Sr	3306	3755	2098	2300	2454	812	1103	1912	1213	20272	1457	1897	2340
Y	74.3	94.1	240	296	109	94.6	171	70.66	159.8	110.6	205.7	521	222
Zr	9.45	7.92	126	24.0	6.91	25.7	98.9	23.77	13.17	6.11	57.42	31.9	30.4
Nb	0.70	4.17	1.95	4.87	7.97	2.15	2.90	18.98	2.13	4.58	4.89	137	2.46
Cs	0.15	0.23	0.40	0.69	0.38	1.35	0.97	1.88	0.67	0.37	0.38	0.08	0.44
Ba	32.4	101	123	83.5	140	1030	567	819.3	129.6	102.9	143.7	17444	17593
La	182	12343	47261	40462	4609	10645	12339	1475	2655	16656	28031	30007	13875
Ce	360	18899	61243	58333	7226	13876	18103	2550	5088	24981	41696	45932	21662
Pr	41.9	1879	5324	5287	673	1225	1669	204.2	428.2	1798	2996	4817	2310
Nd	148	5843	15830	16179	2078	3686	5186	565.0	1372	4648	8062	17413	8449
Sm	22.6	504	1370	1271	173	323	415	55.66	147.6	332.4	686.3	1758	866
Eu	5.47	85.2	238	210	30.4	55.3	68.9	11.11	26.04	50.79	108.6	323	163
Gd	21.2	368	933	1016	146	247	328	30.89	64.79	235.2	252.3	1405	693
Tb	2.15	11.6	24.1	36.1	6.50	9.66	11.5	2.64	5.74	11.86	18.16	63.0	29.0
Dy	12.5	38.9	107	116	34.1	35.4	45.6	13.06	30.11	38.86	67.13	228	95.9
Но	2.40	5.64	14.8	16.1	5.87	5.54	6.94	2.37	6.20	6.62	11.72	28.8	10.9
Er	6.84	13.3	37.7	36.9	15.7	13.8	16.7	5.54	15.99	14.10	29.28	52.1	17.7
Tm	0.99	1.88	5.40	4.45	2.28	1.90	2.18	0.86	2.72	2.35	4.35	5.14	1.52
Yb	6.98	14.6	43.3	32.8	16.2	14.3	15.9	4.88	16.03	13.73	28.96	40.6	14.6
Lu	1.00	1.87	5.43	3.71	2.21	1.82	1.98	0.68	2.25	1.97	4.06	4.07	1.27
Hf	0.19	0.33	0.73	0.68	0.19	0.42	0.64	0.39	0.59	0.72	1.40	1.34	0.89
Та	0.05	0.30	0.11	0.15	0.05	0.09	0.09	0.58	0.17	0.13	0.27	0.24	0.11
Pb	125	792	1467	1393	621	455	2095	587.9	81.57	898.8	643.6	195	48.8
Th	5.76	845	4100	3117	279	640	460	38.16	225.6	682.0	1762	9139	192
U	1.33	18.4	117	116	29.5	26.8	37.4	29.85	9.75	31.79	60.29	18.3	4.35

Таблица 6. Концентрации редких элементов (г/т) в карбонатитах Лугингольского массива и комплекса Маунтин Пасс

Примечание. 1—11 — карбонатиты Лугингольского массива, 12, 13 — карбонатиты Маунтин Пасс. Данные анализа ACP-MS, аналитики Е.В. Смирнова, А.Ю. Митрофанова, ИГХ СО РАН, 2008—2010 гг.

ровался в пределах позднепалеозойской активной континентальной окраины Сибирского палеоконтинента. Положение Хан-Богдинского массива контролируется областью пересечения Гоби-Тяньшаньской субширотной рифтовой зоны с крупным региональным разломом. Массив центрального типа с кольцевыми и радиальными дайками (рис. 9). Он сложен двумя кольцевыми телами — Западным и Восточным, имеющими резкие секущие магматические контакты с породами вмещающей островодужной толщи и тектонические разломные границы с бимодальной толщей [Коваленко и др., 2006]. Внутренняя кольцевая структура особенно характерна для Западного тела и подчеркивается здесь расположением кольцевых даек и провесов кровли вмещающей толщи. Массив, по гравиметрическим данным, представляет собой уплощенное тело (лакколит) мощностью до 10 км, подошва которого ступенчато погружается к северо-западу. Общая последовательность формирования магматических пород Хан-Богдинского массива следующая (от ранних к поздним): светло-серые до розовых щелочные среднезернистые граниты главной интрузивной фазы (ГИФ) с акцессорным эльпидитом, слагающие большую часть Западного и часть Восточного тел; дайки мелкозернистых экеритов, порфировидных экеритов, расслоен-

		1	、 、			· · · · ·		10	
Элемент	1	2	3	4	5	6	7	8	9
V	123.6	88.7	99.1	67.8	97.4	114.3	119.6	106.4	103.5
Cr	247	274	300	280	299	17.7	33.7	25.8	27.5
Со	23.81	18.16	28.34	25.29	23.19	15.48	16.71	15.96	17.36
Ni	67.1	167.1	188.8	234.4	189.8	21.7	27.1	24.0	22.6
Cu	58.59	37.63	75.76	11.30	58.51	14.22	17.60	12.28	15.57
Zn	82.22	55.10	66.48	55.70	84.41	70.03	81.53	72.60	71.04
Ga	16.39	15.90	15.40	15.95	18.15	16.30	16.40	16.46	15.80
Ge	1.88	1.64	1.62	1.64	1.76	1.21	1.08	1.13	1.41
Rb	403	180	268	391	389	99.8	128	92.4	155
Sr	1128	810	976	1859	832	2364	1572	2198	912
Y	55	30	48	39	52	34	34	32	32
Zr	879	624	719	492	1067	398	431	439	379
Nb	27.9	24.0	18.2	12.0	37.3	22.2	25.0	23.9	23.0
Sn	10	10	8	14	17	8	36	8	19
Cs	8.81	1.99	1.72	5.35	8.34	2.49	13.72	20.44	3.69
Ва	5558	4397	6491	7108	6480	2585	3643	4658	2323
La	202.1	350.7	184.0	240.8	314.7	133.8	133.8	129.0	121.0
Ce	437.2	792.9	383.3	618.6	681.3	258.6	262.8	252.0	248.3
Pr	53.16	82.81	46.28	60.78	74.31	28.21	29.68	28.69	28.59
Nd	198.1	300.5	180.9	234.1	270.0	103.7	110.2	102.7	104.5
Sm	35.87	43.69	33.45	37.62	46.55	16.21	17.51	17.21	16.35
Eu	8.61	9.68	8.00	8.36	10.59	4.05	4.13	4.01	4.18
Gd	26.93	25.36	24.86	26.33	30.27	12.38	13.30	12.89	12.37
Tb	3.33	2.74	2.94	2.89	3.60	1.57	1.66	1.62	1.57
Dy	13.32	8.95	11.80	10.59	12.38	7.42	7.63	7.35	7.40
Но	2.14	1.15	1.87	1.57	1.97	1.36	1.31	1.43	1.25
Er	5.39	2.95	4.54	3.57	4.71	3.59	3.69	3.44	3.70
Tm	0.57	0.29	0.48	0.45	0.56	0.52	0.53	0.41	0.42
Yb	3.73	1.95	3.02	2.47	3.24	3.27	2.90	3.14	2.96
Lu	0.50	0.22	0.41	0.31	0.37	0.48	0.44	0.42	0.44
Hf	24.27	18.93	21.95	17.34	40.84	11.45	12.78	12.96	11.21
Та	1.62	1.06	1.06	1.25	2.01	1.38	1.52	1.43	1.51
Pb	86.18	26.80	33.66	39.93	258.45	74.39	153.69	83.67	96.20
Th	120.82	70.29	73.16	39.22	102.08	40.66	36.82	38.21	35.60
U	8.01	9.24	9.76	3.10	13.42	8.52	8.89	8.93	7.08

Таблица 7. Содержания редких элементов (г/т) в шонкинитах массивов Маунтин Пасс и Барун-Хасар-Ула

Примечание. 1—5 — шонкиниты Маунтин Пасс, 6—9 — шонкиниты Барун-Хасар-Ула. Данные метода АСР-MS, аналитики Е.В. Смирнова, А.Ю. Митрофанова, ИГХ СО РАН, 2008—2010 гг.

ных гранит-пегматитовых тел, пегматоидных щелочных гранитов, пегматитов, которые развиты в Западном теле, подчеркивая его кольцевую структуру; сиреневые мелко- до среднезернистых щелочные (обычно эгириновые или арфведсонит-эгириновые, часто миароловые) граниты с акцессорным цирконом, слагающие большую часть Восточного тела; дайки микрозернистых до стекловатых темно-голубых или темно-зеленых пантеллеритов. Редкометалльные щелочные гранитоиды и щелочно-гранитные пегматиты участвуют в кольцевых дайках 2-й фазы. Среди этих пород имеются и бедные редкими элементами экериты, а также все разности, переходные к редкометалльным. Участки концентрированного проявления редкометалльных щелочных экеритов и пегматитов часто расположены под провесами кровли, сложенной вулканическими породами основного и реже липаритового составов. Выделено около 15 участков проявления редкометалльной минерализации, минералогия которых детально описана в монографиях [Владыкин и др., 1981; Владыкин, 1983; Коваленко, 1977]. В пределах редкометалльных проявлений выявлено крупное месторождение Zr и в меньшей стапени Nb, TR и Y. В мелкозернистых редкометалльных экеритах и среднезернистых пегматитах расслоенного комплекса концентрации Zr

Рис. 8. Диаграммы спектров TR (левые графики) и спайдер-диаграммы (правые графики).

а — шонкиниты: *1* — Маунтин Пасс, *2* — Барун-Хасар-Ула; *б* — Хан-Богдинский массив: *1* — граниты ГИФ, *2* — пегматиты, пегматитизированные вмещающие липариты.

