УДК 535.343.4+004.78

Систематизация источников спектральных данных, содержащих параметры спектральных линий молекулы диоксида углерода и ее изотопологов в ИС W@DIS

А.В. Козодоев¹, А.И. Привезенцев¹, А.З. Фазлиев¹, Н.Н. Филиппов²*

¹Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1 ²Санкт-Петербургский государственный университет 198504, г. Санкт-Петербург, Петродворец, ул. Ульяновская, 3

Поступила в редакцию 1.12.2016 г.

Контуры спектральных линий для малых смещенных частот используются при обработке экспериментальных спектров в решении обратной задачи вычисления столкновительных параметров контура [1]. Их различия обусловлены разными физическими условиями (сильные / слабые столкновения, большие / малые давления и др.). Множество различных контуров применяется для исследования параметров спектральных линий молекул диоксида углерода, метана, метилгалидов и т.д. При систематизации параметров спектральных линий разнообразие контуров приводит к усложнению структур данных в информационных системах (ИС) и структур индивидов, используемых для описания свойств спектральных данных, характеризующих контур линии, в онтологиях молекулярной спектроскопии.

Дана краткая классификация контуров линий и их параметров, приведены результаты систематизации спектральных данных, относящихся к разным контурам спектральных линий, используемых при обработке спектров молекулы диоксида углерода. Для загрузки измеренных и рассчитанных параметров контуров спектральных линий, встречающихся в цифровой библиотеке ИС W@DIS, построена система импорта соответствующих спектральных данных. Разработано программное обеспечение для автоматического описания свойств импортированных решений. Основные свойства данных, формируемые в системе ИС W@DIS, связаны с описанием результатов анализа качества импортированных данных.

Ключевые слова: классификация контуров спектральных линий, профили спектральных линий диоксида углерода, информационная система W@DIS; line shapes classification, carbon dioxide line profiles, W@DIS information system.

Введение

Наиболее известные базы экспертных спектральных данных, относящихся к молекулярной спектроскопии, возникли около 40 лет тому назад [2, 3] и были ориентированы на использование в качестве входных данных в задачах переноса атмосферной радиации. В недавнем докладе [4] декларируется некоторое расширение интенсионала базы данных Hitran с целью ее использования для решения задач переноса радиации в атмосфере планет и экзопланет. Такое расширение связано, в первую очередь, со структурой параметров спектральных линий, относящихся к различным аппроксимациям контуров этих линий, при значительном разнообразии термодинамических условий, реализующихся на этих планетах. Еще в 2005 г. для некоторых молекул в базе данных Hitran [5] и ее последующих версиях наряду с параметрами лоренцевского контура появились параметры асимметричного контура Лоренца.

Информационная система (ИС) W@DIS была создана в 2006-2010 гг. Сначала она использовалась для систематизации источников спектральных данных о состояниях и переходах изолированных молекул воды и сероводорода [6]. В 2007 г. началась работа по импорту в ИС W@DIS параметров спектральных линий, характеризующих контур Лоренца. Отметим, что в коллекцию источников данных включены параметры контуров для всех уширяющих веществ, встречающихся в литературе. После 2010 г. в W@DIS появился большой набор спектральных данных, относящийся к десятку атмосферных молекул, для нелоренцевских контуров спектральных линий. Среди этих молекул молекулы диоксида углерода [7] выделялись широким разнообразием контуров, используемых для описания их спектральных линий.

Расширение числа физических величин, используемых в аппроксимации контуров спектральных линий, привело к необходимости создания универсальной системы импорта данных, относящихся к параметрам разных контуров спектральной линии. Требование универсальности инициировало

^{*} Алексей Викторович Козодоев; Алексей Иванович Привезенцев; Александр Зарипович Фазлиев (faz@iao.ru); Николай Николаевич Филиппов.

[©] Козодоев А.В., Привезенцев А.И., Фазлиев А.З., Филиппов Н.Н., 2017

формализацию характеристик всех используемых в доступной литературе контуров спектральных линий. Такая формализация проведена в настоящей работе, и ее результатом является система обозначений контуров спектральных линий, используемая в ИС W@DIS, и список физических величин с их обозначениями, принятыми нами при программной реализации системы импорта и представления спектральных данных для молекул, находящихся в газовой фазе. Эта часть нашей работы описана в первом разделе статьи.

Во второй части представлена цифровая библиотека, включающая источники данных по параметрам спектральных линий молекулы диоксида углерода. Показано число публикаций, содержащих параметры контуров спектральных линий, и первичных и экспертных источников данных для изотопологов молекулы диоксида углерода. Приведены перечень контуров и связанных с ними источников данных для основного изотополога диоксида углерода и пример представления свойств таких источников в ИС W@DIS.

В третьем разделе кратко характеризуется коллекция первичных источников параметров спектральных линий CO_2 и представлены таблица, содержащая свойства части источников данных этой коллекции для 11 контуров спектральных линий, а также таблица параметров спектральных линий, значения которых содержатся в информационной системе.

1. Контуры спектральных линий

В табл. 1 перечислены все контуры спектральных линий, используемые при обработке спектральных данных по молекуле СО₂.

Таблица 1

Названия и аббревиатуры контуров спектральных линий										
Аббревиатура	Название	Лит.								
D	Доплеровский контур	[9]								
L	Лоренцевский контур	[10]								
DL/VGT	Фойгтовский контур (свертка доплеровского и лоренцевского контуров)	[9]								
DL/SFT	Слабые (soft) столкновения (контур Галатри)	[11]								
DL/HRD	Сильные (hard) столкновения (контур Раутиана–Собельмана или the Nelkin–Ghatak profile)	[12, 13]								
DL/VAR	Контур, обусловленный столкновениями варьируемой силы (hard/soft model)	[13, 14]								
L-AS	Контур Розенкранца (асимметрия, учет спектрального обмена, line mixing)	[15]								
L-AS2	Асимметричный контур Лоренца второго порядка (асимметрия, учет спектрального обмена во втором порядке теории возмущений)	[17-19]								
DL/VGT-AS	Асимметричный фойгтовский контур (учет спектрального обмена, line mixing)	[16]								
DL/SFT-AS	Асимметричный контур Галатри (учет спектрального обмена, line mixing)	[16]								
DL/HRD-AS	Асимметричный контур Раутиана-Собельмана (учет спектрального обмена, line mixing)	[16]								
DL/VAR-AS	Асимметричный контур, обусловленный столкновениями варьируемой силы									
L-SD	Контур Лоренца с учетом «эффекта ветра» в приближенной форме	[18, 19]								
DL/VGT-SD	Контур Фойгта с квадратичным по скорости учетом «эффекта ветра»	[20, 21]								
DL/SFT-SD	Контур Галатри с квадратичным по скорости учетом «эффекта ветра»									
DL/HRD-SD	Контур Раутиана-Собельмана с квадратичным по скорости учетом «эффекта ветра»	[22]								
DL/VAR-SD	Контур, обусловленный столкновениями варьируемой силы, с квадратичным по скорости учетом «эффекта ветра»									
L-SD-AS	Асимметричный контур Лоренца с учетом «эффекта ветра» в приближенной форме	[18, 19]								
DL/ VGT-AS-SD	Асимметричный контур Фойгта с квадратичным по скорости учетом «эффекта ветра»	[23]								
DL/SFT-AS-SD	Асимметричный контур Галатри с квадратичным по скорости учетом «эффекта ветра»									
DL/HRD-AS-SD	Асимметричный контур Раутиана—Собельмана с квадратичным по скорости учетом «эффекта ветра»	[23]								
DL/VAR-AS-SD	Асимметричный контур, обусловленный столкновениями варьируемой силы, с квадра- тичным по скорости учетом «эффекта ветра»									
DL/VGT-AS-SD-pC	Асимметричный контур Фойгта с квадратичным по скорости учетом «эффекта ветра» и частичной корреляцией поступательного и вращательного движения									
DL/SFT-AS-SD-pC	Асимметричный контур Галатри с квадратичным по скорости учетом «эффекта ветра» и частичной корреляцией поступательного и вращательного движения									
DL/HRD-AS-SD-pC	Асимметричный контур Раутиана—Собельмана с квадратичным по скорости учетом «эффекта ветра» и частичной корреляцией поступательного и вращательного движения	[23]								
DL/VAR-AS-SD-pC	Асимметричный контур, обусловленный столкновениями варьируемой силы, с квадра- тичным по скорости учетом «эффекта ветра» и частичной корреляцией поступательного и вращательного движения									

Основной подход в классификации контуров линий состоит в последовательном учете физических механизмов, влияющих на форму контура. Наиболее универсальным механизмом является эффект Доплера, приводящий при тепловом движении молекул к так называемому доплеровскому контуру (в настоящей работе обозначен \mathbf{D} , расшифровка обозначений контуров содержится в табл. 1) гауссовой формы с шириной, зависящей от массы молекулы m и пропорциональной корню квадратному из абсолютной температуры T:

$$F_{\rm D}\left(\tilde{\sigma}\right) = \frac{1}{\sqrt{\pi}\Delta\sigma_{\rm D}} \exp\left[-\left(\frac{\tilde{\sigma}}{\Delta\sigma_{\rm D}}\right)^2\right],$$

где $\tilde{\sigma} = \sigma - \sigma_{fi}$, σ — текущее волновое число, σ_{fi} — волновое число, соответствующее переходу $f \leftarrow i$;

$$\Delta \sigma_{\rm D} = \sigma_{fi} \sqrt{\frac{2k_B T}{mc^2}},$$

Δσ_D — постоянная доплеровского контура (систематизированный перечень параметров контуров при веден в табл. 2). Таким контуром обладают линии в спектрах газов низкой плотности.

При повышении плотности газа на форму контура начинают оказывать влияние возмущения, испытываемые молекулами при взаимных столкновениях. Возмущения внутренних степеней свободы молекулы, прежде всего вращательных, формируют лоренцевский контур (L) с полушириной P_{γ_L} и сдвигом максимума $P\delta_L$, пропорциональными давлению газа P:

$$F_{\rm L}(\tilde{\sigma}) = \frac{1}{\pi} \frac{P \gamma_{\rm L}}{\left(\tilde{\sigma} - P \delta_{\rm L}\right)^2 + \left(P \gamma_{\rm L}\right)^2}$$

 $(\gamma_L$ и δ_L — коэффициенты уширения и сдвига линии). Кроме того, изменение скорости поступательного движения молекул при столкновениях приводит к сужению доплеровского контура, ширина которого становится обратно пропорциональной давлению газа (эффект Дике). Подобные закономерности приводят к тому, что при атмосферном давлении доплеровский вклад в формирование контура становится пренебрежимо мал.

