2014. Том 55, № 4

Июль – август

C. 700 - 707

УДК 549.657: 548.734:539.89

ПОВЕДЕНИЕ МИКРОПОРИСТОГО ЦИРКОНОСИЛИКАТА ИЛЕРИТА ПРИ ВЫСОКОМ ДАВЛЕНИИ

Ю.В. Серёткин^{1,2}, В.В. Бакакин³, И.В. Пеков⁴

¹Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск E-mail: yuvs@igm.nsc.ru

²Новосибирский государственный университет

³Институт неорганической химии им. А.В. Николаева СО РАН, Новосибирск

⁴Московский государственный университет им. М.В. Ломоносова, Геологический факультет

Статья поступила 8 июля 2013 г.

Методом монокристального рентгеноструктурного анализа при высоком давлении (до 4,73 ГПа) изучено поведение природного цеолитоподобного гетерокаркасного цирконосиликата илерита $|Na_{1,47}H_{0,53}(H_2O)_{2,7}|$ [ZrSi₃O₉], пространственная группа R3, a = 10,5667(2), c = 15,9109(4) Å, V = 1538,54(6) Å³, Z = 6. Сжатие илерита во всем исследованном диапазоне давления практически изометричное и близкое к линейному. Выше 3,5 ГПа наблюдается нарастающее ухудшение качества монокристалла, что интерпретировано как начавшийся фазовый переход I рода, сопровождающийся значительными объемными изменениями.

Ключевые слова: цирконосиликат, илерит, кристаллическая структура, высокое давление.

введение

Повышенный интерес к изучению поведения микропористых соединений при высоком давлении обусловлен большой технологической значимостью получаемых на их основе наноматериалов [1, 2]. Кроме того, эти исследования важны в плане познания закономерностей поведения каркасных минералов при сжатии в связи с эволюцией силикатного вещества земной коры. Большое разнообразие состава и строения цеолитов и цеолитоподобных соединений обусловливает и разнообразие их поведения при изменении внешних условий, в частности — при повышении давления. Высокая приспособляемость кристаллической структуры цеолитов определяется относительной гибкостью их алюмокремнекислородного каркаса за счет взаимного разворота (Si,Al)O₄-тетраэдров без разрыва связей Т—O—T, т.е. с сохранением топологии каркаса. Как правило, эти структурные изменения обратимы. Микропористые гетерокаркасные соединения представляют интерес как аналоги цеолитов, обладающие развитой системой каналов, содержащих катионы и молекулы H₂O или гидроксильные группы.

В работе представлены результаты изучения поведения илерита — минерала с идеализированной формулой |Na₂(H₂O)₃| [ZrSi₃O₉] — при высоком давлении.

ЭКСПЕРИМЕНТ

Образец илерита состава (Na_{1,78}K_{0,06}Mn_{0,03}Ba_{0,01}) $\Sigma_{1,88}$ (Zr_{0,99}Nb_{0,02}) $\Sigma_{1,01}$ Si₃O_{8,99}·2,92H₂O [3] найден на Кировском апатитовом руднике (Хибины, Кольский полуостров, Россия). Нами исследовался методом монокристального рентгеноструктурного анализа фрагмент кристалла размера-

[©] Серёткин Ю.В., Бакакин В.В., Пеков И.В., 2014

ми 0,12×0,10×0,08 мм. Массив дифракционных данных при нормальных условиях накоплен на дифрактометре Oxford Diffraction Xcalibur Gemini с CCD-детектором (излучение MoK_{α} , графитовый монохроматор, коллиматор 0,5 мм). Обработку полученных данных проводили с использованием пакета программ CrysAlis Pro. Коррекцию на поглощение проводили полуэмпирически методом мультисканирования. Из возможных пространственных групп *R*32 и *R*3 выбор был сделан в пользу последней. Структура определена прямым методом и уточнена в программе SHELX-97 [4].

Эксперименты при высоком давлении проведены на том же кристалле в ячейке с алмазными наковальнями конструкции Boehler-Almax [5]. Использовали стальную гаскету толщиной 200 мкм, продавленную до 150 мкм, рабочее отверстие 0,3 мм. Образец сжимался в смеси метанола и этанола в соотношении 4:1. Давление в ячейке измеряли по смещению линии флюоресценции R1 кристаллов рубина (±0,05 ГПа) [6]. Экспериментальный массив накапливали по схеме, описанной в работе [7] и модифицированной для нашего прибора.