доходят до 7 %, концентратором которого являются цирконосиликаты, эльпидит и новый минерал — армстронгит. Содержания Nb в некоторых пегматитах доходят до 0.5 мас. %, TR до 1 мас. %, a Y до 0.5 мас. %

Главной особенностью этой минерализации является ее агпаитовый характер. Доказано, что в щелочных гранитах переход парагенезисов с цирконом в парагенезис с цирконосиликатами (эльпидит) происходит при коэффициенте агпаитности (К_a) более 1.2 в отличие от щелочных и нефелиновых сиенитов, где вместо циркона кристаллизуется эвдиалит при К₂ более единицы [Владыкин, 1983]. Концентраторами Nb и TR являются их щелочные силикаты. В массиве обнаружено более 50 редких минералов [Владыкин и др., 1981, Владыкин и др., 2006], часть из которых являются новыми (армстронгит, монголит и коваленкоит). Еще одной уникальной особенностью минералообразования в этом массиве является процесс аморфизации некоторых редких минералов. Плотный эффузивный экран кровли не давал летучим компонентам с редкими элементами уходить за пределы массива, и кристаллизовались они из магматического расплава при высоких температурах. При высокой щелочности и кремнекислотности расплава образовывались минералы с большим кремнекислородным радикалом, которые при понижении температуры становились неустойчивыми и распадались на избыточный кварц и аморфные оксиды и в редких случаях (c Nb) на кварц и другой минерал с меньшим кремнекислородным радикалом. Этот процесс характерен для минералов Nb, Ti, TR, Zr-TR. Эти минералы имеют кристаллическую огранку, заполненную после распада аморфной массой и кварцем. Так как привноса — выноса при минералообразовании не происходило, то состав этих «псевдоморфоз» можно считать первичным составом минералов. Имеются три состава Ce-Zr минералов, пять составов Ті-силикатов, три состава TR-силиката [Владыкин, 1983]. Высококремнистый Nb-силикат распадается на кварц и коваленкоит, который потом

Рис. 9. Геологическая карта Хан-Богдинского массива, по [Коваленко и др., 2007].

I-5 — породы массива: I — щелочные граниты главной интрузивной фазы, 2 — мелкозернистые эгириновые граниты, 3 — дайки: микрозернистых сиенитов и монцонитов (a), щелочных гранитов (δ), 4 — поздние пантеллериты, 5 — щелочные гранитпорфиры; 6-8 — вулканические породы бимодальной ассоциации: 6 — комендиты, трахириолиты, их туфы и игнимбриты, 7 — базальты, 8 — нерасчлененные породы ассоциации; 9 — породы островодужной ассоциации (дифференцированный комплекс); 10 — допозднепалеозойские комплексы; 11-13 — кровля массива: 11 — ороговикованные породы дифференцированного комплекса, 12 — биотитовые и амфибол-биотитовые граниты и граносиениты, 13 — участки развития гематитизации щелочных гранитов ГИФ («красные граниты»); 14 — разломы; 15 — границы вулканических потоков; 16 — элементы залегания пород; 17 — более древние вмещающие породы.

замещается монголитом. Из-за отсутствия кристаллической решетки у этих минералов невозможно доказать, что они являются новыми минералами. Кристаллизация эльпидита вместо циркона характерна и для гранитов главной интрузивной фазы. Граниты этой фазы моношпатовые. Они состоят из микроклин-пертита, кварца и щелочного амфибола — Са-катафорита. К-Na моношпат тоже кристаллизовался при высокой температуре и в нем образовалось нестихиометричное соотношение Al и суммы шелочей. Алюминия больше, чем щелочей, а должно быть 1:1. Поэтому при кристаллизации главной фазы из магмы (ее объем 90 % по отношению к поздним породам) в остаточном расплаве происходило резкое накопление щелочей, что и привело к такой интенсивной агпаитовой редкометалльной минерализации. Учитывая, что площадь массива более 1500 км², можно предполагать большой объем остаточной редко-

таблица с		In Min Acci	un cocia	B (Mac. 70)	гранитов	n nei main	TOD Man-	DOIGHIER	oro macchi	Ja	
Компонент	1	2	3	4	5	6	7	8	9	10	11
SiO ₂	74.1	74.2	73.3	75.2	71.1	73.8	72.4	73.2	76.7	75.4	73.5
TiO ₂	0.18	0.28	0.26	0.22	0.38	0.24	0.43	0.36	0.19	0.25	0.27
Al_2O_3	10.44	11.35	11.64	10.25	11.57	10.79	11.61	10.95	10.72	10.20	11.57
Fe ₂ O ₃	5.56	4.04	4.11	4.44	5.47	4.99	5.06	4.89	3.34	4.57	5.32
MnO	0.18	0.16	0.13	0.12	0.22	0.19	0.16	0.19	0.09	0.12	0.15
MgO	0.09	0.08	0.10	0.15	0.26	0.20	0.47	0.18	0.10	0.10	0.10
CaO	0.26	0.32	0.33	0.21	1.00	0.49	0.61	0.34	0.20	0.17	0.18
Na ₂ O	4.19	4.31	4.15	4.21	4.74	4.29	4.25	4.55	3.70	4.46	7.62
K ₂ O	4.56	4.72	4.67	4.53	4.92	4.68	4.65	4.75	4.71	4.72	0.80
P_2O_5	0.01	0.03	0.02	0.03	0.08	0.04	0.07	0.05	0.02	0.02	0.03
ZrO ₂	0.08	0.14	0.11	0.26	0.09	0.08	0.09	0.18	0.04	0.07	0.23
H ₂ O	0.38	0.47	1.36	0.45	0.25	0.27	0.25	0.28	0.19	0.13	0.35
Сумма	100.05	100.09	100.20	100.06	100.05	100.07	100.01	99.96	99.99	100.19	100.13
Компонент	12	13	14	15	16	17	18	19	20	21	22
SiO_2	73.1	75.2	70.6	79.9	78.8	71.8	61.4	64.1	70.2	76.2	69.9
TiO ₂	0.34	0.37	0.39	0.11	0.14	0.51	2.52	0.91	0.52	0.13	0.26
Al_2O_3	8.92	9.22	7.60	8.65	8.61	7.39	7.18	8.16	7.35	11.70	8.56
Fe ₂ O ₃	7.18	4.76	10.54	3.31	3.63	7.40	11.93	7.28	8.32	2.36	7.71
MnO	0.20	0.29	0.40	0.10	0.11	0.19	0.45	0.27	0.34	0.06	0.71
MgO	0.13	0.20	0.10	0.10	0.10	0.22	0.40	0.45	0.26	0.07	0.11
CaO	0.28	0.23	0.48	0.10	0.17	1.05	0.85	0.83	0.56	0.29	0.39
Na ₂ O	4.86	4.79	5.43	2.16	1.72	2.61	4.67	5.05	3.81	4.06	3.38
K ₂ O	4.03	4.01	3.64	5.61	3.58	5.74	5.08	5.95	5.17	4.69	7.13
P_2O_5	0.02	0.01	0.04	0.01	0.03	0.09	0.04	0.03	0.04	0.03	0.03
ZrO ₂	0.68	0.57	0.42	0.03	0.05	1.51	4.21	5.12	2.52	0.05	0.38
H ₂ O	0.55	0.37	0.50	0.11	0.24	1.77	1.43	2.79	1.40	0.23	1.07
Сумма	100.30	100.02	100.10	100.18	97.13	100.25	100.17	100.91	100.44	99.86	99.65
Компонент	23	24	25	26	27	28	29	30	31	32	33
SiO ₂	77.6	66.9	68.6	71.6	67.5	91.6	72.4	88.1	77.1	66.7	66.3
TiO ₂	0.23	0.45	0.79	0.44	0.17	0.12	0.34	0.15	0.45	0.71	0.66
Al_2O_3	5.10	4.76	2.98	6.56	12.12	1.75	3.84	3.00	3.22	10.30	10.83
Fe ₂ O ₃	8.01	14.90	13.58	10.36	5.23	1.99	5.12	1.98	10.12	6.53	6.93
MnO	0.30	0.27	0.86	0.23	0.95	0.80	0.79	0.53	0.49	0.46	0.52
MgO	0.07	0.23	0.28	0.15	0.20	0.07	0.40	0.13	0.10	0.72	0.89
CaO	0.17	0.45	0.94	0.48	0.86	0.31	1.00	0.47	0.43	2.44	0.70
Na ₂ O	3.29	6.60	5.23	4.99	7.00	0.70	3.88	1.83	4.16	5.72	3.53
K ₂ O	3.92	2.76	1.83	3.77	2.93	1.24	1.03	0.99	2.40	3.46	7.37
P ₂ O ₅	0.04	0.07	0.17	0.06	0.04	0.05	0.07	0.08	0.04	0.17	0.16
ZrO ₂	0.47	1.59	2.66	1.12	0.69	0.30	3.23	1.07	0.30	0.73	0.90
H ₂ O	0.80	1.53	2.30	0.62	2.14	1.02	3.86	1.69	1.04	2.17	1.31
Сумма	100.00	100.53	100.24	100.42	99.78	99.90	95.95	100.01	99.83	100.09	100.09

Таблица 8. Химический состав (мас. %) гранитов и пегматитов Хан-Богдинского массива

Примечание. 1—10 — катафоритовые граниты ГИФ с эльпидитом, 11 — гранит ГИФ с армстронгитом, 12— 16 — жильные экериты, 17 — жильный гранит, секущий экериты, 18—20 — полосчатые эльпидитовые экерит-пегматиты, 21 — пегматит с цирконом, 22—26 — пегматиты шлировые с эльпидитом, 27—31 — различные участки шлирового пегматита с TR, Zr, Nb, 32, 33 — пегматитизированный вмещающий липарит. Данные химического анализа, аналитик В.А. Писарская, ИГХ СО РАН.