Наиболее сложный вид имеют контуры линий при небольших давлениях газа, когда ширины доплеровской и лоренцевской составляющих сопоставимы по величине. Простейшей моделью контура, учитывающей оба описанных механизма уширения, является контур Фойгта – свертка гауссовой и лоренцевской кривых (DL/VGT). По мере увеличения точности экспериментальных данных было обнаружено, что такой контур не способен описать наблюдаемую форму линий в пределах погрешности измерений. Совершенствование этой модели шло по нескольким направлениям. Влияние столкновений на доплеровскую составляющую контура рассматривалось в предельных случаях сильных и слабых столкновений и для столкновений варьируемой силы (DL/HRD, DL/SFT, DL/VAR). При модификации лоренцевского контура учитывался так называемый «эффект ветра» (speed dependence) – зависимость частоты столкновений от величины собственной скорости молекулы (-SD в обозначениях контура). Вводился дополнительный параметр асимметрии лоренцевского контура, возникающей вследствие эффекта спектрального обмена (line mixing) между линиями полосы (-AS, -AS2 в обозначениях контура); учитывалась вызванная столкновениями корреляция поступательного и вращательного движений молекулы (-рС в обозначениях контура). Различные сочетания этих модификаций приводят к большому количеству модельных контуров линий, используемых при анализе экспериментальных данных.

Следует также отметить, что дополнительные параметры, вводимые при модификации лоренцевского и доплеровского контуров, являются эмпирическими. Поэтому их значения, как и значения остальных параметров линий, определяемые на основе экспериментальных данных, имеют смысл только в сочетании с указанием конкретной модели использованного при этом контура. Так, например, различия в величине интенсивностей линий СО₂,

Таблица 2

Аббревиатура					Пар	аметр	ы кон	туров	спект	гральн	ных ли	иний				
Допплеровский контур	$\Delta \tilde{\sigma}_{\rm D}$															
D	+															
Лоренцевский контур		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$					γlas	$n_{\mathrm{LAS}}^{e,l}$	γl2	$n^{e,l}_{\mathrm{\gamma}2}$	$\delta_{\rm L2}$	$n^{e,l}_{\mathrm{d2}}$	
L		+	+	+	+											
L-AS		+	+	+	+					+	+					
L-SD-AS		+	+	+	+					+	+	+	+	+	+	
Фойгтовский контур		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$					γlas	$n_{\mathrm{LAS}}^{e,l}$	γl2	$n^{e,l}_{\!\scriptscriptstyle \gamma 2}$	$\delta_{\rm L2}$	$n^{e,l}_{\mathrm{\delta}2}$	η
DL/VGT	+	+	+	+	+											
DL/VGT-AS	+	+	+	+	+					+	+					
DL/VGT-SD		+	+	+	+							+	+	+	+	
DL/VGT-SD-AS		+	+	+	+					+	+	+	+	+	+	
DL/VGT-SD-AS-pC		+	+	+	+					+	+	+	+	+	+	+

Соответствие обозначений контуров спектральных линий и их характеристик

Окончание табл. 2

Аббревиатура		Параметр контуров спектральных линий														
Слабые столкновения (контур Галатри)		$\gamma_{\rm L}$	$n^{e,l}_{\scriptscriptstyle Y}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$	zs	γs	$n_{ m S}^{e,l}$		γlas	$n_{ m LAS}^{e,l}$	γ _{L2}	$n^{e,l}_{\!\scriptscriptstyle \gamma 2}$	δ_{L2}	$n^{e,l}_{\mathrm{\delta}2}$	η
DL/SFT	+	+	+	+	+	+	+	+								
DL/SFT-AS	+	+	+	+	+	+	+	+		+	+					
DL/SFT-SD		+	+	+	+	+	+	+				+	+	+	+	
DL/SFT-SD-AS		+	+	+	+	+	+	+		+	+	+	+	+	+	
DL/SFT-SD-AS-pC		+	+	+	+	+	+	+		+	+	+	+	+	+	+
Сильные столкновения (контур Раутиана—Собельмана)		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$	z_{H}	$\gamma_{\rm H}$	$n_{ m H}^{e,l}$		γlas	$n_{\mathrm{LAS}}^{e,l}$	γ_{L2}	$n^{e,l}_{\!\scriptscriptstyle \gamma 2}$	δ_{L2}	$n^{e,l}_{\mathrm{\delta}2}$	η
DL/HRD	+	+	+	+	+	+	+	+								
DL/HRD-AS	+	+	+	+	+	+	+	+		+	+					
DL/HRD-SD		+	+	+	+	+	+	+				+	+	+	+	
DL/HRD-SD-AS		+	+	+	+	+	+	+		+	+	+	+	+	+	
DL/HRD-SD-AS-pC		+	+	+	+	+	+	+		+	+	+	+	+	+	+
Столкновения варьируемой силы		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$	$z_{\rm HS}$	$\gamma_{\rm HS}$	$n_{ m HS}^{e,l}$	3	γlas	$n_{\mathrm{LAS}}^{e,l}$	γ_{L2}	$n^{e,l}_{\gamma 2}$	δ_{L2}	$n^{e,l}_{\mathrm{\delta}2}$	η
DL/VAR	+	+	+	+	+	+	+	+	+							
DL/VAR-AS		+	+	+	+	+	+	+	+	+	+					
DL/VAR-SD		+	+	+	+	+	+	+	+			+	+	+	+	
DL/VAR-SD-AS		+	+	+	+	+	+	+	+	+	+	+	+	+	+	
DL/VAR-SD-AS-pC		+	+	+	+	+	+	+	+	+	+	+	+	+	+	+

определенных в работе [8] с использованием двух моделей контура (DL/VGT и DL/SFT), достигают 5%, а различия в значениях коэффициентов самоуширения 6%.

Параметры контуров спектральных линий в ИС W@DIS:

 $\Delta \tilde{\sigma}_D$ — постоянная доплеровской составляющей линии, см $^{-1};$

 γ_L — коэффициент уширения лоренцевской составляющей линии, см⁻¹/атм;

n^{*e*,*l*} – параметры температурной зависимости коэффициента уширения;

 δ_L- коэффициент сдвига линии, см $^{-1}/$ атм;

 $n_{\delta}^{e,l}$ — параметр температурной зависимости коэффициента сдвига;

 γ_{LAS} — коэффициент асимметрии, атм⁻¹;

 $n_{\rm LAS}^{e,l}$ — параметр температурной зависимости коэффициента асимметрии;

 $\gamma_{\rm L2}$ — параметр, характеризующий зависимость коэффициента уширения от скорости υ поглощающей молекулы, см $^{-1}/$ атм;

 $n_{\gamma 2}^{e,l}$ — параметр температурной зависимости коэффициента уширения γ_{L2} ;

 δ_{L2} — параметр, характеризующий зависимость коэффициента сдвига от скорости v поглощающей молекулы, см⁻¹/атм;

 $n_{\delta 2}^{e,l}$ — параметр температурной зависимости коэффициента сдвига δ_{L2} ;

 η — коэффициент корреляции поступательного и вращательного движений (partially correlation coefficient), $\eta \ge 0$;

$$z_{\rm S} = \frac{P\gamma_{\rm S}}{\Delta\sigma_{\rm D}};$$

γ_S — параметр, характеризующий частоту слабых столкновений, меняющих скорость поглощающей молекулы, см⁻¹/атм; $n_{\rm S}^{e,l}$ — параметр температурной зависимости частоты слабых столкновений, меняющих скорость поглощающей молекулы, см⁻¹/атм;

$$z_{\rm H} = \frac{P\gamma_{\rm H}}{\Delta\sigma_{\rm D}};$$

 $\gamma_{\rm H}$ — параметр, характеризующий частоту сильных столкновений, меняющих скорость поглощающей молекулы, см $^{-1}/$ атм;

 $n_{\rm H}^{e,l}$ — параметр температурной зависимости частоты сильных столкновений, меняющих скорость поглощающей молекулы, см⁻¹/атм;

$$z_{\rm HS} = \frac{P\gamma_{\rm HS}}{\Delta\sigma_{\rm D}}$$

 $\gamma_{\rm HS}$ — параметр, характеризующий полную частоту (сильных и слабых) столкновений, см⁻¹/атм;

 $n_{\rm HS}^{e,l}$ — параметр температурной зависимости полной частоты (сильных и слабых) столкновений, см⁻¹/атм;

 ε — доля сильных столкновений ($0 \le \varepsilon \le 1$).

Параметры температурной зависимости $n_r^{e,l}$, где $x = \gamma$, δ , $\gamma 2$, $\delta 2$, LAS, S, H и HS, представляют пару (n_x^e, n_x^l) коэффициентов температурной зависимости коэффициентов уширения (γ_L) и сдвига (δ_L); коэффициентов, характеризующих зависимость коэффициентов уширения (_{γL2}) и сдвига (_{δL2}) от скорости v поглощающей молекулы; коэффициентов температурной зависимости коэффициента асимметрии (у_{LAS}); коэффициентов температурной зависимости частоты слабых столкновений, меняющих скорость поглощающей молекулы (у_S); частот сильных столкновений, меняющих скорость поглощающей молекулы (у_н); полной частоты столкновений (сильных и слабых) (у_н). Верхние индексы *е* и *l* соответствуют приближению, в котором найден коэффициент: е – экспоненциальная зависимость, *l* – линейная зависимость.

2. Цифровая библиотека публикаций и источников спектральных данных по молекуле диоксида углерода в ИС W@DIS

Цифровая библиотека публикаций ИС W@DIS включает 820 публикаций, содержащих спектральные характеристики изотопологов молекулы диоксида углерода. Около четверти этих публикаций содержат физические величины, описывающие параметры 11 контуров спектральных линий для 8 изотопологов CO₂. Параметры этих контуров вычисляются при решении задач ТЗ и Т5 [1]. Распределение публикаций и источников спектральных данных о параметрах контура для изотопологов CO₂ приведено в табл. 3.