Накопленные дифракционные данные обрабатывались следующим образом. На первом этапе вручную выбирали 20—30 дифракционных пиков от образца и определяли параметры элементарной ячейки (ЭЯ) и матрицу ориентации кристалла. После процедуры поиска пиков найденную ЭЯ использовали для индицирования рефлексов образца (около 30 % от общего числа рефлексов). Дальнейшую обработку дифракционного массива проводили без учета рефлексов от алмазных наковален. Перекрытие рефлексов от образца и наковален проверяли визуальным контролем 2D фреймов; перекрывающиеся рефлексы из экспериментального массива

Таблица 1

Давление, ГПа	0,0001	2,40	2,99	3,30	3,85	4,24	4,73
<i>a</i> , Å	10,5667(2)	10,4500(8)	10,4191(9)	10,4118(8)	10,3781(19)	10,345(3)	10,313(5)
<i>c</i> , Å	15,9109(4)	15,7589(10)	15,7226(10)	15,7108(9)	15,664(3)	15,638(3)	15,594(6)
$V, Å^3$	1538,54(6)	1490,35(19)	1478,1(2)	1474,79(18)	1461,1(5)	1449,3(7)	1436(2)
Пространственная группа	<i>R</i> 3	<i>R</i> 3					
Расчетная плотность, r/cm^3	2,684	2,771	2,794	2,800	2,826	2,849	2,876
Ширина сканирова- ния, град./фрейм	1	0,5	0,5	0,5	0,5	0,5	0,5
Экспозиция, с/фрейм	20	30	30	30	30	30	30
Область накопления 20, град.	5,14—63,74	7,76—63,86	7,78—62,60	6,88—62,64	7,80—62,86	6,92—64,20	5,55—63,78
$\mu(MoK_{\alpha}), \mathrm{Mm}^{-1}$	1,560	1,610	1,624	1,627	1,643	1,656	1,671
Число накопл. / неза- вис. рефлексов	9837 / 2259	2345 / 1044	2160 / 953	2079 / 915	1947 / 869	1958 / 869	1981 / 891
$R_{\rm int}$	0,0323	0,0851	0,0731	0,0701	0,1643	0,1654	0,3342
Число наблюдаемых рефлексов $[I > 2\sigma(I)]$	1667	572	543	551	362	320	109
Число уточняемых параметров	117	107	97	115	106	77	—
R1, wR2 для I > 2 $\sigma(I)$	0,0417, 0,0836	0,0767, 0,1115	0,0702, 0,1343	0,0611, 0,1211	0,1111, 0,2418	0,1122, 0,2413	—
<i>R</i> 1, <i>wR</i> 2 для всех отражений	0,0623, 0,0908	0,1445, 0,1392	0,1288, 0,1742	0,1131, 0,1501	0,1930, 0,2887	0,2268, 0,3137	
Экстремумы $\Delta \rho$, $e/Å^3$	0,928, -0,556	1,043, -0,919	1,197, -1,100	1,027, -1,003	1,121, -1,585	1,029, -1,076	