		Jineerin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 1 23 14 90 33 5 53	Ĩ	16лица	9.			Codeps	жания р.	ге химдэ	EMENTOB	(r/t) b pt	едкомета	лльных	гранито	идах Ха.	н-Богди	HCKOFO N	ассива				
$ [1] \ \ \ \ \ \ \ \ \ \ \ \ \$		Li 22 41 90 326 16 321 231 236 16 31 11 Rs 87 03 44 15 12 44 16 17 236 334 46 13 307 66.4 137 16 33 236 141 173 239 236 344 35 345 345 345 345 345 346 347 346 347 346 347 346 347 346 347 346 347 346 347 346 347 346 377 346 377 346 377 346 377 346 377 346 377 346 377 347 346 377 346 377 346 377 346 377 346 377 346 377 346 377 346 377 346 377 346 377 346 377 346 377	•	лемент	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19
	Re 10 14 16 13 20 30 31<	Be 10 14 16 13 20 95 89 15 15 15 17 130 444 20 83 T 2819 1034 446 15 30 664 133 010 144 15 20 60 14 32 045 53 634 193 644 17 13 041 126 33 041 125 64 33 041 125 64 30 206 60 144 125 64 33 041 11 126 053 047 11 123 046 056 054 053 054 111 123 066 144 123 066 144 123 066 144 123 066 144 123 066 054 123 066 144 123 066 054 123 066 144 123 066 054 124 054 1		Li	22	41	9.0	326	16	321	231	246	230	146	46	13	314	116	328	67	861	6.8	383
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	N: N:<	Se 8.7 0.34 4.6 6.2 2.3 4.5 9.3 2.4 1.0 4.4 4.3 7.2 6.4 3.0 V 2.8(1) 1263 2300 7666 1323 3075 6.64 1922 1770 133 0.47 73 0.50 Cr 3.11 2.2 1.1 2.33 0.64 19.42 1770 13.3 0.47 3.1 7.3 0.50 Cr 3.11 2.24 2.44 19.3 0.66 0.27 8.7 3.0 0.23 0.44 19.4 17.3 0.50 0.54 2.7 0.53 0.64 2.7 0.54 0.57 0.53 0.64 2.7 0.54 0.57 0.53 0.64 2.7 0.54 0.57 0.53 0.64 2.7 0.53 0.54 2.7 0.54 0.57 0.53 0.54 2.7 0.64 2.7 0.54 0.57 0.54 0.57 0.54		Be	10	14	16	13	20	9.5	8.9	15	15	12	7.7	15	20	8.8	27	127	90	30	352
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ti 28/9 15/6 73/2 60/7 13/2 43/2 23/7 73/9 23/6 <th2< td=""><td></td><td>Sc</td><td>8.7</td><td>0.34</td><td>4.6</td><td>6.2</td><td>2.3</td><td>4.5</td><td>9.3</td><td>2.4</td><td>1.0</td><td>4.4</td><td>4.3</td><td>7.2</td><td>6.4</td><td>3.0</td><td>8.1</td><td>3.8</td><td>2.7</td><td>1.5</td><td>3.8</td></th2<>		Sc	8.7	0.34	4.6	6.2	2.3	4.5	9.3	2.4	1.0	4.4	4.3	7.2	6.4	3.0	8.1	3.8	2.7	1.5	3.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ti	2819	1263	2309	7696	1323	3075	6624	1942	1770	1330	4342	2297	2799	2436	3334	1936	843	1891	1242
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cr 3.1 2.2 1.18 0.79 2.9 5.3 0.1 1.9 0.82 0.1 7.8 0.0 Ni 0.59 0.60 1.1 0.35 0.66 1.1 7.8 0.60 Ni 0.59 0.60 1.1 0.35 0.66 1.1 7.8 0.60 Cu 2.4 2.4 2.8 0.60 0.57 0.71 8.7 3.0 3.4 Cu 1.7 3.5 2.1 3.4 1.4 1.9 3.5 3.0 3.4 3.0 3.7 1.1 1.32 3.3 2.60 3.1 4.6 2.0 3.1 4.6 2.0 3.1 4.6 2.0 3.7 1.2 3.0 3.7 3.0 3.7 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.7 3.0 3.		^	2.8	1.6	75	20	6.0	14	32	2.4	0.02	2.4	3.6	141	125	38	145	23	17	15	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Co 0.59 0.60 11 0.35 0.54 1.5 0.35 0.51 1.1 3.20 0.55 3.54 4.57 3.03 4.51 3.23 0.54 1.57 0.33 0.51 0.33 0.53 0.51 0.53 0.51 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.51 0.53 0.53 0.51 0.53 0.51 0.53<	Co 0.59 0.60 1.1 0.35 0.66 0.44 0.57 0.66 0.47 1.1 3.20 0.67 Cu 0.59 0.60 1.1 0.35 2.4 2.8 0.66 0.44 0.7 0.11 3.20 0.54 Cu 145 3.27 552 2.75 3.24 444 667 341 144 613 466 27 Kb 117 35 56 2.3 0.12 444 687 349 474 169 37 114 53 54 17 50 149 37 141 55 37 144 57 361 146 57 39 37 141 157 56 37 33 553		Cr	3.1	22	1.8	0.79	2.9	5.3	0.1	3.8	0.1	1.9	0.82	0.1	7.8	0.56	7.2	0.79	2.9	0.1	0.78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni 0.59 20 4.9 1.0 0.05 2.4 2.8 0.0 6.7 0.27 8.7 3.0 3.2 0.44 Zu 145 3.27 52 273 2.1 3.6 2.1 3.6 2.1 7.6 10 8.7 0.27 8.7 3.0 3.2 0.4 Re 147 3.5 6 2.3 0.12 4.4 10 3 3.4 161 99 7.4 188 6.27 Se 3.4 0.1 17 35 6 2.3 0.11 1326 8.24 38 147 65 341 141 4.1 61 30 466 277 Se 3.4 0.1 17 35 6 2.3 0.11 1326 8.24 38 147 4.1 18 2.6 66 4.5 111 2.3 1353 Zr 703 103 700 120845 3353 2209 117 189 4.6 277 3.6 13 4.6 277 Se 1.9 0.74 2.6 4.5 111 1326 8.24 38 80 65 390 188 142 4.01 1215 1813 553 Zr 903 173 6 2.29 197 189 40 234 60 33 2.5 66 5.4 5 1.0 27 8.8 133 553 Se 1.9 0.74 2.6 4.5 3.3 110 1326 8.24 898 0.5 390 188 142 4.01 1215 1813 553 Se 1.9 0.74 2.6 4.5 3.3 126 10 0 33 2.5 7 3 453 2.03 98 96 Ce 183 603 1048 559 3441 106 206 241 239 182 153 138 1738 776 39 8 Nu 23 299 470 170 170 170 189 40 234 00 33 2.5 7 3 453 2.03 98 96 Ce 183 603 1048 559 3441 106 206 247 239 182 153 138 1738 206 96 Ce 183 603 1048 559 3441 106 206 247 239 182 153 138 1738 206 96 Ce 183 603 048 559 3441 106 206 247 239 182 153 178 206 98 53 Nu 23 7 4 105 210 107 202 41 189 2.5 117 23 24 5 137 178 216 38 Nu 23 7 4 105 212 41 18 2.6 63 31 1378 1738 206 70 114 F		Co	0.59	09.0	1.1	0.35	0.66	0.54	0.57	0.93	0.69	0.35	0.47	1.1	3.20	0.62	5.8	0.51	0.73	0.33	0.50
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cu 2.4 2.1 3.1 2.1 3.6 1.0 2.9 9.4 2.8 1.6 7.0 Zn 145 3.7 5.2 2.73 3.24 4.44 9.8 7.3 3.1 8.45 5.1 1.1 2.4 5.1 1.1 2.4 5.1 1.1 2.46 2.7 1.1 2.2 3.3 3.1 8.5 3.7 1.1 2.3 3.7 1.1 1.2 4.6 2.7 1.1 2.3 3.7 1.1 2.3 3.7 1.1 2.3 3.7 1.1 2.3 3.7 1.1 2.3 3.7 1.4 1.7 3.7 3.7 1.1 2.3 3.7 1.4 1.7 3.7 3.7 1.1 2.3 3.7 1.4 1.7 1.1 2.3 3.7 1.4 3.7 1.1 2.4 3.7 1.1 2.7 3.7 1.1 2.7 3.7 1.1 2.7 1.1 2.7 3.7 <td></td> <td>Ni</td> <td>0.59</td> <td>20</td> <td>4.9</td> <td>1.0</td> <td>0.05</td> <td>2.4</td> <td>2.8</td> <td>0.60</td> <td>6.7</td> <td>0.27</td> <td>8.7</td> <td>3.0</td> <td>3.2</td> <td>0.54</td> <td>2.6</td> <td>3.8</td> <td>4.6</td> <td>3.2</td> <td>0.84</td>		Ni	0.59	20	4.9	1.0	0.05	2.4	2.8	0.60	6.7	0.27	8.7	3.0	3.2	0.54	2.6	3.8	4.6	3.2	0.84
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		Zn 145 327 532 734 444 667 349 476 341 414 613 466 307 R 177 53 56 273 012 44 19 33 23 31 466 307 Y 765 207 111 1326 883 47 49 110 18 18 65 37 124 50 14 Y 765 207 111 1326 669 17134 580 204 161 213 553 550 17134 580 204 151 224 47 30 11 123 683 133 553 550 17134 580 206 375 47 30 15 15 20 15 15 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20		Cu	2.4	24	21	13	2.1	3.6	21	7.6	10	2.9	9.4	28	16	7.0	14	6.9	6.3	12	10.0
	Ca 17 35 6 23 31 85 51 11 23 6 23 71 23 21 <td>Ga 17 35 6 23 0.12 44 19 33 23 31 85 51 11 24 Kb 170 23 511 244 38 19 33 23 31 86 51 31 87 37 31 86 37 124 50 137 533 566 37 124 50 37 353 553 553 353 553 353 553 353 556 37 124 50 37 91 57 57 441 180 353 556 37 91 557 37 91 57 441 180 355 58 325 326 37 91 57 47 101 137 60 137 59 401 137 59 403 137 59 403 137 59 401 138 401 136 401 137</td> <td></td> <td>Zn</td> <td>145</td> <td>327</td> <td>552</td> <td>275</td> <td>324</td> <td>444</td> <td>687</td> <td>349</td> <td>476</td> <td>341</td> <td>414</td> <td>613</td> <td>466</td> <td>207</td> <td>836</td> <td>1217</td> <td>679</td> <td>910</td> <td>3602</td>	Ga 17 35 6 23 0.12 44 19 33 23 31 85 51 11 24 Kb 170 23 511 244 38 19 33 23 31 86 51 31 87 37 31 86 37 124 50 137 533 566 37 124 50 37 353 553 553 353 553 353 553 353 556 37 124 50 37 91 57 57 441 180 353 556 37 91 557 37 91 57 441 180 355 58 325 326 37 91 57 47 101 137 60 137 59 401 137 59 403 137 59 403 137 59 401 138 401 136 401 137		Zn	145	327	552	275	324	444	687	349	476	341	414	613	466	207	836	1217	679	910	3602
	Rb 170 21 231 511 244 38 304 456 294 161 99 74 180 301 465 58 31 238 531 238 31 231	Rb 170 21 211 214 38 304 456 294 161 99 74 180 307 Y 765 207 1111 1136 847 389 1734 580 214 190 113 3535 22698 17134 580 2044 1292 6605 8522 9926 9755 Nb 91.3 104 209 138 284 37 91 57 55 38 112 244 50 161 195 161 153 533 533 256 976 975 97 90 165 975 97 90 165 975 97 90 165 975 97 90 165 975 97 90 165 975 976 995 976 995 976 976 975 976 995 976 976 976 976 975 164 1795 <t< td=""><td></td><td>Ga</td><td>17</td><td>35</td><td>9</td><td>23</td><td>0.12</td><td>44</td><td>19</td><td>33</td><td>23</td><td>31</td><td>8.5</td><td>5.1</td><td>11</td><td>24</td><td>2.4</td><td>72</td><td>2.7</td><td>0.01</td><td>2.4</td></t<>		Ga	17	35	9	23	0.12	44	19	33	23	31	8.5	5.1	11	24	2.4	72	2.7	0.01	2.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Y 34 9.0 6 5 47 9.0 10 10 8.0 11 13 553 133 553 133 553 133 553 133 553 133 553 133 130 130 130 130 130 130 133 760 138 2368 133 132 143 553 133 133 134 133 210 139 143 331 141 733 253 235 133 131 134 753 353 132 133 131 134 753 353 133 134 753 133 135 133 134 753 133 135 133 133 135 133 134 753 133 1353 133 134 753 133 1353 133 134 753 133 133 134 753 133 133 134 753 134 134	Sr 34 9.0 46 58 47 49 110 18 16 53 37 124 50 14 Y 765 207 1111 1235 683 873 353		Rb	170	21	231	511	244	38	304	456	294	161	66	74	180	307	393	29	99	58	54
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Y 765 207 1111 1326 824 898 695 390 188 142 401 1215 813 553 X 91.3 104 209 138 244 37 91 55 325 353 553 355 356 396 396 395 396 395 396 396 396 396 396 396 396 395 396 396 396 396 396 396 396 396 396 396 396 396 396 396 395 395 395 395 395 395 395 395 395		Sr	34	9.0	46	58	47	49	110	18	18	6.5	37	124	50	14	68	134	85	31	288
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		Zr 39931 1293 7601 26845 3355 22608 17134 5980 2044 1292 6605 8532 9926 9735 Cs 19.3 104 209 138 284 37 91 57 55 38 112 260 325 58 Ra 64 16 229 177 1762 33 126 101 105 75 47 536 596 96 Ce 183 693 1048 559 3441 106 296 247 239 182 153 173 402 Nh 93 209 1762 33 126 101 105 75 477 536 596 96 Sm 23 74 167 91 232 159 170 176 33 169 169 188 1795 402 Sm 23 74 167 91<		Y	765	207	1111	1326	824	868	695	390	188	142	401	1215	1813	553	1232	4103	2928	571	4786
		Nb 91.3 104 209 138 284 37 91 57 55 38 112 260 325 58 70 Ba 64 16 229 170 176 101 105 75 477 536 506 77 73 75 75 477 536 506 70 135 70 135 70 135 70 135 70 135 70 135 70 135 70 135 70 135 70 135 70 135 73 130 135 70 135 70 135 70 135 70 135 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 136 705 705 705 <		Zr	39931	1293	7601	26845	3535	22698	17134	5980	2044	1292	6605	8522	9926	9735	5287	10625	8856	1529	10419