Таблица З

Количество публикаций, содержащих решения задач (ТЗ и Т5) для процесса поглощения, а также первичных и экспертных источников данных для изотопологов молекулы диоксида углерода, включенных в ИС W@DIS

Моле- кула	Кол-во публика- ций	Кол-во источни- ков дан- ных	Моле- кула	Кол-во публика- ций	Кол-во источни- ков дан- ных
CO_2	115	401	$\mathrm{C}^{17}\mathrm{O}^{18}\mathrm{O}$	3	6
CO ¹⁷ O	10	19	$\mathrm{C}^{18}\mathrm{O}_2$	5	12
CO ¹⁸ O	15	24	$^{13}\mathrm{CO}_2$	17	36
$C^{17}O_2$	1	2	¹³ CO ¹⁷ O	1	3

В нашей работе источником спектральных данных, извлеченных из публикации (далее просто источником данных), называется набор значений физических величин, относящихся к решению либо задачи ТЗ, либо задачи Т5. Если решение задачи получено одним методом для одной молекулы одного типа контура одного уширяющего вещества при одних и тех же термодинамических условиях и опубликовано в одной публикации, то такой источник данных называется первичным. Перечисленные в предшествующем предложении метод, задача, тип контура и т.д. являются определяющими источник данных. В одной публикации может быть несколько первичных источников данных. Все прочие называются составными. Среди составных источников данных выделим экспертные - для одной молекулы, относящиеся к решениям задач ТЗ или Т5, одному типу контура, одному уширяющему веществу, полученные при одних и тех же термодинамических условиях и содержащие данные из одной публикации, но опубликованные ранее не в ней. Первичные и экспертные источники данных являются предметом систематизации в настоящей статье. В табл. 4 даны библиографические ссылки на публикации, из которых извлечены источники данных для каждого из 11 типов контуров для основного изотополога диоксида углерода, и количество источников данных *n* для соответствующего типа контура спектральной линии.

Таблица 4 Контуры и библиографические ссылки на статьи, из которых извлечены источники данных

Тип контура	Библиографические ссылки
L	[24-71]
L-AS	[19, 72]
L-AS-SD	[19]
DL/VGT	[62, 72–94]
DL/VGT-AS	[19, 60, 72, 95–97]
DL/VGT-SD	[72, 84, 85, 88, 93, 97, 104]
DL/VGT-AS-SD	[94, 95, 98-100]
DL/SFT	[8, 74, 84, 101]
DL/HRD	[60, 82, 84, 96, 105]
DL/HRD-AS	[19, 102]
DL/HRD-SD-pC	[103]

Для каждого источника данных вычисляются значения двух групп свойств. К первой группе относятся индивидуальные свойства спектральных данных только этого источника. Ко второй группе – относительные (например, СКО или максимальная разность волновых чисел идентичных переходов из пары источников данных), описывающие отношения между этим источником и всеми прочими источниками. Именно по свойствам из этих двух групп проводится систематизация источников данных. Наборы индивидуальных и относительных свойств источника данных называются информационными источниками, характеризующими связанный с ними источник данных.

Для исследователя индивидуальные и относительные свойства, определяющие источник данных, представляются в ИС W@DIS в табличном виде. Пример такой таблицы показан на рисунке. Значения относительных свойств размещены в разделе таблицы «Свойства пар источников данных»; значения других свойств — в разделе «Свойства физических величин» и вне разделов (Вещество, Метод и Публикация). Заметим, что ненулевые значения относительных свойств возможны только в том случае, если пара источников данных включает идентичные переходы (переходы, характеризующиеся попарно одинаковыми квантовыми числами).

Использованные обозначения квантовых чисел (TAbDinf-1, TVAbDinf-1 и TVAbDinf-1_1) приведены в словаре ИС W@DIS (http://www.saga. iao.ru/ glossary/?catalog=9). Более детальное описание свойств приведено в работе [106]. Аннотация от 2016-05-02 20:00:25: Первичный публичный источник 2004_PrMaViDr_CO2_T5_CO2_VGT-AS_296К загрузил Fazliev Alexander в 2016-05-02 19:53:28

Расчет/Эксперимент

Вещество				Свойства физических величин (решений за,	дач)					
Название		C	0 ₂	Вакуумные волновые числа (ω)						
Использованный м	етод (измер	ения, вычисл	тения)	Единица измерения	cm ⁻¹					
Не определено		•		ωmin	2093.346577					
Публикация				Wmax	2093.945898					
A. Predoj-Cross, A. E). May. A. Vitcu	. J. R. Drummond	1. JM. Hartmann and C.	Число переходов	[35]					
Boulet, Broadening and li 20<0110 Q branches of	ne mixing in the carbon dioxide	e 2000 < 0110, e: Experimental re	1110 < 00 00 and 12 esults and energy- 2004	Наличие точности определения физической величины в данных	-					
10.1063/1.1738101, Usin	g both a differe	nce frequency sp	ectrometer and a Fourier	Интенсивность						
of carbon dioxide at room	n temperature a	and pressures up	to 19 atm. The	Единица измерения сm ⁻¹ /(mole						
all with an asymmetric co	mponent to ac	count for weak lin	ne mixing. For this band,	Минимальная интенсивность	5.800e-25					
weak mixing parameters. In this paper we also compare the suitability of the				Максимальная интенсивность	7.450e-24					
Q branches 20 00< 01 :	10, the 11 10<-	-00 00, and the p	previously measured present Q branch of pure	Суммарная интенсивность	1.670e-22					
CO2, all at room tempera	iture.,			Наличие физической величины в данных	+					
Свойства физическ	их величин	(решений зад	1a4)	Наличие точности определения физической величины в данных	+					
Термодинамические	е условия			Переходы						
Температура	296 K			Нотация квантовых чисел	TAbDinfh-1					
Давление	1 atm			Число колебательно-вращательных полос						
Уширяющее вещес	180			TVAbDinfh-1	[2]					
Название уширяющего вещества	CO2			Число колебательно-вращательных полос						
Давление	0 atm			TVAbDinfh-1_1	[1]					
Тип контура	Контур Фо	йта со смеше	нием линий	Полный угловой момент						
	Наличие Наличие точ		Наличие точности	J _{min}	2					
Параметр	Единица измерения	физической величины в данных	определения физической величины в данных	J _{max} Проверка формальных и неформальных огранич	46 чений (включая					
Коэффициент сдвига	cm-1 atm-1	т ¹ атт ¹ правила отбора)								
линии (õլ)	ciii - atiii -			Число переходов с уникальной идентификацией	[35]					
Доплеровской составляющей линии	-	_	2	Число переходов с неуникальной идентификацией	[0]					
(Δσ _D)				Число переходов без квантовых чисел	[0]					
Коэффициент уширения Лоренцевской составляющей линии (YL)	cm ⁻¹ atm ⁻¹	+	+	Результаты проверки правил отбора Число идентификаций не удовлетворяющих ограничению на квантовые числа состояния	[0]					
Коэффициент асимметрии (YLAS)	-	-	2	/2=0 & ε≠е) Число запрещённых переходов (по ядерной	[0]					
Параметр				статистике)	[0]					
температурной зависимости коэффициента	<u> </u>	-	-	Число запрещенных переходов (Ограничение на квантовые числа уровней энергии, v₂ ≠ l₂ v l₂ > J)	[0]					
асимметрии (n _{LAS})				Чиспо переходов не удовлетворяющих ограничению . (ДJ=0 при e-f) ∨ (ДJ=±1 при e-e, f-f)	[0]					
Параметр температурной зависимости коэффициента сдвига	-		-	Число запрещенных переходов (Колебательные правила отбора, Δv2 + Δv3 = 2n, n=0,1,2,, Δv= v'-v'')	[0]					
(nგ) Параметр				Число запрещённых переходов (Вращательные правила отбора, /2'=/2''=0 - Q - запрещёна)	[0]					
температурной зависимости	-	- 1	÷	Число отклоненных экспертами переходов	[0]					
коэффициента уширения (n _y)				Число переходов удовлетворяющих всем ограничениям и правилам отбора	[35]					
Свойства пар источ	ников данн	ых		Число переходов не удовлетворяющих всем	[0]					
Нотация квантовых чисел: TAbDinfh-1	Δω _{тех} [Аоо / N СКО [N-4ис [Число иде число исто экспертным	A ^R oo], [Ao1 A ^R o. по идентичных п чтичных колебат ников, имеющи и источником дан	1], [A10 A ^R 10], A ^R xy= A _{XY} переходов] ельных полос]) 	ограничениям и правилам отбора	r-1					

Пример табличного представления свойств источника данных 2004_PrMaViDr_CO2_T5_CO2_VGT-AS_296K [19]

3. Описание источников данных для основного изотополога диоксида углерода

В табл. 5 приведены часть источников данных с указанием на публикацию, откуда каждый источник был взят, количество источников данных, извлеченных из публикации и импортированных в ИС W@DIS, а также некоторые свойства источников параметров спектральных линий. В частности, в колонке «ПСЛ, уширяющее вещество и температура» перечислены параметры спектральных линий (ПСЛ), уширяющее вещество и значения температуры, при которых проводились расчеты или измерения. Использованы следующие обозначения: m – число источников данных, извлеченных из публикации; k – число переходов в источнике данных и тип спектроскопической задачи [1]; p – интервал изменения волновых чисел, см⁻¹.

Полная коллекция источников данных по молекуле диоксида углерода доступна по адресу http://wadis.saga.iao.ru/co2/lineprof/. В коллекцию вошли работы, в которых в качестве уширяющих веществ выступали молекулы CO₂, Air, N₂, O₂, ³He, CH₄, CO, H₂, N₂O, NH₃, NO, Fumarolic acid и атомы He, Xe, Ar, Kr.

Стоит отметить, что суммарное число параметров контура в разных физических моделях составляет несколько десятков (см. табл. 2). При формировании коллекции источников данных по параметрам контуров спектральных линий для диоксида углерода выяснилось, что большая часть значений этих параметров до сих пор не опубликована. Нельзя утверждать, что они не изучались, но ясно, что законченных исследований контуров для диоксида углерода нет (за исключением лоренцевского и фойгтовского контуров).