Данные рентгеноструктурного анализа илерита при высоком давлении

Таблица 2

Параметр		Давление, ГПа							
		0,0001	2,44	2,90	3,33	3,85	4,24		
Zr1	x	0	0	0	0	0	0		
	у	0	0	0	0	0	0		
	Ζ	0,00015(6)	0,00030(11)	-0,00005(13)	-0,00022(12)	0,00013(17)	0,0001(2)		
	U_{eq}	0,01097(15)	0,0220(4)	0,0214(5)	0,0180(5)	0,0369(9)	0,0406(11)		
Zr2	x	0	0	0	0	0	0		
	у	0	0	0	0	0	0		
	Ζ	0,49991(5)	0,49988(11)	0,49990(12)	0,50024(11)	0,50016(19)	0,4995(2)		
	$U_{\rm eq}$	0,00860(14)	0,0190(4)	0,0198(5)	0,0156(5)	0,0379(10)	0,0379(11)		
Si1	x	-0,00431(12)	-0,0043(3)	-0,0040(4)	-0,0042(4)	-0,0013(6)	-0,0017(9)		
	у	0,41294(14)	0,4137(4)	0,4157(4)	0,4148(4)	0,4188(7)	0,4183(9)		
	Ζ	0,24875(7)	0,24865(16)	0,24846(16)	0,24820(17)	0,2480(3)	0,2488(3)		
	$U_{\rm eq}$	0,0125(3)	0,0236(9)	0,0222(10)	0,0165(9)	0,0339(17)	0,042(2)		
Si10	x	0,41244(14)	0,4157(4)	0,4139(4)	0,4158(4)	0,4142(8)	0,4158(9)		
	у	-0,00440(12)	-0,0038(3)	-0,0044(4)	-0,0038(4)	-0,0045(7)	0,0005(10)		
	Ζ	0,75151(7)	0,75128(15)	0,75095(18)	0,75107(18)	0,7518(3)	0,7509(3)		
	$U_{ m eq}$	0,0129(3)	0,0252(10)	0,0222(10)	0,0200(10)	0,037(2)	0,044(2)		
01	x	0,0919(4)	0,0936(8)	0,0937(10)	0,0953(9)	0,0901(17)	0,110(2)		
	у	0,1851(4)	0,1856(9)	0,1806(10)	0,1828(10)	0,1769(17)	0,181(2)		
	Ζ	0,0773(2)	0,0771(4)	0,0786(5)	0,0787(4)	0,0739(8)	0,0754(9)		
	$U_{\rm eq}$	0,0163(8)	0,0245(19)*	0,024(2)*	0,022(2)	0,048(4)*	0,068(6)		
O10	x	0,1847(5)	0,1804(9)	0,1869(9)	0,1849(10)	0,1853(16)	0,1859(15)		
	у	0,0917(4)	0,0894(9)	0,0971(9)	0,0932(11)	0,0997(16)	0,1000(15)		
	Ζ	-0,0764(2)	-0,0771(4)	-0,0764(5)	-0,0755(5)	-0,0754(7)	-0,0764(7)		
	$U_{ m eq}$	0,0176(8)	0,027(2)*	0,022(2)*	0,027(3)	0,045(4)	0,024(3)*		
02	x	0,0910(4)	0,0936(8)	0,0944(9)	0,0942(8)	0,0919(18)	0,105(2)		
	у	0,1894(5)	0,1928(10)	0,1889(10)	0,1913(10)	0,1803(18)	0,189(2)		
	Ζ	0,5722(2)	0,5743(4)	0,5741(4)	0,5738(4)	0,5758(9)	0,5756(10)		
	$U_{\rm eq}$	0,0183(8)	0,031(2)	0,021(2)*	0,017(2)	0,050(5)	0,075(6)*		
O20	x	0,1903(5)	0,1880(9)	0,1927(10)	0,1901(10)	0,1910(18)	0,184(2)		
	у	0,0907(4)	0,0921(9)	0,0963(10)	0,0951(11)	0,0977(17)	0,0940(18)		
	Ζ	0,4275(2)	0,4257(4)	0,4262(5)	0,4247(5)	0,4243(8)	0,4256(9)		
	$U_{\rm eq}$	0,0196(9)	0,029(2)	0,029(2)*	0,032(3)	0,046(4)*	0,049(5)*		
03	x	-0,0008(4)	-0,0009(8)	-0,0002(10)	-0,0001(9)	0,0029(15)	0,009(2)		
	у	0,3465(4)	0,3471(8)	0,3490(10)	0,3486(10)	0,3545(17)	0,352(2)		
	Ζ	0,0003(3)	0,0000(5)	0,0010(6)	-0,0006(5)	-0,0013(8)	0,0003(10)		
	$U_{\rm eq}$	0,0202(7)	0,0290(19)	0,038(3)	0,025(2)	0,045(4)	0,053(5)*		
04	x	-0,0001(5)	-0,0006(8)	0,0003(10)	-0,0004(9)	0,0002(16)	0,0079(19)		
	У	0,3581(4)	0,3578(8)	0,3607(10)	0,3578(9)	0,3643(17)	0,3696(18)		
	Ζ	0,4994(3)	0,4997(6)	0,5003(6)	0,5004(5)	0,4999(9)	0,4966(8)		
	$U_{\rm eq}$	0,0203(7)	0,0274(19)	0,029(2)	0,018(2)	0,043(4)	0,037(4)*		

Координаты и тепловые параметры каркасных позиций в структуре илерита

* Уточнение в изотропном приближении.