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs 19 0.74 26 4,5 3.2 17 10 4,4 18 2.6 6,4 5 1.7 3.5	Cs 19 0.74 2.6 4.5 3.2 17 10 4.4 1.8 2.6 6.6 4.5 10 1.5 Ba 64 16 239 170 178 40 234 60 33 255 473 433 206 70 Pr 24 84 155 65 331 15 42 33 255 473 433 206 70 Pr 24 84 155 431 166 234 60 33 25 473 433 206 70 Bin 98 342 166 232 131 166 236 361 133 169 36 Bin 96 37 149 75 187 149 75 442 33 30 183 164 210 164 210 164 210 164 210 164 210 164 210		Nb	91.3	104	209	138	284	37	91	57	55	38	112	260	325	58	260	519	443	391	497
Ba 64 16 229 197 189 40 234 60 33 25 73 453 205 70 216 960 628 359 117 10279 5415 145 155 155 155 156 360 628 351 132 232 235 131 1023 293 293 237 101 232 232 131 1023 291 282 241 174 110 232 231 233 133 235 133 235 134 1023 291 232 241	Ba 64 16 229 197 189 40 234 60 33 225 70 216 960 628 339 1219 Ce 183 693 104 176 170 176 33 126 101 105 75 473 2051 10279 5115 1473 10729 5115 1476 10279 5115 1476 109 286 144 147 1084 533 1084 697 7422 4038 1134 1084 Sm 236 56 331 156 157 323 138 1092 531 1373 1393 1395 1449 75 187 1304 1384 1384 1444 177 1488 144 147 128 144 147 128 139 169 169 169 600 628 339 1384 1384 1384 1384 1384 1384 1384	Ba 64 16 229 197 189 40 234 60 33 25 73 453 205 70 Ce 183 693 1048 559 3441 106 296 247 536 55 178 178 178 178 176 38 Pr 24 84 559 3441 106 296 247 539 182 155 178 216 38 Nd 98 342 658 37 1449 75 187 159 120 99 649 183 Sin 23 74 167 91 232 25 51 40 27 24 21 330 168 53 Gd 35 60 175 110 202 413 57 44 21 330 168 53 52 52 330 183 156 420		Cs	1.9	0.74	2.6	4.5	3.2	17	10	4.4	1.8	2.6	6.6	4.5	1.0	1.5	1.7	3.5	3.5	0.75	4.9
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{bmatrix} La & 93 & 299 & 470 & 170 & 1762 & 33 & 126 & 101 & 105 & 75 & 47 & 536 & 596 & 96 & 717 & 10279 & 5415 & 1445 & 1445 \\ Pr & 28 & 342 & 658 & 559 & 3441 & 106 & 296 & 247 & 239 & 182 & 1758 & 1795 & 402 & 1733 & 20751 & 10323 & 2991 & 2876 \\ Ru & 98 & 342 & 658 & 293 & 1449 & 75 & 187 & 159 & 90 & 68 & 787 & 649 & 184 & 697 & 7422 & 4038 & 1134 & 1048 \\ Fu & 09 & 222 & 65 & 322 & 711 & 1.0 & 1.6 & 1.6 & 0.9 & 0.7 & 0.9 & 11 & 6.4 & 2.0 & 52 & 244 & 14 & 4.7 & 288 \\ Fu & 03 & 222 & 65 & 322 & 11 & 15 & 89 & 522 & 45 & 80 & 211 & 66 & 130 & 106 & 131 & 64 & 139 & 135 & 897 & 1734 & 1048 \\ Fu & 03 & 222 & 65 & 322 & 11 & 15 & 89 & 522 & 45 & 80 & 01 & 188 & 16 & 4.17 & 288 & 31 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 13 & 27 & 288 & 97 & 771 & 174 & 1486 & 139 & 66 & 139 & 113 & 196 & 75 & 115 & 170 & 440 & 288 & 57 & 15 & 78 & 88 & 13 & 27 & 29 & 113 & 113 & 196 & 75 & 115 & 170 & 440 & 24 & 117 & 488 & 57 & 15 & 78 & 88 & 13 & 27 & 91 & 66 & 19 & 113 & 113 & 126 & 117 & 123 & 138 & 24 & 88 & 23 & 23 & 233 & 233 & 233 & 238 & 27 & 24 & 14 & 47 & 238 & 144 & 17 & 38 & 23 & 23 & 23 & 238 & 27 & 24 & 14 & 47 & 238 & 17 & 16 & 33 & 25 & 163 & 348 & 17 & 66 & 93 & 226 & 15 & 47 & 47 & 48 & 48 & 52 & 33 & 26 & 75 & 42 & 113 & 126 & 13 & 106 & 13 & 106 & 13 & 106 & 13 & 112 & 128 & 137 & 66 & 19 & 113 & 114 & 112 & 23 & 128 & 114 & 52 & 123 & 131 & 146 & 117 & 33 & 226 & 163 & 47 & 226 & 128 & 114 & 116 & 22 & 21 & 11 & 123 & 114 & 32 & 32 & 164 & 32 & 36 & 123 & 37 & 138 & 137 & 66 & 19 & 144 & 47 & 55 & 152 & 113 & 196 & 75 & 115 & 213 & 213 & 214 & 114 & 47 & 55 & 42 & 214 & 114 & 42 & 23 & 33 & 24 & 138 & 1379 & 669 & 190 & 190 & 190 & 190 & 114 & 91 & 44 & 45 & 38 & 228 & 163 & 47 & 228 & 163 & 47 & 228 & 163 & 47 & 228 & 164 & 124 & 123 & 124 & 124 & 124 & 124 & 124 & 124 & 138 & 1370 & 56 & 133 & 164 & 221 & 123 & 123 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 & 124 $	La 93 299 470 1762 33 126 101 105 75 47 536 596 96 96 96 96 96 96 96 96 96 96 96 96 96 97 1048 559 3441 106 296 247 239 182 155 178 216 38 Nd 98 342 638 293 1449 75 187 159 120 99 68 787 649 184 Sin 235 60 175 110 202 41 58 45 25 23 30 184 53 53 176 184 53 30 184 53 56 175 110 202 41 58 85 57 133 64 210 33 164 53 53 184 53 53 133 64 52 25		Ba	64	16	229	197	189	40	234	60	33	25	73	453	205	70	216	960	628	359	1219
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ce 183 693 1048 559 341 106 296 247 239 182 155 1378 1795 402 Pr 24 84 155 65 381 15 42 35 29 23 15 178 216 38 Nd 98 342 638 293 1449 75 187 159 178 216 38 Sin 23 74 167 91 222 25 32 11 16 163 89 11 16 10 27 24 20 164 20 Dy 66 47 223 176 163 89 112 57 31 27 61 37 20 24 20 Dy 66 47 223 176 163 89 112 57 15 80 61 37 245 164 18 164		La	93	299	470	170	1762	33	126	101	105	75	47	536	596	96	717	10279	5415	1445	14626
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	Pr 24 84 155 65 381 15 42 35 29 23 15 178 216 38 Sm 23 74 167 91 232 25 51 40 27 24 167 91 649 184 Sm 23 74 167 91 232 25 51 40 27 24 21 330 168 53 Gd 35 60 175 110 202 41 58 45 25 23 30 184 64 20 Dy 66 175 110 202 41 58 45 25 23 30 181 64 20 Dy 61 96 175 110 202 41 58 20 181 64 64 20 13 20 184 20 21 27 21 27 21		Ce	183	693	1048	559	3441	106	296	247	239	182	155	1378	1795	402	1733	20751	10323	2991	28767
Nd 98 342 638 293 1449 75 187 159 120 99 68 787 649 184 697 7422 4038 1134 10 Sm 23 74 167 91 232 25 51 40 27 24 21 330 168 53 156 802 471 174 14 Eu 0.9 2.2 6.5 3.2 71 1.0 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 5.2 24 14 4.7 $(17 - 1)^{-1}$ Gd 35 60 175 110 202 41 58 45 25 23 30 181 64 139 718 410 140 11 Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 181 64 139 718 410 140 11 Er 89 24 104 159 90 93 115 42 21 17 45 80 61 370 243 90 185 50 13 66 19 Tm 22 3.5 20 26 12 17 22 66 3.5 2.4 84 38 28 73 66 19 73 23 103 66 19 Fr 88 22 3.5 110 202 61 17 42 21 17 45 78 88 66 79 35 57 61 370 243 90 155 50 4 328 97 7 Tm 22 3.5 20 26 12 17 22 66 3.5 2.4 84 38 28 10 15 33 26 75 57 1 Fr 12 3.6 2.9 16 34 10 21 30 6.3 3.8 2.7 16 37 28 23 103 66 19 89 164 133 35 1 Hf 725 27 213 521 95 416 490 110 60 24 17 58 237 168 65 93 225 163 47 2 Th 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.7 10 36 26 11 12 3 42 23 7.1 1 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 11 Hf 725 27 213 521 95 416 490 110 60 24 133 318 180 190 89 164 133 35 11 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 11 Hf 725 20 19 14 5.1 11 6.9 3.8 2.4 82 31 22 10 10 14 91 44 4 Th 4.0 6.8 30 190 89 164 133 35 16 27 71 23 147 2 Th 4.0 6.8 30 190 89 164 133 35 16 27 71 23 1438 1379 669 11 Hf 725 227 213 231 161 24 40 23 71 63 36 26 11 22 34 23 71 65 17 66 17 70 10 10 14 91 44 4 Th 4.0 6.8 30 190 89 164 133 35 16 17 71 23 1438 1379 669 11 Hf 725 20 19 14 41 77 35 16 27 12 23 1438 1379 669 11 Hf 725 20 19 14 41 77 32 16 27 17 23 1438 1379 669 11 66 10 10 10 14 91 14 47 72 14 17 10 15 12 143 1379 669 11 Hf 725 20 19 14 17 23 1438 1379 669 11 16 60 23 14 17 23 1438 1379 669 11 12 12 144 44 44 44 44 44 44 44 44 44 44 44 44	Nd 98 342 638 293 1449 75 187 159 120 99 68 787 649 184 697 7422 4038 1134 1084 Eu 0.9 2.2 6.5 3.2 7.1 1.0 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 5.5 2.4 1.4 4.7 2.8 Tb 8.1 9.6 165 3.2 11 15 8.9 0.7 0.9 11 6.4 2.0 5.7 2.4 139 718 4.1 140 121 Tb 8.1 9.6 175 110 5.8 8.9 5.7 15 8.9 1139 718 4.1 147 138 Th 223 13 14 6.8 5.7 15 8.9 66 19 1174 1474 147 148 Th 223 13 14	Nd 98 342 638 293 1449 75 187 159 120 99 68 787 649 184 Sin 23 74 167 91 232 25 51 40 27 24 21 330 168 53 To 8.1 9.6 175 110 202 41 58 45 25 23 30 181 64 20 To 8.1 9.6 175 110 202 41 58 45 25 23 30 181 64 20 Dy 66 175 110 202 41 58 45 25 23 30 181 64 20 Dy 61 9.0 48 46 33 25 45 80 61 38 13 Dy 89 24 110 21 12 21 17		Pr	24	84	155	65	381	15	42	35	29	23	15	178	216	38	170	2204	1109	285	3081
Sm 23 74 167 91 232 51 40 27 24 21 330 168 53 156 802 471 174 1 Eu 0.9 2.2 6.5 3.2 7.1 1.0 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 5.2 2.4 14 4.7 3 Tb 8:1 9.6 175 110 202 41 58 45 25 4.5 8.0 61 37 2.4 13 718 410 140 11 58 45 2.5 4.5 8.0 61 37 2.7 91 66 19 16 140 17 140 140 140 140 140 140 140 159 37 27 61 370 243 30 156 50 20 140 140 174 14 17 58 23	Sm 23 74 167 91 232 25 51 40 27 24 21 330 168 53 156 802 471 174 1486 Eu 0.9 22 65 332 71 1.0 1.6 1.6 0.9 0.7 0.9 111 6.4 2.0 5.2 2.4 1.4 4.7 2.3 The 81 9.6 36 25 32 30 181 6.4 2.0 5.2 2.4 1.4 7.7 2.3 The 81 9.6 36 2.5 32 11 1.5 8.9 5.7 61 370 2.43 30 156 140 129 Tim 222 31 14 6.5 32 2.4 1.4 6.7 2.0 117 140 159 97 771 140 159 157 161 38 225 163 37	Sin 23 74 167 91 232 55 51 40 27 24 21 330 168 53 Eu 0.9 2.2 6.5 3.2 7.1 1.0 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 Cd 35 60 175 110 202 41 58 45 25 23 309 181 64 2.0 Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 Ho 21 90 48 46 33 26 31 14 68 57 15 78 58 22 83 13 90 Fr 89 2.0 26 31 14 68 57 15 78 58 26 11 Tm 222 315		Nd	98	342	638	293	1449	75	187	159	120	66	68	787	649	184	697	7422	4038	1134	10842
Eu 0.9 2.2 6.5 3.2 7.1 1.0 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 5.2 2.4 14 4.7 33 Gd 35 60 175 110 202 41 58 45 25 23 30 181 64 139 718 410 140 17 Dy 66 47 223 176 163 89 112 57 31 27 61 38 13 27 91 62 20 140 140 140 159 89 112 57 31 27 61 38 27 91 64 32 20 140 140 17 113 166 19 17 17 42 21 17 44 58 27 13 27 91 66 19 17 38 26 17 7 27	Eu 0.9 2.2 6.5 3.2 7.1 1.0 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 5.2 2.4 14 4.7 2.8 Th 8.1 9.6 175 110 202 41 58 25 23 30 181 64 139 718 410 140 1218 Th 8.1 9.6 36 25 33 25 45 38 57 15 38 13 140 1218 771 140 1218 771 140 123 66 19 113 77 141 17 38 27 90 155 504 33 32 131 147 771 140 173 170 170 171 17 17 17 17 17 17 17 17 17 17 133 27 133 26 133 26 133	Eu 0.9 2.2 6.5 3.2 7.1 1.0 1.6 1.6 1.6 0.9 0.7 0.9 11 6.4 2.0 Tb 8.1 9.6 35 3.2 7.1 1.0 1.5 8.9 5.2 2.3 309 181 64 2.0 Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 23 Tm 22 3.5 20 26 12 17 2.2 66 3.5 2.45 176 64 Tm 22 3.5 20 26 12 17 45 2.45 176 64 Tm 2.2 4.8 5.7 16 6.8 5.7 16 <t< td=""><td></td><td>Sm</td><td>23</td><td>74</td><td>167</td><td>91</td><td>232</td><td>25</td><td>51</td><td>40</td><td>27</td><td>24</td><td>21</td><td>330</td><td>168</td><td>53</td><td>156</td><td>802</td><td>471</td><td>174</td><td>1486</td></t<>		Sm	23	74	167	91	232	25	51	40	27	24	21	330	168	53	156	802	471	174	1486