В табл. 6 указано (знаком «+»), значения каких параметров контуров спектральных линий были

Таблица 5

Источники данных и некоторые их	свойства	(классификация п	ю типам контура)
---------------------------------	----------	------------------	------------------

Библиографическая ссылка	блиографическая т k		р	ПСЛ, уширяющее вещество и температура	Интенсивность, см ⁻¹ /атм ⁻¹
		1	1. Лоренцевский ког	нтур (L)	
1964_Pinter [24]	1	3 (T5)	2365,38-2371,42	$\gamma_{\rm L}; {\rm N}_2; T = 296 {\rm K}$	
1972_YoBeCh [27]	1	3 (T5)	929,01-932,96	$\gamma_{\rm L}; {\rm Ar}; T = 300 {\rm K}$	
1974_BoIsAr [28]	1	38 (T5)	924,97-986,56	$\gamma_{\rm L}; {\rm Ar}; T = 300 {\rm K}$	
1975_MeRhHa [29]	15	5 (T5)	651,934712	γ_{L} ; ³ He, Ar, CH ₄ , CO, H ₂ , He, Kr, CO ₂ , N ₂ , N ₂ O, Ne, NH ₃ , NO, O ₂ , Xe; $T = 296$ K	
1979_VaSuBo [35]	6	(49, 51, 57) (T5), (49, 51, 57) (T3)	4811,42-4886,56	$\gamma_{\rm L}$; CO ₂ ; $T = 197$, 233, 294 K	2,690e-24-3,980e-22
1980_TePl [36]	1	21 (T5)	683,80-708,21	$\gamma_{\rm L}, n_{\rm L}; {\rm CO}_2 T = 300 {\rm K}$	2,220e-21-1,470e-19
1984_DeFrJoSn [38]	3	(10, 16, 6) (T5)	2373,05-2388,63	$\gamma_{\rm L}$; CO ₂ , N ₂ ; T = 296 K, 300 K	2,88e-22-1,87e-18
1986_AbSh [39]	1	5 (T5)	938,68-947,74	$\gamma_{\rm L}; {\rm CO}_2 T = 296 {\rm K}$	
1987_GrGr [42]	2	29 (T5) 70 (T3)	942,38–1078,59 927,00–1089,003	$\gamma_{\rm L}; n_{\gamma}; {\rm CO}_2; T = 296 {\rm K}$	
1988_HuLaLe [45]	1	18 (T5), 18 (T3)	718,41-720,75	$\gamma_{\rm L}; {\rm CO}_2 T = 296 {\rm K}$	2,05e-22-3,64e-21
1988_MaDaHeVa [46]	5	(6, 15, 21, 13, 20) (T5)	2349,91-3745,34	$\gamma_{\rm L}$; CO ₂ , N ₂ , O ₂ ; T = 198; 296 K	
1989_DaVaHaRo [49]	3	(20, 19, 18) (T5)	774,24–823,39 772,68–821,83 774,24–812,48	γ_{L} ; $CO_2 T = 194$ K N ₂ ; $T = 194$ K $O_2 T = 194,8$ K	5,64e-24-2,722e-23
1990_SuVa [50]	16	(32, 32, 34, 32, 32, 32, 32, 36) (T3) (32, 32, 34, 32, 32, 32, 32, 36) (T5)	4949,22-4999,43	γ _L ; CO ₂ , N ₂ ; <i>T</i> = 165, 188, 219, 239, 245, 255, 279, 300 K	
1992_DeBeRiSm [52]	2	(34, 34) (T5)	2313,15-2375,80	δL, γL; N2; T = 293,7; 296 K	
1994_MaDaBaBa [53]	1	17 (T5)	2032,41-2073,73	$\gamma_{\rm L}, \ \delta_{\rm L}; \ {\rm N}_2; \ T = 295 \ {\rm K}$	
1995_MaDaAlRe [54]	1	26 (T5)	2187,16-2247,32	$\gamma_{\rm L}; {\rm CO}_2 T = 295 {\rm K}$	6,02e-25-4,38e-24
1998_DeBeSmRi [55]	2	92 (T5), 92 (T5)	918,718-1092,00	γ_L , δ_L ; Air, $N_2 T = 296 \text{ K}$	
1999_RoCoGaDa [57]	4	(5, 5, 10, 5) (T5)	6330,82-6346,28 6332,65-6339,70	γ_{L} , δ_{L} ; CO ₂ , N ₂ , O ₂ , Air $T = 294$ K	
2000_CoDARoMo [58]	1	9 (T5)	4994,05-4998,91	$\gamma_{\rm L}; {\rm CO}_2; T = 296 {\rm K}$	
2006_ToBrMiDe [64]	1	811 (T5)	4755,97-6988,45	$\gamma_{\rm L}, \delta_{\rm L}, {\rm CO}_2; T = 296 {\rm K}$	
2011_ArDuLaNe [69]	2	11 (T5) 41 (T3)	967,70–986,56 4961,73–1002,83	$\gamma_{\rm L}, n_{\rm L}; N_2{\rm O}; T = 300 {\rm K}, T = 296 {\rm K}$	
2014_NgLaPaM [70]	1	41 (T5)	2313,15-2375,80	$\gamma_{\rm L}; {\rm CO}_2; T = 296 {\rm K}$	
2015_PeSoSoLy [71]	1	322 (T5)	9271,01-10855,65	$\gamma_{\rm L}; {\rm CO}_2; T = 296 {\rm K}$	5,421e-29-8,549e-26

Систематизация источников спектральных данных, содержащих параметры спектральных линий... 335

Окончание табл. 5

		-			
Библиографическая ссылка	т	k	p	ПСЛ, уширяющее вещество и температура	Интенсивность (см ⁻¹ /атм ⁻¹)
2. К	онту	ур Розенкранца (асим	метрия, учет спектр	рального обмена, line mixing) (L-A	S)
1987 GeSt [41]	2	9 (T5)	2076,86-2077,23	$\gamma_{\rm L}$: CO ₂ , N ₂ T = 296 K	3,86e-23-1,49e-22
2004 PrMaViDr [19]	1	(35, 35) (T5)	2093.34-2093.94	γ_{L} : CO ₂ : $T = 296$ K	5.800e-25-7.450e-24
3 Асимме	трич	ный контур Лоренца	с учетом «эффекта	ветра» в приближенной форме (L-	-AS-SD)
2004 DrMaViDr [10]	2	(25, 25) (T5)	2003 34 2003 04	x : CO : T = 206 K	5 8000 25 7 4500 24
2004_PTMav1D1 [19]	2	(33, 33) (13)	2093,34-2093,94	$\gamma_{\rm L}$; CO_2 ; $I = 296$ K	5,000e-25-7,450e-24
4. Ψ0	ипс	(27, 28, 25, 26) (T5)	ка доплеровского и		1)
1992_111D0Leb0 [75]	4	(27, 28, 23, 20) (13)	0917,05-0976,77	γ_L , δ_L ; CO ₂ , N ₂ , He, Ar $I = 296$ K	
1998_OZBOROHa [74]	4	(11, 11, 11, 11) (13)	720,27-720,79	γ_L ; He, N ₂ I = 296 K	
2003_DeBeSmRi [75]	1	44 (15)	2309,02-2376,83	$\gamma_L, \delta_L; N_2; I = 296 \text{ K}$	
2004_PoZePaDu [62]	3	(5, 5, 5) (T5)	6233,18-6248,57 6237,42-6242,67	$\gamma_{\rm L}; N_2, O_2, {\rm Air}; T = 296 {\rm K}$	9,35e-24–1,771e-23
2005_HiYaFuAo [8]	2	(11, 11) (T5)	6203,40-6247,45	$\gamma_{\rm L}, \ \delta_{\rm L}; \ {\rm CO}_2; \ T = 296 \ {\rm K}$	3,382e-24-1,687e-23
2006_NaKaFuEn [76]	7	(10, 5, 5, 1, 15, 5, 1) (T5)	6186,85-6252,76	γ_L , n_{γ} ; Air, N ₂ , O ₂ , He, Xe, Ar, Kr T = 298 K	
2007_ToMiDeBe [80]	1	479 (T5)	4767,37-6988,59	$γ_{\rm L}, \delta_{\rm L}; \rm CO_2; T = 296 \ K$	
2008_FaJeHa [81]	1	2 (T5)	3633,08-3645,56	$\gamma_{\rm L}, n_{\rm Y}; {\rm Ar}, {\rm CO}_2; T = 296 {\rm K}$	2,841e-24-2,472e-20
2009 CaWeCaFa [84]	3	(9, 9, 9) (T5)	4980,13-4991,25	$\gamma_{\rm I}; {\rm CO}_2; T = 296 {\rm K}$	3,780e-22-1,295e-21
2010_CaGaGaCh [85]	8	(2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)	6357,31-6361,25	$\gamma_{\rm L}; T = 300, 400, 500, 600, 700, 800, 900, 1000 {\rm K}$	
2011_SoDuCoJo [87]	5	8 (T5)	4870,43-4879,53	$\gamma_{\rm L}$; air $T = 291,80, 271,25, 252,75,$	
2012_LiDuCoJo [91]	5	5(8) (T5)	4870,43-4879,53	$\delta_{\rm L}, n_{\delta}; {\rm CO}_2; T = 219, 243, 259, 272, 204 V$	
2042 J. J. T. W. [02]	4		10000 05 10704 05	272, 291 K	2 700 - 20 - 2 220 - 27
2015_LULILI wa [95]	1		12065,03-12764,03	$\gamma_{\rm L}, \delta_{\rm L}; \rm CO_2; I = 296 \ K$	5,700e-29—5,520e-27
J. ACUMMET	ричн	ный фоигтовский кон	тур (учет спектраль	shoro oomena, line mixing) (DL// V	(GI-AS)
2000_PrLuBeDr [60]	2	(19, 19)(15)	2128,88-2129,75	$\gamma_{\rm L}; {\rm CO}_2; T = 298 {\rm K}$	1,96e-24-7,99e-24
2004_PrMaViDr [19]	2	(35, 35) (15)	2093,34-2093,94	$\gamma_{\rm L}; {\rm CO}_2; T = 296 {\rm K}$	5,800e-25-7,450e-24
2007_PrLiHoUn [94]	2	113 (15)	6173,16-6379,44	γ_L , δ_L , Y_{LAS} ; Air; $I = 298$ K	
2010_PrLiMuPo [95]	1	112 (15)	61/3,16-63/9,44	$\gamma_L, \delta_L; CO_2; T = 296 \text{ K}$	4 004 05 5 005 04
2014_DaFoBuAu [97]	1	3(15)	3291,948-3387,58	$\gamma_L, \delta_L, \gamma_{LAS}; CO_2; T = 296 \text{ K}$	1,034e-25 - 5,037e-24
6. Ko	нтур	о Фойгта с квадратич	ным по скорости уч	етом «эффекта ветра» (DL/VGT-S	SD)
2009_CaWeCaFa [84]	3	(9, 9, 9) (T5)	4980,13-4991,25	$\gamma_{\rm L}; {\rm CO}_2; T = 296 {\rm K}$	3,780e-22–1,295e-21
2010_DeBeMiPr [104]	2	112 (T5)	6173,16-6380,19	$\gamma_{\rm L}, \delta_{\rm L}, \gamma_{\rm L2}; {\rm O}_2 T = 296 {\rm K}$	
2013_HaRoIbPr [92]	8	48 (T5)	920,82-992,48	$\gamma_{\rm L}, \ \delta\gamma_{\rm L}; \ \delta_{\rm L}, \ \delta\delta_{\rm L}; \ {\rm air, \ CO}_2;$ $T = 296 \ {\rm K}$	
7. Асимметричны	ый к	онтур Фойгта с квад	ратичным по скорос	сти учетом «эффекта ветра» (DL/	VGT-AS-SD)
2007 PrUnLiSc [100]	2	113 (T5)	6173.16-6379.44	$\gamma_{\rm L}, \delta_{\rm L}: {\rm CO}_2 T = 296 {\rm K}$,
2010 PrLiMuPo [95]	2	112 (T5)	6173,16-6379,44	$\gamma_{\rm L}, \delta_{\rm L}; CO_2; T = 296 \text{ K}$	
		8. Слабые (soft) с	толкновения (the G	alatry profile) (DL/SFT)	I
1998 OzBoRoHa [74]	4	(11 11 11 11) (T5)	720 27-720 79	y_{r} : He N ₂ T = 296 K	
2006 HiYa [102]	3	(10, 10, 10) (T5)	6203 40-6247 45	γ_L , N_2 ,	
2009_CaWeCaFa [84]	0	(9, 9, 9) (T5)	4980 13-4991 25	$\gamma_{L}, \gamma_{2}, \sigma_{2}, \gamma_{H}, \gamma = 296 \text{ K}$	3 780e-22—1 295e-21
9 Сильные	(har	d) столиновения (кон	4000,10 4001,20	$\gamma_L, CO_2, T = 250 \text{ K}$)I /HRD)
2000 DrL uBoDr [105]	(11a1))	(10, 10) (T5)	2128 88 2120 75	x : CO : T = 208 K	1.060.24 7.000.24
2000_FILUDEDI [103]		(15, 15)(15) 2 (T5)	4842 00 4847 26	$\gamma_{\rm L}, {\rm CO}_2, T = 298 {\rm K}$	1,500-24-7,550-24
2000_{0} $C_{0}W_{0}C_{0}E_{0}$ [94]	4	(0, 0, 0) (T5)	4040,33-4041,20	γ_L , AII, $CO_2 I = 290$ K	3 780e-22 1 205e 24
$\frac{2003 \text{ CaweCdFa}[04]}{2012 \text{ DeFile}[06]}$	2	(3, 3, 5) (13) 15 (T5)	931 00-087 67	$\gamma_{\rm L}, \ CO_2; \ I = 290, \ 294 \ {\rm K}$	$4.070e^{-24} - 2.320e^{-21}$
40 A		13 (13)	331,00-307,02	$\gamma_L, CO_2, I = 290 \text{ K}$	+,0706-24-2,3206-23
10. Асимметрич	ный	контур Раутиана-Со	росльмана (учет спе	ктрального оомена, line mixing) (L	U/ HDK-AS)
1997_BeDuSiMa [102]	1	16 (15)	2052,09-2075,29	$\gamma_{\rm L}, \gamma_{\rm LAS}; \rm CO_2; T = 301 \ K$	4 000 05 5 0 0 0 0
2014_DaFoBuAu [19]	2	75 (15)	3291,94–3387,58	γ_L , δ_L , γ_{LAS} , γ_H ; CO ₂ ; $T = 296$ K	1,036e-25-5,042e-24
11. К и части	онту гчно	ир Раутиана—Собельм й корреляцией поступ	ана с квадратичны пательного и враща	м по скорости учетом «эффекта вет гельного движения (DL/HRD- SD	ра» - рС)
0045 J J C F [400]	4	((755)	6006 005 6040 00		