Таблица З

Параметр		Лавление ГПа							
		0.0001	2.44			2.95	1.24		
		0,0001	2,44	2,99	3,33	3,85	4,24		
Na1	x	0	0	0	0	0	0		
	У	0	0	0	0	0	0		
	Z	0,1950(6)	0,1982(9)	0,2013(12)	0,2034(10)	0,1977(16)	0,2063(18)		
	Occ.	0,47(2)	0,58(3)	0,66(3)	0,64(3)	0,93(5)	0,66(5)		
	$U_{\rm eq}$	0,058(5)	0,091(9)	0,142(14)	0,116(12)	0,27(3)	0,44(7)		
Na10	x	0	0	0	0	0	0		
	у	0	0	0	0	0	0		
	Ζ	-0,1983(7)	-0,1953(11)	-0,2001(11)	-0,1986(8)	-0,200(3)	-0,2001(18)		
	Occ.	0,61(3)	0,65(3)	0,55(3)	0,72(3)	0,42(3)	0,54(4)		
	U_{eq}	0,104(7)	0,161(15)	0,086(10)	0,114(11)	0,079(16)*	0,16(3)		
Na2	x	-0,0010(4)	-0,0010(9)	0,0010(9)	0,0038(10)	0,0010(17)	0,008(3)		
	у	0,6109(5)	0,6093(10)	0,6114(12)	0,6097(11)	0,6075(19)	0,614(3)		
	Ζ	0,4985(4)	0,5002(6)	0,5020(6)	0,5011(7)	0,5013(12)	0,4930(15)		
	Occ.	0,620(7)	0,575(10)	0,558(10)	0,608(10)	0,518(15)	0,432(16)		
	$U_{ m eq}$	0,0369(13)	0,044(3)	0,036(3)	0,043(3)	0,053(6)	0,055(8)		
Ow1	x	0,6465(6)	0,6456(14)	0,6454(12)	0,6497(14)	0,641(2)	0,653(3)		
	у	0,1452(6)	0,1448(16)	0,1455(15)	0,1395(16)	0,134(3)	0,134(3)		
	Ζ	0,0640(4)	0,0640(7)	0,0673(8)	0,0683(7)	0,0678(12)	0,0707(13)		
	Occ.	0,857(17)	0,90(3)	0,91(2)	1,00	0,97(4)	0,75(4)		
	$U_{ m eq}$	0,049(2)	0,094(6)	0,066(5)	0,091(5)	0,115(11)	0,076(11)*		
Ow10	x	0,1456(6)	0,1418(15)	0,1451(18)	0,1384(18)	0,134(2)	0,123(3)		
	у	0,6485(6)	0,6466(11)	0,6447(17)	0,6429(13)	0,663(2)	0,642(4)		
	Ζ	-0,0641(4)	-0,0647(7)	-0,0624(8)	-0,0643(8)	-0,0677(12)	-0,0632(16)		
	Occ.	0,967(18)	0,91(2)	0,86(3)	1,00	1,00	0,98(6)		
	$U_{\rm eq}$	0,061(2)	0,079(5)	0,086(7)	0,090(6)	0,110(9)	0,151(15)*		

Координаты и тепловые параметры внекаркасных позиций в структуре илерита

* Уточнение в изотропном приближении.

удаляли. Учет поглощения излучения алмазными наковальнями и частичного затенения кристалла гаскетой выполняли с использованием программы Absorb 6.1 [8]. Структуру уточняли в программе SHELX-97 [4]; в качестве стартовой модели использовали параметры структуры, определенные в предыдущей по давлению точке.