Gd 35 60 175 110 202 41 58 45 25 23 30 181 64 139 718 410 140 17 Tb 8:1 9.6 36 25 32 11 15 8:9 5.2 4.5 8:0 61 38 13 27 91 62 20 1 140 17 11 15 8:9 5.7 15 78 58 27 91 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 1 66 19 16 1 66 19 66 19 16<	Gd 35 60 175 110 202 41 58 45 25 23 309 181 64 139 718 410 140 1218 Tb 8:1 9.6 36 25 32 11 15 89 5.2 45 8.0 61 38 13 27 91 62 20 115 Ho 21 9.0 48 46 33 26 31 14 68 57 15 78 58 26 10 66 19 113 Ho 21 9.0 48 46 33 26 31 14 68 57 15 78 89 113 90 155 504 52 293 177 Fr 89 24 17 42 21 17 42 21 17 44 52 293 173 18 47 251 38 26 75 42 21 17 58 26 16 17 58 </td <td>Gd 35 60 175 110 202 41 58 45 25 23 30 309 181 64 Dy 66 47 223 176 163 89 5.2 4.5 8.0 61 370 243 90 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 222 3.5 20 26 12 17 22 66 3.5 244 176 64 Tm 222 3.5 20 26 11 72 244 176 64 176 64 176 64 176 65 25 245 176 64 21 161 24</td> <td></td> <td>Eu</td> <td>0.0</td> <td>2.2</td> <td>6.5</td> <td>3.2</td> <td>7.1</td> <td>1.0</td> <td>1.6</td> <td>1.6</td> <td>0.9</td> <td>0.7</td> <td>0.9</td> <td>11</td> <td>6.4</td> <td>2.0</td> <td>5.2</td> <td>24</td> <td>14</td> <td>4.7</td> <td>28</td>	Gd 35 60 175 110 202 41 58 45 25 23 30 309 181 64 Dy 66 47 223 176 163 89 5.2 4.5 8.0 61 370 243 90 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 222 3.5 20 26 12 17 22 66 3.5 244 176 64 Tm 222 3.5 20 26 11 72 244 176 64 176 64 176 64 176 65 25 245 176 64 21 161 24		Eu	0.0	2.2	6.5	3.2	7.1	1.0	1.6	1.6	0.9	0.7	0.9	11	6.4	2.0	5.2	24	14	4.7	28
Tb 8:1 9.6 36 25 32 11 15 8.9 5.2 4.5 8.0 61 38 13 27 91 62 20 1 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 32 103 66 19 1 Fr 89 24 140 159 90 93 115 42 21 17 45 245 176 64 98 262 184 52 2 Tm 222 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 15 38 26 7.5 22 2 Hf 725 27 21 113 196 75 115 170 40 24 17 58 23 166 19 15 38 26 7.5 2 Hf 725 27 21 35 19 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 12 34 23 71 6 Hf 725 27 21 35 19 14 5.1 11 6.9 3.8 2.7 10 36 26 11 12 34 23 71 5.7 21 725 27 10 36 26 11 22 3.8 26 7.5 27 10 7 7 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 1 Hf 725 27 213 521 95 416 20 110 60 24 135 318 180 190 89 164 133 35 1 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 1 Hf 755 27 213 521 95 416 490 110 20 24 135 318 180 190 89 164 133 35 1 Hf 755 27 213 521 95 416 490 110 20 24 135 318 180 190 89 164 133 35 1 Hf 755 27 21 123 23 31 61 24 20 27 10 36 26 11 12 23 143 137 66 10 10 14 9.1 4.4 20 17 10 55 192 21 191 5.5 15 17 10 23 14 135 316 15 17 10 10 10 10 14 9.1 4.4 20 17 10 55 192 21 199 53 161 24 20 17 10 55 10 10 10 10 14 9.1 4.4 20 17 10 55 192 21 199 53 161 24 20 17 10 23 31 122 10 10 10 14 9.1 4.4 20 17 10 55 192 21 199 53 161 24 20 14 17 323 64 21 125 236 127 71 20 10 50 10 10 10 10 14 9.1 4.4 20 17 10 55 192 21 199 53 164 133 55 15 17 10 55 15 14 17 50 206 127 71 20 10 20 20 10 10 10 10 10 10 10 10 10 10 10 10 10	Tb 8.1 9.6 36 25 32 11 15 8.9 5.2 4.5 8.0 61 38 13 27 91 62 20 115 Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 155 504 328 97 771 Ho 21 9.0 48 46 33 26 31 14 6.8 57 15 78 58 22 32 103 66 19 113 Fr 89 24 140 159 90 93 115 42 21 17 45 245 176 64 98 262 184 52 293 113 11 55 203 133 66 19 113 38 26 75 42 251 11 17 38 26 134 52 293 113 38 113 38 266 133 35	Tb 8.1 9.6 36 25 32 11 15 8.9 5.2 4.5 8.0 61 38 13 Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Er 89 24 159 90 93 115 42 21 17 45 245 176 64 Tm 22 3.5 20 26 17 42 21 17 45 245 176 64 Tm 22 3.5 20 26 31 170 40 27 161 78 237 168 65 Lu 755 27 213 51 110 58 2.4 <		Gd	35	60	175	110	202	41	58	45	25	23	30	309	181	64	139	718	410	140	1218
Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 155 504 328 97 7 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 32 103 66 19 1 Tm 22 3.5 20 26 12 17 42 21 17 45 245 176 64 98 262 184 52 2 2 2 3 26 3 2	Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 155 504 328 97 771 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 32 103 66 19 113 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 98 262 184 52 293 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 93 225 163 47 251 38 113 38 113 38 113 38 113 38 113 38 113 38 1133 35 113 38 </td <td>Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 84 38 28 10 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 521 90 10 38 27 10 38 28 10 Ta 4.0 6.3 110 61</td> <td></td> <td>Tb</td> <td>8.1</td> <td>9.6</td> <td>36</td> <td>25</td> <td>32</td> <td>11</td> <td>15</td> <td>8.9</td> <td>5.2</td> <td>4.5</td> <td>8.0</td> <td>61</td> <td>38</td> <td>13</td> <td>27</td> <td>91</td> <td>62</td> <td>20</td> <td>115</td>	Dy 66 47 223 176 163 89 112 57 31 27 61 370 243 90 Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 84 38 28 10 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 521 90 10 38 27 10 38 28 10 Ta 4.0 6.3 110 61		Tb	8.1	9.6	36	25	32	11	15	8.9	5.2	4.5	8.0	61	38	13	27	91	62	20	115
Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 32 103 66 19 1 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 98 262 184 52 2 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 15 38 26 7.5 27 Vb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 93 26 7.5 26 7.5 Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 12 34 23 71 21 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 1 Ta 4.0 6.8 20 19 6.8 3.8 2.4 135 36 21 12 22 17 20 10 12 12 21 21 21 21 21 21 21 22 111 22 21 21 </td <td>Ho$21$$9.0$$48$$46$$33$$26$$31$$14$$6.8$$5.7$$15$$78$$58$$22$$32$$103$$66$$19$$113Er89$$24$$140$$159$$90$$93$$115$$42$$21$$17$$45$$245$$176$$64$$98$$262$$184$$52$$293Tm22$$3.5$$20$$26$$1.7$$22$$6.6$$3.5$$2.4$$8.4$$38$$28$$10$$15$$38$$26$$7.5$$47$$251Vb187$$21$$113$$196$$75$$115$$170$$40$$24$$17$$58$$237$$168$$65$$93$$266$$7.7$$38Lu36$$2.9$$16$$34$$10$$21$$30$$6.3$$3.8$$2.7$$10$$36$$26$$11$$12$$34$$23$$71$$38Hf725$$27$$213$$521$$95$$416$$490$$110$$60$$24$$135$$318$$180$$190$$89$$164$$133$$35$$113Ta440$$6.8$$20$$19$$11$$55$$227$$232$$318$$180$$190$$89$$164$$133$$35$$113Th11$$55$$126$$21$$110$$52$$14$$20$$14$$17$$323$<t< td=""><td>Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 237 168 65 Vb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Lu 36 2.9 16 34 10 21 22 6.6 3.5 2.4 8.4 38 23 10 Hf 725 27 213 531 11 6.9 3.8 2.7 10 36 26 11 Ta 4.0 6.8 3.8 2.4</td><td></td><td>Dy</td><td>99</td><td>47</td><td>223</td><td>176</td><td>163</td><td>89</td><td>112</td><td>57</td><td>31</td><td>27</td><td>61</td><td>370</td><td>243</td><td>90</td><td>155</td><td>504</td><td>328</td><td>97</td><td>771</td></t<></td>	Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 32 103 66 19 113 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 98 262 184 52 293 Tm 22 3.5 20 26 1.7 22 6.6 3.5 2.4 8.4 38 28 10 15 38 26 7.5 47 251 Vb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 93 266 7.7 38 Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 12 34 23 71 38 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 113 Ta 440 6.8 20 19 11 55 227 232 318 180 190 89 164 133 35 113 Th 11 55 126 21 110 52 14 20 14 17 323 <t< td=""><td>Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 237 168 65 Vb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Lu 36 2.9 16 34 10 21 22 6.6 3.5 2.4 8.4 38 23 10 Hf 725 27 213 531 11 6.9 3.8 2.7 10 36 26 11 Ta 4.0 6.8 3.8 2.4</td><td></td><td>Dy</td><td>99</td><td>47</td><td>223</td><td>176</td><td>163</td><td>89</td><td>112</td><td>57</td><td>31</td><td>27</td><td>61</td><td>370</td><td>243</td><td>90</td><td>155</td><td>504</td><td>328</td><td>97</td><td>771</td></t<>	Ho 21 9.0 48 46 33 26 31 14 6.8 5.7 15 78 58 22 Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 237 168 65 Vb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Lu 36 2.9 16 34 10 21 22 6.6 3.5 2.4 8.4 38 23 10 Hf 725 27 213 531 11 6.9 3.8 2.7 10 36 26 11 Ta 4.0 6.8 3.8 2.4		Dy	99	47	223	176	163	89	112	57	31	27	61	370	243	90	155	504	328	97	771
Er89 24 140159909311542 21 1745 245 176 64 98 262 184 52 22 2 Tm 22 3.5 20 26 1217 22 6.6 3.5 2.4 8.4 38 28 1015 38 26 7.5 -7 Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 1112 34 23 7.1 22 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 357 11 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 122 10 10 14 133 357 1 Pb 76 53 152 27 213 53 164 53 35 11 12 34 23 71 21 Th 11 55 192 23 161 24 40 23 76 27 22 11 12 34 23 71 23 Ta 4.0 6.8 20 190 89 164 133 35 11 22 11 22 11 12 21 12 <th< td=""><td>Er8924140159909311542211745245176649826218452293Tm223520261217226.63.52.4843828101538267542Lu362916341021306.33.52.48.43828101538267542Lu362.916341021306.33.82.7103626111234237138Hf7252772135219541649011060241353181801908916413335113Th115519221111$6.9$3.82.48.2311201451116.93.82.48.23114237138Th11551922111919.515142014116.93.82.48.231144.4$5.4$$76$$3.8$$2.4$$8.2$$3.8$$2.4$$8.2$$31$$9.1$$4.4$$4.5$Th1155122121919.51514201417323$64$211</td><td>Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 521 95 416 490 110 60 24 135 38 26 11 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 23 3.8 2.7 10 36 26 11 Ta 4.0 6.3 3.8 2.4 8.2 318 180 190</td><td></td><td>Но</td><td>21</td><td>9.0</td><td>48</td><td>46</td><td>33</td><td>26</td><td>31</td><td>14</td><td>6.8</td><td>5.7</td><td>15</td><td>78</td><td>58</td><td>22</td><td>32</td><td>103</td><td>99</td><td>19</td><td>113</td></th<>	Er8924140159909311542211745245176649826218452293Tm223520261217226.63.52.4843828101538267542Lu362916341021306.33.52.48.43828101538267542Lu362.916341021306.33.82.7103626111234237138Hf7252772135219541649011060241353181801908916413335113Th115519221111 6.9 3.82.48.2311201451116.93.82.48.23114237138Th11551922111919.515142014116.93.82.48.231144.4 5.4 76 3.8 2.4 8.2 3.8 2.4 8.2 31 9.1 4.4 4.5 Th1155122121919.51514201417323 64 211	Er 89 24 140 159 90 93 115 42 21 17 45 245 176 64 Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 521 95 416 490 110 60 24 135 38 26 11 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 23 3.8 2.7 10 36 26 11 Ta 4.0 6.3 3.8 2.4 8.2 318 180 190		Но	21	9.0	48	46	33	26	31	14	6.8	5.7	15	78	58	22	32	103	99	19	113