2015_LaLaScTr [103] 1 4 (T5) 6236,037–6313,00 $\gamma_L, \gamma_{L2}, \delta_{L2}, \eta$; CO₂; T = 296 K

336

Таблица б

Аббревиатура контура					Пар	аметр :	контур	ов спе	ктраль	ных ли	ний				
Лоренцевский контур	$\Delta \tilde{\sigma}_{\rm D}$	$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$				γlas	$n_{ m LAS}^{e,l}$	$\gamma_{\rm L2}$	$n^{e,l}_{\mathrm{\gamma}2}$	$\delta_{\rm L2}$	$n^{e,l}_{\mathrm{d2}}$	
L		+	+	+	+										
L-AS		+	_	+	_				-	—					
L-SD-AS		+	_	-	_				-	—		—	_	—	
Фойгтовский контур		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$				$\gamma_{\rm LAS}$	$n_{ m LAS}^{e,l}$	γ_{L2}	$n^{e,l}_{\mathrm{\gamma}2}$	$\delta_{\rm L2}$	$n^{e,l}_{\mathrm{\delta}2}$	
DL/VGT	+	+	+	+	+										
DL/VGT-AS	+	+	_	+	_				+	—					
DL/VGT-SD		+	_	+	_						+	—	_	_	
DL/VGT-SD-AS		+	_	+	_				+	—	I	—	_	-	
Контур Галатри		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$	$z_{\rm S}$	γs	$n_{ m S}^{e,l}$							
DL/SFT	+	+	_		_	_									
Контур Раутиана		$\gamma_{\rm L}$	$n^{e,l}_{\gamma}$	$\delta_{\rm L}$	$n^{e,l}_{\delta}$	$z_{\rm H}$	$\gamma_{\rm H}$	$n_{ m H}^{e,l}$	$\gamma_{\rm LAS}$	$n_{\mathrm{LAS}}^{e,l}$	γ_{L2}	$n^{e,l}_{\gamma 2}$	$\delta_{\rm L2}$	$n^{e,l}_{\mathrm{\delta}2}$	η
DL/HRD	+	+	+	_	_	_	+	_							
DL/HRD–AS	+	+	_	+	_	_	+	_	+	_					
DL/HRD-SD-pC		+	—	—	—	—	—	_			+	_	+	-	+

Наличие измеренных параметров контуров спектральных линий в источниках данных, импортированных в ИС W@DIS

извлечены из публикаций. Параметры с неопубликованными значениями отмечены знаком «--».

В ИС W@DIS свойства источников спектральных данных могут иметь разные представления, ориентированные на исследователей и программных агентов. Пример представления для исследователя приведен на рисунке. В основе представления для программных агентов (или пользователей, знакомых с языком разметки OWL 2 DL) лежат онтология информационных ресурсов по молекуле диоксида углерода [107] и онтология параметров контуров спектральных линий для этой же молекулы [108]. Онтологическое представление содержит все информационные источники, относящиеся к источникам данных параметров контуров изотопологов молекулы диоксида углерода, предоставляемые исследователям в табличном виде, и результаты классификаций состояний, переходов, полос спектральных линий и информационных ресурсов по параметрам контуров спектральных линий.

Заключение

В работе систематизированы решения задач спектроскопии ТЗ и Т5, содержащие параметры контуров спектральных линий. Предложены аббревиатуры названий контуров спектральных линий для составления онтологий информационных ресурсов и переходов. Приведены примеры двух видов систематизации. Получены онтологии источников данных о контурах спектральных линий молекулы диоксида углерода и переходов неизолированной молекулы. В онтологии входят описания всех используемых в публикациях 11 моделей столкновительного контура. Созданы программное обеспечение для автоматического формирования фактологической части онтологии и система импорта решений задач спектроскопии ТЗ и Т5 в ИС W@DIS [109]. Сформированная классификация контуров спектральных линий молекулы диоксида углерода в дальнейшем будет применена для систематизации ПСЛ других атмосферных молекул.

Авторы благодарны РФФИ за финансирование работы (грант № 13-07-00411 «A Semantic Web Expert System for Spectral Data Quality Control in Molecular Spectroscopy via Internet»). Работа частично поддержана Санкт-Петербургским государственным университетом (грант № 11.38.265.2014).

- Bykov A.D., Fazliev A.Z., Filippov N.N., Kozodoev A.V., Privezentsev A.I., Sinitsa L.N., Tonkov M.V., Tretyakov M.Yu. Distributed information system on atmospheric spectroscopy // Geophys. Res. Abstr. 2007. V. 9. P. 01906.
- McClatchey R.A., Benedict W.S., CloughS.A., Burch D.E., Fox K., Rothman L.S., Garing J.S. AFCRL Atmospheric Absorption Line Parameters Compilation. Environmental Research Paper N 434 AFCRL-TR-73-0096 (Air Force Systems Command, USAF, 1973).
- Chedin A., Husson N., Scott N.A., Jobard I., Cohen-Hallaleh I., Berroir A. La banque de donnes GEISA, Description et logiciel d'utilisation. Internal Rep. LMD 108 (Ecole Polytechnique, Palaiseau, France, 1980).
- Rothman L.S., Gordon I.E., Hill C., Kochanov R.V., Wcislo P., Wilzewski J. HITRAN in the XXI-st century: Beyond Voigt and beyond Earth // Abstr. 70th Inter. Sympos. Mol. Spectrosc. June 20, 2015. Illinois. Champaign-Urbana, URL: http://hdl.handle.net/2142/ 79346
- Rothman L.S., Jacquemart D., Barbe A., Benner D.C., Birk M., Brown L.R., Carleer M., Chackerian C.Jr., Chance K., Coudert L.H., Dana V., Devi V.M., Flaud J.-M., Gamache R.R., Goldman A., Hartmann J.-M., Jucks K.W., Maki A.G., Mandin J.-Y., Massie S.T., Orphal J., Perrin A., Rinsland C.P., Smith M.A.H., Tennyson J., Tolchenov R.N., Toth R.A., Vander Auwera J., Varanasi P., Wagner G. The HITRAN 2004 Molecular Spectroscopic Database // J. Quant. Spectrosc. Radiat. Transfer. 2005. V. 96, N 2. P. 139–204.
- 6. Császár A.G., Fazliev A.Z., Tennyson J. W@DIS— Prototype information system for systematization of spectral data of water // Abstr. 20th Colloquium High Resolution Mol. Spectrosc. 2007. P. 270–271.

Систематизация источников спектральных данных, содержащих параметры спектральных линий...