Детали эксперимента и уточнения структуры приведены в табл. 1, координаты и тепловые факторы атомных позиций — в табл. 2 и 3.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В основе структуры илерита лежит гетерополиэдрический каркас, построенный из тетраэдрических винтовых трехзвенных цепочек $[Si_3O_9]^{\infty}$ и атомов Zr в октаэдрической координации. В пустотах каркаса расположены катионы Na и молекулы H₂O, образуя гофрированные слои перпендикулярно осям цепочек (рис. 1, 2). Для илерита из Ловозерского массива (Кольский полуостров) установлена тригональная сингония, пространственная группа R32, параметры ЭЯ: a = 10,556, c = 15,855 Å [9]. Вместе с тем на примере кальциоилерита [10] показано, что топология цирконосиликатного каркаса допускает возможность существования соединения

Рис. 1. Структура илерита в проекции [100]. Каркас из тетраэдрических винтовых трехзвенных цепей [Si₃O₉] и Zr-октаэдров и сильно гофрированные слои (001) из катионов Na и молекул H₂O

Рис. 2. Фрагмент структуры илерита в проекции [001]. Выделен слой внекаркасной подсистемы |М₅(H₂O)₆|

с укороченным вдвое параметром *c* при сохранении пространственной группы *R*32. Подобная метрика ЭЯ установлена и для образца собственно илерита из Хибин [3]: он характеризуется укороченным вдвое параметром *c* ЭЯ при близком параметре *a* и той же пространственной группе *R*32: a = 10,498, c = 7,975 Å. Причина этого, по мнению авторов [3], заключается в статистическом распределении катионов Na⁺ по структурным позициям и, соответственно, их разупорядочении. Наше исследование выполнено на другом образце из того же месторождения, что и [3].

Позиционная формула внекаркасной подсистемы илерита с пространственной группой *R*32 и $c \approx 15.9$ Å, приходящейся на каркасный минал [ZrSi₃O₉]²⁻, может быть представлена как $|M^{[3X]}M_{1,5}^{[2X]}X_3^{(2M)}|$, где X — позиции H₂O; M — катионные позиции. Верхние индексы означают координационное окружение. Требование электронейтральности соединения не допускает заселения позиций M более чем двумя одновалентными катионами. И следовательно, внекаркасная подсистема илерита априорно дефицитна по катионам. В структуре с уменьшенным вдвое параметром c и той же пространственной группой фиксирована удвоенная внекаркасная подсистема: $|M_5X_6|$ на каркас [ZrSi₃O₉]²⁻. Однако все ее позиции могут быть заселены не более чем наполовину из-за коротких расстояний между ними. Распространяя эту систему внекаркасных позиций на структуру с удвоенным параметром c при той же пространственной группе, можно обнаружить, что она расщепляется на две независимые подсистемы. При этом заселена катионами и молекулами H₂O только одна из них, вторая же остается вакантной.

Исследованный нами образец обладает пониженной до R3 симметрией (см. табл. 1). При-

чина этого, по нашему мнению, кроется в распределении катионов по статистически занятым позициям. Так, позиция Na1 расщепляется на две с достоверно разным заселением. Отметим, что изученный образец существенно катиондефицитен — его состав,

Рис. 3. Изменение параметров *a* (♦) и *c* (●) тригональной ЭЯ илерита в зависимости от давления. Незакрашенными значками показаны значения параметров ЭЯ на обратном ходе

Рис. 4. Зависимости межатомных расстояний (a, δ) и углов Si—O—Si, Si—O—Zr (e) от давления в структуре илерита (приведены средние значения)

согласно уточненной структуре, $|Na_{1,47} \times (H_2O)_{2,7}|$ [ZrSi₃O₉], т.е. для баланса заряда необходимо ввести в формулу $H_{0,53}$ (вслед за Григорьевой и др. [3], где протоны отнесены к оксониевой форме). Попытка уменьшить дефицит катионов заселением альтернативной внекаркасной подсистемы успехом не увенчалась: при уточнении заселенность этих позиций стремилась к нулю. Учет катионных вакансий предполагает разрыв сетки —Na—H₂O— на нерегулярные островные фрагменты.