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 15 38 26 7.5 42 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 93 225 163 47 251 Hf 725 27 10 36 26 11 12 34 23 7.1 38 Hf 725 27 10 36 26 11 12 34 23 7.1 38 Ta 4.0 68 20 19 14 5.1 11 60 24 135 318 180 190 89 164 133 35 113 Ta 4.0 6.8 20 19 14 5.1 11 12 24 45 45 45 45 45 45 45 45 45 45 45 45 <t< td=""><td>Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 521 95 416 490 110 60 24 17 58 237 168 65 Ta 4.0 6.8 20 19 76 33 38 2.4 135 318 190 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 318 180 190 Pb 76 53 152 27 20 31 22 11 Th 11 55 14 51 11 6.9 3.8 2.4 40 27</td><td></td><td>Er</td><td>89</td><td>24</td><td>140</td><td>159</td><td>90</td><td>93</td><td>115</td><td>42</td><td>21</td><td>17</td><td>45</td><td>245</td><td>176</td><td>64</td><td>98</td><td>262</td><td>184</td><td>52</td><td>293</td></t<>	Tm 22 3.5 20 26 12 17 22 6.6 3.5 2.4 8.4 38 28 10 Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Hf 725 27 213 521 95 416 490 110 60 24 17 58 237 168 65 Ta 4.0 6.8 20 19 76 33 38 2.4 135 318 190 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 318 180 190 Pb 76 53 152 27 20 31 22 11 Th 11 55 14 51 11 6.9 3.8 2.4 40 27		Er	89	24	140	159	90	93	115	42	21	17	45	245	176	64	98	262	184	52	293
Yb1872111319675115170402417582371686593225163472Lu362.916341021306.33.82.7103626111234237.13Hf7252721352195416490110602413531818019089164133351Ta4.06.82019145.1116.93.82.48.23122101014242Pb76531522710106023762702211231438137966910Th1155192211919.51514201417323642177151515154561056105610Th1055192211919.5151420141732364217715653612771555361277155536127715553612771555361277155536127715553612771555361277155536127<	Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 93 225 163 47 251 Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 12 34 23 7.1 38 Hf 725 2.7 10 36 26 11 12 34 23 7.1 38 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.6 2.4 180 190 89 164 133 35 113 Part 76 53 152 27 12 31 22 11 12 24 4.6 13 3.8 133 36 104 14 4.4 4.4 4.5 Th 11 55 12 23 15 14 23 71 33 54 14 4.5 16	Yb 187 21 113 196 75 115 170 40 24 17 58 237 168 65 Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 Hf 725 2.7 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.7 10 36 26 11 Pb 76 53 152 27 213 31 122 10 76 270 22 11 22 10 76 270 22 11 22 11 4.2 11 4.2 11 4.2 11 4.2 11 4.2 11 4.2 11 4.2 12 11 <td></td> <td>Tm</td> <td>22</td> <td>3.5</td> <td>20</td> <td>26</td> <td>12</td> <td>17</td> <td>22</td> <td>6.6</td> <td>3.5</td> <td>2.4</td> <td>8.4</td> <td>38</td> <td>28</td> <td>10</td> <td>15</td> <td>38</td> <td>26</td> <td>7.5</td> <td>42</td>		Tm	22	3.5	20	26	12	17	22	6.6	3.5	2.4	8.4	38	28	10	15	38	26	7.5	42
Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 12 34 23 7.1 33 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 1 Ta 4.0 6.8 20 19 14 5.1 11 60 24 8.2 31 22 10 10 14 9.1 4.4 2 161 24 40 23 76 270 22 11 23 144 2 2 11 23 144 2 2 11 23 1379 669 11 44 2 11 23 143 133 35 14 2 12 144 2 14 17 323 64 23 1379 669 11 5 1379 569 127 17 55 10 10	Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 12 34 23 7.1 38 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 113 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 82 137 914 4.4 4.5 Pb 76 53 152 27 233 161 24 40 22 11 22 11 23 1438 1379 669 1049 Th 11 55 192 21 191 9.5 144 22 111 22 111 23 127 71 540 1049 106 10 <t< td=""><td>Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 Pb 76 53 152 27 10 60 24 135 31 160 190 Th 11 55 192 27 232 33 161 24 40 23 76 270 22 11 U 40 6.5 48 2.6 41 16 22 14 17 323 64 21 U 40 6.5 48 2.6 41 16 22 14</td><td></td><td>Yb</td><td>187</td><td>21</td><td>113</td><td>196</td><td>75</td><td>115</td><td>170</td><td>40</td><td>24</td><td>17</td><td>58</td><td>237</td><td>168</td><td>65</td><td>93</td><td>225</td><td>163</td><td>47</td><td>251</td></t<>	Lu 36 2.9 16 34 10 21 30 6.3 3.8 2.7 10 36 26 11 Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 Pb 76 53 152 27 10 60 24 135 31 160 190 Th 11 55 192 27 232 33 161 24 40 23 76 270 22 11 U 40 6.5 48 2.6 41 16 22 14 17 323 64 21 U 40 6.5 48 2.6 41 16 22 14		Yb	187	21	113	196	75	115	170	40	24	17	58	237	168	65	93	225	163	47	251
Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 355 1 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 10 14 9.1 4.4 2 Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 23 1438 1379 669 11 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 127 71 55 Th 10 55 192 25 15 14 20 14 17 323 64 21 127 71 55 105 107 107 107 107 107 107 107 107 107 107 1	Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 89 164 133 35 113 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 10 14 9.1 4.4 4.5 Pb 76 53 152 27 233 161 24 40 23 76 270 22 11 23 1438 1379 669 1049 Th 11 55 192 21 191 9.5 15 14 20 14 17 333 64 21 125 71 540 1540 U 40 6.5 48 26 41 11 4.2 13 533 64 21 125 236 127 71 540 U 40 6.5 14 16 22 14 11 4.2 <t< td=""><td>Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 64 21 IDnmeyalmex 1 76 56 14 16 22 14 11 4.2 13 53 19 16 15 14 20 14 11 4.2</td><td></td><td>Lu</td><td>36</td><td>2.9</td><td>16</td><td>34</td><td>10</td><td>21</td><td>30</td><td>6.3</td><td>3.8</td><td>2.7</td><td>10</td><td>36</td><td>26</td><td>11</td><td>12</td><td>34</td><td>23</td><td>7.1</td><td>38</td></t<>	Hf 725 27 213 521 95 416 490 110 60 24 135 318 180 190 Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 64 21 IDnmeyalmex 1 76 56 14 16 22 14 11 4.2 13 53 19 16 15 14 20 14 11 4.2		Lu	36	2.9	16	34	10	21	30	6.3	3.8	2.7	10	36	26	11	12	34	23	7.1	38
Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 10 14 9.1 4.4 2 Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 23 1438 1379 669 10 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 125 236 127 71 5 Th 10 65 10 15 14 20 14 17 323 64 21 125 236 127 71 5	Ta 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 10 14 9.1 4.4 4.5 Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 23 1438 1379 669 1049 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 125 236 127 71 540 U 40 6.5 48 2.6 41 16 22 14 11 4.2 13 53 64 21 125 236 127 71 540 U 40 6.5 48 2.6 41 16 22 14 11 4.2 13 53 19 16 13 103 90 39 152	Та 4.0 6.8 20 19 14 5.1 11 6.9 3.8 2.4 8.2 31 22 10 Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 IIpumeyamue. 1 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 IIpumeyamue. 1 16 22 14 11 4.2 13 53 19 16		Hf	725	27	213	521	95	416	490	110	60	24	135	318	180	190	89	164	133	35	113
Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 23 1438 1379 669 10 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 125 236 127 71 5 Th 11 6.5 6.0 14 17 323 64 21 125 236 127 71 5 Th 10 5.5 6.0 14 17 323 64 21 125 236 127 71 5	Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 23 1438 1379 669 1049 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 125 236 127 71 540 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 13 90 39 152 T 31 53 19 16 11 4.2 11 4.2 13 53 19 16 13 90 39 152	Pb 76 53 152 27 232 33 161 24 40 23 76 270 22 11 Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 64 21 Примечание. 1 — гранит ГИФ с эльпидитом, 2 — гранит ГИФ с армстронгитом, 3 — жильный гранит, секущий экериты, 26 16 16 16 16 17 323 64 21		Ta	4.0	6.8	20	19	14	5.1	11	6.9	3.8	2.4	8.2	31	22	10	10	14	9.1	4.4	4.5
Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 125 236 127 71 55 11 40 55 40 25 14 11 42 12 236 127 71 5	Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 125 236 127 71 540 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 13 90 39 152 T T T 5.3 19 16 13 103 90 39 152	Th 11 55 192 21 191 9.5 15 14 20 14 17 323 64 21 U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 Примечание. 1 — гранит ГИФ с эльпидитом, 2 — гранит ГИФ с армстронтитом, 3 — жильный гранит, секущий экериты,		Pb	76	53	152	27	232	33	161	24	40	23	76	270	22	11	23	1438	1379	699	1049
TI 10 65 10 75 11 11 11 11 12 52 10 15 12 102 00 30 30 30 30	U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 13 90 39 152	U 40 6.5 48 26 41 16 22 14 11 4.2 13 53 19 16 Примечание. 1 — гранит ГИФ с эльпидитом, 2 — гранит ГИФ с армстронгитом, 3 — жильный гранит, секущий экериты, 10		Th	11	55	192	21	191	9.5	15	14	20	14	17	323	64	21	125	236	127	71	540
		Примечание. 1— гранит ГИФ с эльпидитом, 2— гранит ГИФ с армстронгитом, 3— жильный гранит, секущий экериты,		n	40	6.5	48	26	41	16	22	14	11	4.2	13	53	19	16	13	103	90	39	152
Примечание. 1 — гранит 1 иФ с эльпидитом, 2 — гранит 1 иФ с армстронтитом, 3 — жильный гранит, секущий экеригы, 4 — эльпидитовый экеригы-петматит, 2 – 10 – 10 – 10 – 10 – 10 – 10 – 10 –		эльпидитовые экериты, 10–12 — эльпидитовые петмагиты, 13–13 — петмагитизированные вмещающие липариты, 10–19 — ра	TIE	ындитон	зые экері	4Tbl, 10-	-17	пынидито	BEIC IICLM	athtbl, I.		пегматил	изирова	HHEIC BMC	щающие	липарит	ы, 10—.	19 — pa3	иичные >	/частки п	пировог	о пегмат	ита с 1