URL: http://vesta.u-bourgogne.fr/ hrms/Program/AbsBk.pdf.gz

- Lavrentiev N., Privezentsev A., Filippov N., Fazliev A. Complete set of published spectral data on CO₂ molecule // Abstr. 22nd Colloquium High Resolution Mol. Spectrosc. 2011. P. 353–354.
- Hikida T., Yamada K.M.T., Fukabori M., Aoki T., Watanabe T. Intensities and self-broadening coefficients of the CO₂ ro-vibrational transitions measured by a near-IR diode laser spectrometer // J. Mol. Spectrosc. 2005. V. 232, N 2. P. 202–212.
- Voigt W. The distribution of intensity within spectral lines // Phys. Z. 1913. V. 14. P. 377–381.
- 10. Anderson P. W. Pressure broadening in the microwave and infrared regions // Phys. Rev. 1949. V. 76. P. 647–661.
- 11. Galatry L. Simultaneous effect of Doppler and foreign gas broadening on spectral lines // Phys. Rev. 1961.
 V. 122. P. 1218.
- Nelkin M., Ghatak A. Simple binary collision model for Van Hove's Gs(r, t) // Phys. Rev. 1964. V. 135. P. 4.
- Раутиан С.Г., Собельман И.И. Влияние столкновений на доплеровское уширение спектральных линий // Успехи физ. наук. 1966. Т. 90, вып. 2. С. 209– 236.
- Ciurylo R. Shapes of pressure- and Doppler-broadened spectral lines in the core and near wings // Phys. Rev. 1998. V. 58. P. 1029.
- Rosenkranz P.W. Shape of the 5 mm oxygen band in the atmosphere // IEEE Trans. Antennas Propag. 1975. V. AP-23, N 4. P. 498.
- 16. Pine A.S. Line mixing sum rules for the analysis of multiplet spectra // J. Quant. Spectrosc. Radiat. Transfer. 1997. V. 57, N 2. P. 145–155.
- Smith E.W. Absorption and dispersion in the O₂ microwave spectrum at atmospheric pressures // J. Chem. Phys. 1981. V. 74. P. 6658.
- Predoi-Cross A., Luo Caiyan, Berman R., Drummond J.R., May A.D. Line strengths, self-broadening, and line mixing in the 20⁰0←01¹0 (Σ←Π) Q branch of carbon dioxide // J. Chem. Phys. 2000. V. 112. P. 8367.
- Predoi-Cross A., May A.D., Vitcu A., Drummond J.R., Hartmann J.-M., Boulet C. Broadening and line mixing in the 20⁰0←01¹0, 11¹0←00⁰0 and 12²0←01¹0 Q branches of carbon dioxide: Experimental results and energy-corrected sudden modeling // J. Chem. Phys. 2004. V. 120, N 22. P. 10520. DOI: 10.1063/1.1738101.
- Berman P.R. Speed-dependent collisional width and shift parameters in spectral profiles // J. Quant. Spectrosc. Radiat. Transfer. 1972. V. 12, iss. 9. P. 1331–1342.
 Rohart F., Mader H., Nicolaisen H.-W. Speed de-
- 21. Rohart F., Mader H., Nicolaisen H.-W. Speed dependence of rotational relaxation induced by foreign gas collisions: Studies on CH₃F by millimeter wave coherent transients // J. Chem. Phys. 1994. V. 101, N 8. P. 6475.
- 22. Lisak D., Havey D.K., Hodges J.T. Spectroscopic line parameters of water vapor for rotation–vibration transitions near 7180 cm⁻¹ // Phys. Rev. A. 2009. V. 79, N. 5. P. 052507.
- 23. Ngo N.H., Lisak D., Tran H., Hartmann J.-M. An isolated line-shape model to go beyond the Voigt profile in spectroscopic databases and radiative transfer codes // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 89–100.
- 24. Pinter F. Rotational combination line width of N₂ and CO₂ as a function of the quantum number j // Opt. Spectrosc. 1964. V. 17, N 5. P. 428.
- 25. Boulet C., Arie E., Bouanich J.P., Lacome N. Spectroscopie par Source Laser. II. Etude Experimentale de

l'Elargissement des Raies de la Transition 00°1–(10°0, 02°0)I de CO₂ Perturbe par N₂. Application de la Theorie d'Anderson, Tsao et Curnutte au Calcul des Largeurs des Raies de CO₂ Pur, et Perturbe par N₂ // Can. J. Phys. 1972. V. 50, N 18. P. 2178–2185. DOI: 10.1139/p72–288.

- 26. Tubbs L.D., Williams D. Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide // J. Opt. Soc. Am. 1972. V. 62, N 2. P. 284–289. DOI: 10.1364/JOSA.62.000284
- 27. Young C., Bell R.W., Chapman R.E. Variation of N₂broadened collisional width with rotational quantum number for the 10.4-μm CO₂ band // Appl. Phys. Lett. 1972. V. 20, N 8. P. 278. DOI: 10.1063/1.1654148.
- 28. Boulet C., Isnard P., Arie E. Largeurs des raies de la transition 00°1 > (10°0; 02°0)I de CO₂ perturbe par l'argon // J. Quant. Spectrosc. Radiat. Transfer. 1974. V. 14, N 7. P. 637–649. DOI: 10.1016/0022-4073(74)90039-9.
- 29. Meyer T.W., Rhodes C.K., Haus H.A. High-resolution line broadening and collisional studies in CO₂ using nonlinear spectroscopic techniques // Phys. Rev. A. 1975. V. 12, N 5. P. 1993–2008. DOI: 10.1103/ PhysRevA.12.1993
- 30. Oodate H., Fujioka T. Measurements of 4.2 μm CO₂ pressure broadening by using an HBr chemical laser // J. Chem. Phys. 1978. V. 68, N 12. P. 5494–5497. DOI: 10.1063/1.435676.
- Planet W.G., Tettemer G.L., Knoll J.S. Temperature dependence of intensities and widths of N₂-broadened lines in the 15 μm CO₂ band from tunable laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 1978. V. 20, N 6. P. 547–556. DOI: 10.1016/0022-4073(78)90025-0.
- 32. Suarez C.B., Valero F.P. Intensities, self-broadening, and broadening by Ar and N₂ for the 3011_{II} < 000 band of CO₂ measured at different temperatures // J. Mol. Spectrosc. 1978. V. 71, N 1. P. 46–63. DOI: 10.1016/ 0022-2852(78)90074-7.
- 33. Valero F.P., Suarez C.B. Measurement at different temperatures of absolute intensities, line half-widths, and broadening by Ar and N₂ for the $3001_{\rm H}$ // J. Quant. Spectrosc. Radiat. Transfer. 1978. V. 19, N 6. P. 579–590. DOI: 10.1016/0022-4073(78)90092-4
- 34. *Planet W.G., Tettemer G.L.* Temperature-dependent intensities and widths of N₂-broadened CO₂ lines at 15 μ m from tunable laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 1979. V. 22, N 4. P. 345–354. DOI: 10.1016/0022-4073(79)90072-4.
- 35. Valero F.P., Suarez C.B., Boese R.W. Intensities and half-widths at different temperatures for the 201_{III}<000 band of CO₂ at 4854 cm⁻¹ // J. Quant. Spectrosc. Radiat. Transfer. 1979. V. 22, N 1. P. 93–99. DOI: 10.1016/ 0022-4073(79)90110-9.
- 36. Tettemer G.L., Planet W.G. Intensities and pressurebroadened widths of CO₂ R-branch lines at 15 μm from tunable laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 1980. V. 24, N 4. P. 343–345. DOI: 10.1016/ 0022-4073(80)90098-9.
- 37. Valero F.P., Suarez C.B., Boese R.W. Absolute intensities and pressure broadening coefficients measured at different temperatures for the 201_{II} < 000 band of ¹²C¹⁶O₂ at 4978cm⁻¹ // J. Quant. Spectrosc. Radiat. Transfer. 1980. V. 23, N 3. P. 337–341. DOI: 10.1016/0022-4073(80)90111-9.
- 38. Devi V.M., Fridovich B., Jones G.D., Snyder D.G.S. Diode laser measurements of strengths, half-widths, and temperature dependence of half-widths for CO₂ spectral lines near 4.2 μm // J. Mol. Spectrosc. 1984. V. 105, N 1. P. 61–69. DOI: 10.1016/0022-2852(84)90103-6.

- 39. Abubakar M.S., Shaw J.H. Carbon dioxide band intensities and linewidths in the 8–12-µm region // Appl. Opt. 1986. V. 25. P. 1196–1203. DOI: 10.1364/ AO.25.001196.
- 40. Cousin C., Doucen R.L., Houdeau J.P., Boulet C., Henry A. Air broadened linewidths, intensities, and spectral line shapes for CO₂ at 4.3 μm in the region of the AMTS instrument // Appl. Opt. 1986. V. 25. P. 2434-2439. DOI: 10.1364/AO.25.002434
- 41. Gentry B., Strow L.L. Line mixing in a N₂-broadened CO₂ Q branch observed with a tunable diode laser // J. Chem. Phys. 1987. V. 86. P. 5722. DOI: 10.1063/ 1.452770.
- 42. Gross L.A., Griffiths P.R. Pressure and temperature dependence of the self-broadened linewidths of the carbon dioxide laser bands // Appl. Opt. 1987. V. 26, N 11. P. 2250–2255, DOI: 10.1364/AO.26.002250.
- 43. Johns J. W.C. Absolute intensity and pressure broadening measurements of CO₂ in the 4.3-μm region // J. Mol. Spectrosc. 1987. V. 125, N 2. P. 442–464. DOI: 10.1016/ 0022-2852(87)90109-3.
- 44. Dana V., Valentin A. Determination of line parameters from FTS spectra // Appl. Opt. 1988. V. 27. P. 4450–4453. DOI: 10.1364/AO.27.004450.
- 45. Huet T., Lacome N., Levy A. Linewidths and strengths in the Q branch of the 1000 < 0110 transition of CO₂ near 14μm // J. Mol. Spectrosc. 1988. V. 128, N 1. P. 206-215. DOI: 10.1016/0022-2852(88)90218-4.
- 46. Margottin-Maclou M., Dahoo P., Henry A., Valentin A., Henry L. Self-, N₂-, and O₂-broadening parameters in the v₃ and v₁ + v₃ bands of ¹²C¹⁶O₂ // J. Mol. Spectrosc. 1988. V. 131, N 1. P. 21–35. DOI: 10.1016/ 0022-2852(88)90102-6.
- Rosenmann L., Perrin M.Y., Hartmann J.M., Taine J. Diode-laser measurements and calculations of CO₂-linebroadening by H₂O from 416 to 805 K and by N₂ from 296 to 803 K // J. Quant. Spectrosc. Radiat. Transfer. 1988. V. 40, N 5. P. 569–576. DOI: 10.1016/0022-4073(88)90137-9.
- Rosenmann L., Perrin M.Y., Taine J. Collisional broadening of CO₂ IR lines. I. Diode laser measurements for CO₂-N₂ mixtures in the 295–815 K temperature range // J. Chem. Phys. 1988. V. 88, N 5. P. 2995. DOI: 10.1063/1.453940.
- 49. Dana V., Valentin A., Hamdouni A., Rothman L.S. Line intensities and broadening parameters of the 11101 < 10002 band of ¹²C¹⁶O₂ // Appl. Opt. 1989.
 V. 28. P. 2562–2566. DOI: 10.1364/AO.28.002562.
- 50. Suarez C.B., Valero F.P. Temperature dependence of self-broadened halfwidths of CO₂ // J. Quant. Spectrosc. Radiat. Transfer. 1990. V. 43, N 4. P. 327–334. DOI: 10.1016/0022-4073(90)90022-X.
- 51. Dana V., Mandin J.-Y., Guelachvili G., Kou Q., Morillon-Chapey M., Wattson R.B., Rothman L.S. Intensities and self-broadening coefficients of ¹²C¹⁶O₂ lines in the laser band region // J. Mol. Spectrosc. 1992. V. 152, N 2. P. 328–341. DOI: 10.1016/0022-2852(92)90073-W.
- 52. Devi V.M., Benner D.C., Rinsland C.P., Smith M.A.H. Measurements of pressure broadening and pressure shifting by nitrogen in the 4.3-μm band of ¹²C¹⁶O₂ // J. Quant. Spectrosc. Radiat. Transfer. 1992. V. 48, N 5. P. 581–589. DOI: 10.1016/0022-4073(92)90122-K.
- 53. Mandin J.Y., Dana V., Badaoui M., Barbe A., Hamdouni A., Plateaux J.J. Measurements of pressurebroadening and pressure-shifting coefficients from FT spectra // J. Mol. Spectrosc. 1994. V. 164, N 2, P. 328–337. DOI: 10.1006/jmsp.1994.1078.
- 54. Mandin J.Y., Dana V., Allout M.Y., Regalia L., Barbe A., Plateaux J.J. Line Intensities and Self-

Broadening Coefficients in the 10012–10001 Band of $^{12}C^{16}O_2$ Centered at 2224.657 cm $^{-1}$ // J. Mol. Spectrosc. 1995. V. 170, N 2. P. 604–607. DOI: 10.1006/ jmsp.1995.1095.

- 55. Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Air- and N₂-broadening coefficients and pressure-shift coefficients in the ¹²C¹⁶O₂ laser bands // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59, N 3. P. 137– 149. DOI: 10.1016/S0022-4073(97)00113-1.
- 56. Corsi C., D'Amato F., De Rosa M., Modugno G. Highresolution measurements of line intensity, broadening and shift of CO₂ around 2 μm // Eur. Phys. J. D. 1999. V. 6. P. 327–332.
- 57. De Rosa M., Corsi C., Gabrysch M., D'Amato F. Collisional Broadening and Shift of Lines in the 2v₁+2v₂+v₃ Band of CO₂ // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 61, N 1. P. 97–104. DOI: 10.1016/S0022-4073(97)00207-0.
- 58. Corsi C., D'Amato F., De Rosa M., Modugno G. Highresolution investigation of the weak $v_1 + 3v_2^1 - v_2^1 + v_3$ band of CO₂ around 2 µm // Appl. Phys. B. 2000. V. 70, N 2. P. 879–881. DOI: 10.1007/s003400000232.
- 59. Henningsen J., Simonsen H. The (2201–0000) band of CO₂ at 6348 cm⁻¹: line strengths, broadening parameters, and pressure shifts // J. Mol. Spectrosc. 2000. V. 203, N 1. P. 16–27. DOI: 10.1006/jmsp.2000.8157.
- 60. Predoi-Cross A., Luo C., Berman R., Drummond J.R., May A.D. Line strengths, self-broadening, and line mixing in the 2001 // J. Chem. Phys. 2000. V. 112, N 19. P. 8367-8377. DOI: 10.1063/1.481480.
- 61. Devi V.M., Benner D.C., Smith M.A.H., Brown L.R., Dulick M. Multispectrum analysis of pressure broadening and pressureshift coefficients in the ¹²C¹⁶O₂ and ¹³C¹⁶O₂ laser bands // J. Quant. Spectrosc. Radiat. Transfer. 2003. V. 76, N 3–4. P. 411–434. DOI: 10.1016/ S0022-4073(02)00068-7.
- 62. Pouchet I., Zeninari V., Parvitte B., Durry G. Diode laser spectroscopy of CO₂ in the 1.6 μm region for the in situ sensing of the middle atmosphere // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, N 3–4. P. 619–628. DOI: 10.1016/S0022-4073(03)00108-0.
- 63. Zeninari V., Vicet A., Parvitte B., Joly L., Durry G. In situ sensing of atmospheric CO₂ with laser diodes near 2.05 μm: a spectroscopic study // Infrared Phys. Technol. 2004. V. 45. P. 229–237. DOI: 10.1016/ j.infrared.2003.11.004.
- 64. Toth R.A., Brown L.R., Miller C.E., Devi V.M., Benner D.C. Self-broadened widths and shifts of ¹²C¹⁶O₂: 4750-7000 cm⁻¹ // J. Mol. Spectrosc. 2006. V. 239, N 2. P. 243-271, DOI: 10.1016/j.jms.2006.08.003.
- 65. Li J.S., Liu K., Zhang W.J., Chen W.D., Gao X.M. Pressure-induced line broadening for the (30012) – (00001) band of CO₂ measured with tunable diode laser photoacoustic spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 9. P. 1575–1585. DOI: 10.1016/j.jqsrt.2007.10.014.
- 66. Li J.S., Liu K., Zhang W.J., Chen W.D., Gao X.M. Self-, N₂- and O₂-broadening coefficients for the ¹²C¹⁶O₂ transitions near-IR measured by a diode laser photoacoustic spectrometer // J. Mol. Spectrosc. 2008. V. 252, N 1. P. 9–16. DOI: 10.1016/j.jms.2008.03.018.
- 67. Toth R.A., Brown L.R., Miller C.E., Devi V.M., Benner D.C. Spectroscopic database of CO₂ line parameters: 4300–7000 cm⁻¹ // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 6. P. 906–921. DOI: 10.1016/j.jqsrt.2007.12.004.
- 68. Gulidova O.S., Asfin R.E., Grigoriev I.M., Filippov N.N. Air pressure broadening and shifting of high-J lines of (00011) // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2315–2320. DOI: 10.1016/j.jqsrt.2010.04.027.

Систематизация источников спектральных данных, содержащих параметры спектральных линий...

- 69. Arshinov K.I., Dudarenok A.S., Lavrentieva N.N., Nevdakh V.V. Collisional broadening of CO₂ 1000–0001 transition absorption lines by N₂O molecules // J. Appl. Spectrosc. 2011. V. 78, N 5. P. 646–649. DOI: 10.1007/ s10812-011-9512-z.
- 70. Ngo N.H., Landsheere X., Pangui E., Morales S.B., Hartmann J.-M. Self-broadening of ¹⁶O¹²C¹⁶O v₃-band lines // J. Mol. Spectrosc. 2014. V. 306. P. 33–36. DOI: 10.1016/j.jms.2014.10.005.
- 71. Petrova T.M., Solodov A.M., Solodov A.A., Lyulin O.M., Borkov Yu.G., Tashkun S.A., Perevalov V.I. Measurements of CO₂ line parameters in the 9250–9500 cm⁻¹ and 10,700–10,860 cm⁻¹ regions // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 109–116. DOI: 10.1016/j.jqsrt.2015.06.001.
- 72. Predoi-Cross A., Liu W., Murphy R., Povey C., Gamache R.R., Laraia A.L., McKellar A.R.W., Hurtmans D.R., Devi V.M. Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012–00001 and 30013–00001 bands // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 9. P. 1065–1079. DOI: 10.1016/ j.jgsrt.2010.01.003.
- 73. Thibault F., Boissoles J., Le Doucen R., Bouanich J.P., Arcas Ph., Boulet C. Pressure induced shifts of CO₂ lines: measurements in the 0003-0000 band and theoretical analysis // J. Chem. Phys. 1992. V. 96, N 7. P. 4945-4953. DOI: 10.1063/1.462737.
- 74. Ozanne L., Bouanich J.-P., Rodrigues R., Hartmann J.-M., Blanquet G., Walrand J. Diode-laser measurements of He- and N₂-broadening coefficients and line-mixing effects in the Q-branch of the v₁-v₂ band of CO₂ // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 59, N 3. P. 337-344. DOI: 10.1016/S0022-4073(97)00133-7.
- Devi V.M., Benner D.C., Smith M.A.H., Rinsland C.P. Nitrogen broadening and shift coefficients in the 4.2– 4.5-μm bands of CO₂ // J. Mol. Spectrosc. 2003. V. 76. P. 289–307. DOI: 10.1016/S0022-4073(02)00057-2.
- 76. Nakamichi S., Kawaguchi Y., Fukuda H., Enami S., Hashimoto S., Kawasaki M., Umekawa T., Morino I., Suto H., Inoue G. Buffer-gas pressure broadening for the (3001)_{III} – (0 0 0) band of CO₂ measured with continuous-wave cavity ring-down spectroscopy // Phys. Chem. Chem. Phys. 2006. V. 8. P. 364–368. DOI: 10.1039/b511772k.
- 77. Regalia-Jarlot L., Zeninari V., Parvitte B., Grossel A., Thomas X., Heyden P., Durry G. A complete study of the line intensities of four bands of CO₂ around 1.6 and 2.0 μm: a comparison between Fourier transform and diode laser measurements // J. Quant. Spectrosc. Radiat. Transfer. 2006. V. 101, N 2. P. 325–338. DOI: 10.1016/j.jqsrt.2005.11.021.
- 78. Tanaka T., Fukabori M., Sugita T., Nakajima H., Yokota T., Watanabe T., Sasano Y. Spectral line parameters for CO₂ bands in the 4.8- to 5.3-μm region // J. Mol. Spectrosc. 2006. V. 239, N 1. P. 1–10. DOI: 10.1016/j.jms.2006.05.013.
- 79. Predoi-Cross A., Unni A.V., Liu W., Schofield I., Holladay C., McKellar A.R.W., Hurtmans D. Line shape parameters measurement and computations for self-broadened carbon dioxide transitions in the 30012 < 00001 and 30013 < 00001 bands, line mixing, and speed dependence // J. Mol. Spectrosc. 2007. V. 245, N 1. P. 34–51. DOI: 10.1016/j.jms.2007.07.004.
- 80. Toth R.A., Miller C.E., Devi V.M., Benner D.C., Brown L.R. Air-broadened halfwidth and pressure shift coefficients of ¹²C¹⁶O₂ bands: 4750–7000 cm⁻¹ // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 246, N 2. P. 133–157. DOI: 10.1016/j.jms.2007.09.005.