металльной магмы, которая и образует гигантские месторождения редких элементов. Представительные анализы пород массива приведены в табл. 8, а редких элементов в табл. 9. На классификационной диаграмме (см. рис. 7) граниты и пегматиты Хан-Богдинского массива располагаются несколько ниже щелочной линии, что связано с аномальными содержаниями редких элементов, из-за чего занижаются содержания щелочей, при высоком коэффициенте агпаитности. Для редких элементов в гранитах и пегматитах этого массива характерны высокие концентрации Zr, Hf, Nb, TR, Y, U, Th и низкие концентрации Ba, Sr, Eu (см. рис. 8, б).

Огромный объем щелочно-гранитных плутонических и вулканических пород Хан-Богдинского массива и его кольцевая структура обусловлены кальдерным механизмом внедрения и эволюции его магм.

ГЕОХИМИЧЕСКИЕ ОСОБЕННОСТИ

Геохимические особенности всех трех редкометалльных формации Южной Гоби можно увидеть из спайдер-диаграмм и графиков TR-спектров (см. рис. 5, 8). Редкометалльные руды карбонатитовых провинший Мушугай-Хулук и Лугингол в распределении редких элементов на спайдер-диаграммах и графиках спектров TR имеют много общего. Для карбонатитов и апатитовых руд этих провинций характерно очень незначительное фракционирование европия, а в вулканогенных флюорит-барит-кристобаллитовых жилах это фракционирование отсутствует совсем. На спайдер-диаграммах конфигурации линий распределения редких элементов также аналогичны при разных концентрациях этих элементов. Несколько нестабильно поведение бария. Такое однотипное поведение элементов можно объяснить их общей формационной принадлежностью к К-щелочным породам, несмотря на то, что одни относятся к вулканогенной фации (поле Мушугай-Худук), а другие к интрузивной (Лугингольский массив) и имеют разный возраст — 259 и 120 млн лет. Резко иное поведение редких элементов характерно для агпаитовых гранитов и рудоносных пегматитов массива Хан-Богдо (см. рис. 8, б). Для пород этой формации характерно резкое фракционирование европия в графиках спектров TR и аномально низкие концентрации Ва и Sr. Разница состоит в том, что концентрируются редкие элементы в щелочно-силикатных пегматитах и гранитах, а не в карбонатно-фосфатных образованиях. Флюидные модификаторы в гранитах и пегматитах H₂O и F, а в карбонатитах CO₂, F и P₂O₅. Эти различия связаны с различиями происхождения и дифференциации этих комплексов.

Геохимия изотопов в этих редкометалльных массивах Южной Гоби подробно изучена в работах [Коваленко и др., 2006, 2007]. Лугингольский массив и вулканиты массива Мушугай-Худук образовались в складчатых зонах и для них характерен мантийный источник ЕМ-2 [Владыкин и др., 2004; Владыкин, 2005], для которого отмечаются высокие отношения изотопов ⁸⁷Sr/⁸⁶Sr в пределах 0.708—0.714. Это связано не с контаминацией осадочных пород щелочной магмы, а с субдукцией в мантию корового материала по зонам Беньоффа. Сама мантия в этих районах становится контаминированной по стронцию, а потом при выплавлении щелочных магм из такой мантии при малой степени плавления (менее 1 %) для них тоже характерно высокое отношение изотопов Sr, как и в этой контаминированной мантии. С этим же процессом связаны и не совсем обычные метки изотопов углерода и кислорода. Высокие значения изотопов кислорода можно объяснить вулканогенным характером становления массивов, когда при извержении вулканов происходит «подсос» в канал вулкана вод из вмещающих пород разных уровней и их смешение с магмой. Высокие значения изотопов кислорода характерны для всех вулканогенных карбонатитов и особенно для их туфовых разностей, когда идет обмен изотопами и с кислородом воздуха. Иная картина распределения изотопов наблюдается в рудных образованиях Хан-Богдинского массива [Коваленко и др., 2007]. Для них характерны значения є_{ма}, равные от +5 до +7 при значениях отношения изотопов Sr 0.703—0.705, что отвечает деплетированному мантийному источнику, а изотопы кислорода имеют мантийные метки от -6 до -8, что подтверждает отсутствие влияния поверхностных вод. Под плотным эффузивным экраном скапливалась только своя ювенильная вода с мантийным кислородом. Как было показано ранее [Коваленко и др., 2007], граниты Хан-Богдинского массива связаны своим происхождением с мантийным источником и образовались при дифференциации базальтоидной магмы, о чем свидетельствует одновозрастной разрез с Хан-Богдинским массивом бимодальной щелочнобазальт-комендитовой серии, проявленной в юго-восточном экзоконтакте массива [Коваленко и др., 2006].

В мире имеются три суперкрупных месторождения TR в карбонатитах: это Маунтин Пасс в США, Баюнь-Обо в Китае и Томтор в Восточном Прианабарье, Россия. По нашим представлениям, эти объекты, как и монгольские, относятся к формации калиевых щелочных пород [Владыкин, 2009]. Вокруг генезиса их руд и формационной принадлежности давно идут научные споры. Нам представляется, что изучение карбонатитов Южной Гоби способствует в какой-то мере разрешению этих споров.

выводы

1. В Южной Гоби выделены три разновозрастных редкометалльных комплекса, с которыми связаны крупные месторождения редких элементов. Для них характерны различное поведение редких элементов в процессе рудообразования и разные минеральные ассоциации концентраторов редких элементов.

2. Карбонатитовые комплексы Мушугай-Худук и Лугингол, как и крупные месторождения мира Маунтин-Пасс, Баюнь-Обо, имеют много общих геохимических черт в поведении редких элементов, и их можно отнести к единому формационному типу К-щелочных пород.

3. В вулканогенно-туфовом процессе в комплексе Мушугай-Худук образуются своеобразные породы, обогащенные до рудных Pb, TR, F, Ba.

4. Источником карбонатитовых комплексов Мушугай-Худук и Лугингол служит контаминированная мантия ЕМ-2, а агпаитовых гранитов и пегматитов массива Хан-Богдо — деплетированная мантия.

ЛИТЕРАТУРА

Андреева И.А. Силикатные, силикатно-солевые и солевые магмы щелочно-карбонатитсодержащего комплекса Мушугай-Худук, Южная Монголия (данные изучения составных включений): Автореф. дис. ... к.г.-м.н. М., ИГЕМ РАН, 2000, 18 с.

Владыкин Н.В. Минералого-геохимические особенности редкометальных гранитоидов Монголии. Новосибирск, Наука, 1983, 200 с.

Владыкин Н.В. Петрология и рудоносность К-щелочных пород Монголо-Охотского ареала магматизма: Дис. в форме научного доклада ... д.г.-м.н. Иркутск, ИГХ СО РАН, 1997, 80 с.

Владыкин Н.В. Рудоносные туфы и вулканиты карбонатитового комплекса Мушугай-Худук, Гоби, Монголия // Изв. вузов Сибири, 1999, № 4—5, с. 84—86.

Владыкин Н.В. Геохимия изотопов Sr и Nd щелочных и карбонатитовых комплексов Сибири и Монголии и некоторые геодинамические следствия // Проблемы источников глубинного магматизма и плюмы. Иркутск, 2005, с. 13—29.

Владыкин Н.В. Петрология калиево-щелочных лампроит-карбонатитовых комплексов, их генезис и рудоносность // Геология и геофизика, 2009, т. 50 (12), с. 1443—1455.

Владыкин Н.В., Торбеева Т.С. Лампроиты Томторского массива (Восточное Прианабарье) // Геология и геофизика, 2005, т. 46 (10), с. 1038—1050.

Владыкин Н.В., Коваленко В.И., Кашаев А.А., Сапожников А.Н., Писарская В.А. Новый силикат кальция и циркония — армстронгит // Докл. АН СССР, 1973, т. 209, № 5, с. 1185—1188.

Владыкин Н.В., Коваленко В.И., Дорфман М.Д. Минералогические и геохимические особенности Хан-Богдинского массива щелочных гранитоидов (Монгольская Народная Республика). М., Наука, 1981, 135 с.

Владыкин Н.В., Дриц В.А., Коваленко В.И., Малов В.С., Горшков А.И. Новый силикат — монголит // Зап. ВМО, 1985, № 1, с. 374—377.

Владыкин Н.В., Цыпукова С.С., Морикио Т., Миузаки Т. Геохимия изотопов углерода и кислорода карбонатитов Сибири и геодинамика // Глубинный магматизм, его источники и их связь с плюмовыми процессами. Иркутск, 2004, с. 89—107.

Владыкин Н.В., Агафонов Л.И., Максимюк И.Е. и др. Минералы Монголии. М., ЭКОСТ, 2006, 351 с.

Зайцев А.Н., Петров С.В. Карбонатиты вулкана Олдоиньо Ленгаи, Северная Танзания // Глубинный магматизм, его источники и плюмы. Иркутск, 2008, с. 59—70.

Коваленко В.И. Петрология и геохимия редкометальных гранитоидов. Новосибирск, Наука, 1977, 190 с.

Коваленко В.И., Кузьмин М.И., Цеден Ц., Владыкин Н.В. Литий-фтористый кварцевый кератофир (онгонит) — новая разновидность субвулканических магматических пород // Ежегодник 1969. Иркутск, ИГХ АН СССР, 1970, с. 85—88.

Коваленко В.И., Кузьмин М.И., Зоненшайн Л.П., Нагибина М.С., Павленко А.С., Владыкин Н.В., Цеден Ц., Гундасамбуу Ц., Горегляд А.В. Редкометальные гранитоиды Монголии: петрология, распределение редких элементов и генезис. М., Наука, 1971, 148 с.

Коваленко В.И., Кузьмин М.И., Павленко А.С., Перфильев А.С. Южно-Гобийский пояс редкометалльных щелочных пород МНР и его структурное положение // Докл. АН СССР, 1973, т. 210, № 4, с. 911—914.

Коваленко В.И., Владыкин Н.В., Горегляд А.В., Смирнов В.Н. Лугингольский массив псевдолейцитовых сиенитов в МНР // Изв. АН СССР. Сер. геологич., 1974, № 8, с. 38—49. Коваленко В.И., Владыкин Н.В., Конусова В.В., Смирнова Е.В., Горегляд А.В. Проявления концентрированной редкоземельной минерализации в южной части пустыни Гоби // Докл. АН СССР, 1976, т. 230, № 1, с. 209—212.

Коваленко В.И., Самойлов В.С., Владыкин Н.В., Горегляд А.В., Макагон Л.Д. Геохимическая характеристика пород приповерхностного карбонатитового комплекса в пустыне Гоби // Геохимия, 1977а, № 9, с. 1313—1326.

Коваленко В.И., Владыкин Н.В., Горегляд А.В. Восточная Монголия — новая провинция редкометальной минерализации // Геология и магматизм Монголии, 1977б, № 22, с. 189—205.

Коваленко В.И., Владыкин Н.В., Самойлов В.С., Смирнова Е.В., Горегляд А.В. Редкоземельные элементы в породах приповерхностных карбонатитовых комплексов МНР // Геохимия, 1977в, № 12, с. 1831—1842.

Коваленко В.И., Самойлов В.С., Владыкин Н.В., Горегляд А.В., Писарская А.В., Конусова В.В. Редкометальные карбонатиты и апатит-магнетитовые породы Монголии // Геология и магматизм Монголии, 1979, № 30, с. 158—167.

Коваленко В.И., Ярмолюк В.В., Сальникова Е.Б., Козловский А.М., Котов А.Б., Ковач В.П., Владыкин Н.В., Саватенков В.М., Пономарчук В.А. Геология и возраст Хан-Богдинского массива щелочных гранитоидов в Южной Монголии // Глубинный магматизм, его источники и плюмы. Иркутск, 2006, с. 20—54.

Коваленко В.И., Ярмолюк В.В., Козловский А.М., Ковач В.П., Сальникова Е.Б., Владыкин Н.В., Котов А.Б. Два типа источников магм редкометальных щелочных гранитоидов // Щелочной магматизм, его источники и плюмы. Иркутск, 2007, с. 5—37.

Самойлов В.С., Коваленко В.И. Комплексы щелочных пород и карбонатитов Монголии. М., Наука, 1983, 200 с.

Ярмолюк В.В. Позднепалеозойский вулканизм континентальных рифтовых структур Центральной Азии. М., Наука, 1983, 192 с.

Ярмолюк В.В., Коваленко В.И. Рифтогенный магматизм активных континентальных окраин и его рудоносность. М., Наука, 1991, 121 с.

Рекомендована к печати 14 августа 2012 г. А.С. Борисенко Поступила в редакцию 2 апреля 2012 г.