- 81. Farooq A., Jeffries J.B., Hanson R.K. CO₂ concentration and temperature sensor for combustion gases using diodelaser absorption near 2.7 μm // Appl. Phys. B. 2008. V. 90, N 3. P. 619–628. DOI: 10.1007/s00340-007-2925-y.
- 82. Joly L., Gibert F., Grouiez B., Grossel A., Parvitte B., Durry G., Zeninari V. A complete study of CO₂ line parameters around 4845 cm⁻¹ for Lidar applications // J. Quant. Spectrosc. Radiat. Transfer. 2008. V. 109, N 3. P. 426-434. DOI: 10.1016/j.jgsrt.2007.06.003.
- N 3. P. 426–434. DOI: 10.1016/j.jqsrt.2007.06.003.
 83. Benner D.C., Miller C.E., Devi V.M. Constrained multispectrum analysis of CO₂–Ar broadening at 6227 and 6348 cm⁻¹ // Can. J. Phys. 2009. V. 87, N 5. P. 499–515. DOI: 10.1139/P09-014.
- 84. Casa G., Wehr R., Castrillo A., Fasci E., Gianfrani L. The line shape problem in the near-infrared spectrum of self-colliding CO₂ molecules: Experimental investigation and test of semiclassical models // J. Chem. Phys. 2009. V. 130, N 18. P. 184306. DOI: 10.1063/1.3125965.
- 85. Cai T., Gao G., Gao X., Chen W., Liu G. Diode laser measurement of line strengths and air-broadening coefficients of CO₂ and CO in the 1.57 μm region for combustion diagnostics // Mol. Phys. 2010. V. 108, N 5. P. 539–545. DOI: 10.1080/00268970903547934.
- 86. Devi V.M., Benner D.C., Miller C.E., Predoi-Cross A. Lorentz half-width, pressure-induced shift and speeddependent coefficients in oxygen-broadened CO₂ bands at 6227 and 6348 cm⁻¹ using a constrained multispectrum analysis // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 16. P. 2355–2369. DOI: 10.1016/ j.jgsrt.2010.06.003.
- 87. Li J.S., Durry G., Cousin J., Joly L., Parvitte B., Flamant P.H., Gibert F., Zeninari V. Tunable diode laser measurement of pressure-induced shift coefficients of CO₂ around 2.05 μm for lidar application // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1411-1419. DOI: 10.1016/j.jqsrt.2011.01.030.
- 88. Deliere Q., Fissiaux L., Lepere M. Absolute line intensities and self-broadening coefficients in the v₃-v₁ band of carbon dioxide // J. Mol. Spectrosc. 2012. V. 272, N 1. P. 36-42. DOI: 10.1016/j.jms.2012.01.002.
- 89. Lamouroux J., Gamache R.R., Laraia A.L., Hartmann J.-M., Boulet C. Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO₂. III: Self collisions // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 12. P. 1536–1546. DOI: 10.1016/ j.jqsrt.2012.03.035.
- 90. Gamache R.R., Lamouroux J., Laraia A.L., Hartmann J.-M., Boulet C. Semiclassical calculations of half-widths and line shifts for transitions in the 30012 ← 00001 and 30013 ← 00001 bands of CO₂, I: Collisions with N₂ // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 11. P. 976–990. DOI: 10.1016/ j.jgsrt.2012.02.014.
- 91. Li J., Durry G., Cousin J., Joly L., Parvitte B., Zeninari V. Self-induced pressure shift and temperature dependence measurements of CO₂ at 2.05 μm with a tunable diode laser spectrometer // Spectrochimic. Acta, Part A. 2012. V. 85, N 1. P. 74–78. DOI: 10.1016/ j.saa.2011.09.016.
- 92. Hashemi R., Rozario H., Ibrahim A., Predoi-Cross A. Line shape study of the carbon dioxide laser band I // Can. J. Phys. 2013. V. 20. DOI: 10.1139/cjp-2013-0051.
- 93. Lu Y., Liu A.-W., Li X.-F., Wang J., Cheng C.-F., Sun Y.R., Lambo R., Hu S.-M. Line Parameters of the 782 nm band of CO₂ // Astrophys. J. 2013. V. 775, N 1. P. 71. DOI: 10.1088/0004-637X/775/1/71.
- 94. Predoi-Cross A., Liu W., Holladay C., Unni A.V., Schofield I., McKellar A.R.W., Hurtmans D. Line profile study of transitions in the 30012 ← 00001 and 30013 ← 00001 bands of carbon dioxide perturbed by

air // J. Quant. Spectrosc. Radiat. Transfer. 2007. V. 246, N 1. P. 98–112. DOI: 10.1016/j.jms.2007.08.008.

- 95. Predoi-Cross A., Liu W., Murphy R., Povey C., Gamache R.R., Laraia A.L., McKellar A.R.W., Hurtmans D.R., Devi V.M. Measurement and computations for temperature dependences of self-broadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 9. P. 1065–1079. DOI: 10.1016/j.jqsrt.2010.01.003.
- 96. Delière Q., Fissiaux L., Lepure M. Absolute line intensities and self-broadening coefficients in the v₃-v₁ band of carbon dioxide // J. Mol. Spectrosc. 2012. V. 272, N 1. P. 36–42. DOI: 10.1016/j.jms.2012.01.002.
- 97. Daneshvar L., Földes T., Buldyreva J., Vander Auwera J. Infrared absorption by pure CO₂ near 3340 cm⁻¹: Measurements and analysis of collisional coefficients and line-mixing effects at subatmospheric pressures // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 149. P. 258–274. DOI: 10.1016/j.jqsrt.2014.08.007.
- 98. Devi V.M., Benner D.C., Brown L.R., Miller C.E., Toth R.A. Line mixing and speed dependence in CO₂ at 6348 cm⁻¹: Positions, intensities, and air- and selfbroadening derived with constrained multispectrum analysis // J. Mol. Spectrosc. 2007. V. 242, N 2. P. 90–117. DOI: 10.1016/j.jms.2007.02.018.
- 99. Devi V.M., Benner D.C., Brown L.R., Miller C.E., Toth R.A. Line mixing and speed dependence in CO₂ at 6227.9 cm⁻¹: Constrained multispectrum analysis of intensities and line shapes in the 30013 ← 00001 band // J. Mol. Spectrosc. 2007. V. 245, N 1. P. 52–80. DOI: 10.1016/j.jms.2007.05.015.
- 100. Predoi-Cross A., Unni A.V., Liu W., Schofield I., Holladay C., McKellar A.R.W., Hurtmans D. Line shape parameters measurement and computations for selfbroadened carbon dioxide transitions in the 30012 ← 00001 and 30013 ← 00001 bands, line mixing, and speed dependence // J. Mol. Spectrosc. 2007. V. 245, N 1. P. 34-51. DOI: 10.1016/j.jms.2007.07.004.
- 101. *Hikida T., Yamada K.M.T.* N₂- and O₂-broadening of CO₂ for the (30°1)_{III} ← (00°0) band at 6231 cm⁻¹ /// J. Mol. Spectrosc. 2006. V. 239, N 2. P. 154–159. DOI: 10.1016/j.jms.2006.07.001.

- 102. Berman R., Duggan P., Sinclair P.M., May A.D., Drummond J.R. Direct Measurements of Line-Mixing Coefficients in the v₁+ v₂ Q Branch of CO₂ // J. Mol. Spectrosc. 1997. V. 182, N 2. P. 350–363. DOI: 10.1006/ jmsp.1996.7226.
- 103. Larcher G., Landsheere X., Schwell M., Tran H. Spectral shape parameters of pure CO₂ transitions near 1.6 μm by tunable diode laser spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 82–88. DOI: 10.1016/j.jqsrt.2015.05.013.
- 104. Devi V.M., Benner D.C., Miller C.E., Predoi-Cross A. Lorentz half-width, pressure-induced shift and speeddependent coefficients in oxygen-broadened CO₂ bands at 6227 and 6348 cm⁻¹ using a constrained multispectrum analysis // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 16. P. 2355–2369. DOI: 10.1016/ j.jqsrt.2010.06.003.
- 105. Predoi-Cross A., Luo C., Berman R., Drummond J.R., May A.D. Line strengths, self-broadening, and line mixing in the 20⁰1 // J. Chem. Phys. 2000. V. 112, N 19. P. 8367–8377. DOI: 10.1063/1.481480.
- 106. Ахлёстин А.Ю., Лаврентьев Н.А., Привезенцев А.И., Фазлиев А.З. Базы знаний для описания информационных ресурсов в молекулярной спектроскопии. 5. Качество экспертных данных // Электронные библиотеки. 2013. Т. 16, вып. 4. URL: http://www.elbib. ru/index.phtml?page=elbib/rus/journal/2013/part4/ AKLPF
- 107. ИС W@DIS. Онтология информационных ресурсов по спектральным свойствам молекулы диоксида углерода и ее изотопологов. URL: http://wadis.saga.iao.ru/ co2/ontology/
- 108. ИС W@DIS. Онтология переходов, полос и параметров контура спектральных линий молекулы диоксида углерода и ее изотопологов. URL: http://wadis. saga.iao.ru/co2/ontology/band/
- 109. Ахлёстин А.Ю., Козодоев А.В., Лаврентьев Н.А., Привезенцев А.И., Фазлиев А.З. Базы знаний для описания информационных ресурсов в молекулярной спектроскопии. 4. Программное обеспечение // Электронные библиотеки. 2012. Т. 15, вып. 3. URL: http: //elbib.ru/index.phtml?page=elbib/rus/journal/ 2012/part3/AKLPF

A.V. Kozodoev, A.I. Privezentsev, A.Z. Fazliev, N.N. Filippov. Systematization of data sources with spectral line parameters for the carbon dioxide molecule and its isotopologues in the W@DIS information system.

Spectral line shapes are used to process experimental spectra when solving the inverse task of computing the collisional parameters of the line profiles. The difference in the shapes is due to different physical conditions (strong/weak collisions, large/small pressures, etc.). Numerous different line shapes are used in the study of the spectral line parameters of carbon dioxide, methane, methyl halides, and other molecules. The diversity of the line shapes used in the systematization of spectral line parameters adds complexity to the structures of data available in information systems and to the structures of individuals involved in ontological descriptions of the spectral line properties characterizing the line profiles.

A brief classification of spectral line shapes and parameters is given, and the results of the systematization of spectral data relating to different line shapes used in processing of carbon dioxide spectra are presented. The line shapes available in the library are described, and an import system for spectral line parameters obtained from the solution of the direct and inverse tasks is built. Computer software for an automatic description of the properties of imported solutions was developed. The basic properties of the spectral data compiled in the W@DIS information system provide a description of the outcome of the imported data quality assessment analysis.