Зависимости параметров ЭЯ от давления приведены на рис. 3. Сжатие илерита во всем исследованном диапазоне давления практически изометричное и близкое к линейному. Начиная с давления 3,85 ГПа наблюдается нарастающее ухудшение качества экспериментального массива интенсивностей. Это сказывается в резком уменьшении интенсивности рентгеновских рефлексов, причем не только по амплитуде, но и интегральной, а также в прогрессирующем уширении рефлексов. Такие изменения можно интерпретировать как следствие начавшегося фазового перехода I рода, сопровождающегося значительными объемными изменениями, что приводит к растрескиванию кристалла. Косвенным доказательством предложенного объяснения служит разрушение кристалла илерита

в порошок при попытке его извлечения из ячейки после разгрузки.

Уточнение структуры илерита не выявило существенных изменений с ростом давления. До области предполагаемого фазового перехода они сводятся к незначительному уменьшению межатомных расстояний (на $\approx 0,04$ Å в каркасе и на $\approx 0,1$ Å для окружения внекаркасных катионов) и незначительному уменьшению валентных углов Si—O—Si, Si—O—Zr ($\Delta_{max} = -3,1^{\circ}$, $\Delta_{cp.} = -1,5^{\circ}$). При давлении выше 3 ГПа можно отметить тенденцию к бо́льшему укорочению связей Zr—O с одновременным удлинением связей Si—O (рис. 4, *a*). Интересны различия в эволюции координационного окружения катионов: среднее расстояние Na2—O(Ow) с ростом давления уменьшается, тогда как для кристаллохимически иных катионных позиций Na1 и Na10 они увеличиваются (см. рис. 4, δ). Валентные углы заметно уменьшились: максимальные изменения при 4,24 ГПа составили –7,6° при среднем –4,7° (табл. 4, рис. 4, ϵ). В силикатной цепочке один из углов Si—O—Si при том же давлении приобрел значение 125,6°, что говорит о напряженности связей Si—O.

В последней по давлению точке (P = 4,75 ГПа) низкое качество экспериментальных данных не позволило провести уточнение структуры; были определены только параметры ЭЯ (см. табл. 1). На обратном ходе было проведено накопление дифракционных данных при давлении 1,68 ГПа; несмотря на невысокое качество результатов, удалось определить параметры ЭЯ:

705

Межатомные расстояния (Á) и углы Si—O—Si(Zr) (град.) в структуре илерита

н	Давление, ГПа						
Параметр	0,0001	2,44	2,99	3,33	3,85	4,24	
Zr1—O1(×3)	2,092(4)	2,070(8)	2,046(8)	2,063(8)	1,966(14)	2,013(17)	
Zr1—O10(×3)	2,083(4)	2,038(7)	2,071(8)	2,044(8)	2,044(14)	2,052(13)	
Среднее	2,0875	2,054	2,0585	2,0535	2,005	2,033	
Zr2—O2(×3)	2,080(4)	2,102(8)	2,065(8)	2,076(8)	2,007(15)	2,07(2)	
Zr2—O20(×3)	2,089(4)	2,064(8)	2,090(9)	2,084(8)	2,088(15)	2,017(17)	
Среднее	2,0845	2,083	2,0775	2,082	2,0475	2,044	
Sil—O10	1,598(4)	1,606(9)	1,573(10)	1,573(10)	1,610(18)	1,596(18)	
Si1—O2	1,613(4)	1,567(10)	1,595(10)	1,573(10)	1,631(18)	1,62(3)	
Si1—O3	1,648(4)	1,635(8)	1,666(9)	1,643(9)	1,674(15)	1,684(18)	
Sil—O4	1,661(4)	1,646(9)	1,651(10)	1,631(9)	1,675(17)	1,695(17)	
Среднее	1,630	1,6135	1,621	1,605	1,6475	1,649	
Si10-01	1,596(4)	1,570(9)	1,621(11)	1,601(10)	1,636(18)	1,75(2)	
Si10-020	1,604(4)	1,596(9)	1,579(11)	1,582(10)	1,594(19)	1,61(2)	
Si10—O3	1,647(4)	1,652(8)	1,626(10)	1,652(9)	1,666(16)	1,575(19)	
Si10-04	1,639(4)	1,646(9)	1,657(10)	1,652(9)	1,652(17)	1,661(16)	
Среднее	1,6215	1,616	1,621	1,622	1,637	1,649	
Na1—O1(×3)	2,526(8)	2,543(13)	2,526(16)	2,560(14)	2,51(2)	2,62(3)	
Na1—Ow10(×3)	2,233(7)	2,205(16)	2,156(19)	2,177(17)	2,31(3)	2,29(3)	
Среднее	2,380	2,374	2,341	2,3685	2,41	2,46	
Na10—O10(×3)	2,572(9)	2,478(14)	2,574(15)	2,554(12)	2,56(3)	2,55(2)	
Na10—Ow1(×3)	2,202(8)	2,204(17)	2,126(16)	2,199(16)	2,21(3)	2,22(3)	
Среднее	2,386	2,341	2,350	2,3765	2,385	2,39	
Na2—O1	2,624(6)	2,600(12)	2,603(13)	2,606(12)	2,66(2)	2,46(3)	
Na2—O10	2,673(6)	2,640(12)	2,552(12)	2,578(13)	2,54(2)	2,54(3)	
Na2—O2	3,014(6)	2,975(12)	2,940(13)	2,959(13)	3,01(2)	2,89(3)	
Na2—O20	2,993(6)	2,991(13)	2,947(14)	2,997(14)	2,97(2)	2,93(4)	
Na2—O4	2,677(5)	2,631(12)	2,609(14)	2,601(14)	2,52(2)	2,53(3)	
Na2—Ow1	2,217(7)	2,215(17)	2,187(16)	2,082(18)	2,12(3)	1,87(4)	
Na2—Ow10	2,229(8)	2,167(16)	2,212(19)	2,184(18)	1,98(3)	2,22(4)	
Среднее	2,632	2,603	2,579	2,572	2,54	2,49	
Si10-O1-Zr1	135,6(2)	135,6(5)	133,0(5)	133,1(5)	137,2(9)	128,0(11)	
Sil—O10–Zrl	136,0(2)	135,8(5)	134,8(5)	136,7(5)	134,7(9)	133,6(8)	
Sil—O2–Zr2	139,9(2)	138,2(5)	137,4(5)	138,0(5)	135,5(10)	132,3(12)	
Si10	139,8(2)	138,2(5)	137,5(6)	136,7(6)	135,0(9)	135,9(10)	
Si1—O3—Si10	136,7(2)	136,0(6)	134,8(7)	135,2(6)	132,9(11)	137,4(14)	
Si1—O4—Si10	132,9(2)	132,5(5)	130,9(6)	132,4(6)	127,4(11)	125,6(12)	
Среднее	136,8	136,05	134,7	135,35	133,8	132,1	

a = 10,456(4), c = 15,759(5) Å, V = 1492(2) Å³. Их величины заметно ниже, нежели на прямом ходе (см. рис. 3). Очевидно, в структуре илерита произошли некие необратимые изменения, связанные с разрывом связей в каркасе.

Поведение илерита, очевидно, обусловлено особенностями его строения. В его структуре кремнекислородная часть каркаса — Si₃O₉-цепочки, которые, казалось бы, по определению должны быть достаточно гибкими. Однако в данном случае каждые два смежных тетраэдра це-

пей стянуты ребром Zr-октаэдра (см. рис. 1), и вся смешанная конструкция состоит из жестких тройных кольцевых звеньев (Si—O—Si—O—Zr—O) с углами на атомах О 132—140° (см. табл. 4). Это обеспечивает илериту минимальную сжимаемость, а ее увеличение возможно только в результате радикальной структурной перестройки.

Известно, что наличие вакансий в структуре кристалла может делать его менее стабильным в области высокого давления. Так, дегидратированный анальцим $Na_2[Al_2Si_4O_{12}]$ уже при давлении ниже 1 ГПа испытывает фазовый переход, сопровождающийся аномальным уменьшением объема на 7,5 % [11], тогда как в гидратированном состоянии его сжатие гораздо меньше, а фазовые переходы типа смещения наблюдаются при существенно более высоком давлении [12]. В структуре изученного нами илерита 40 % катионных позиций вакантны. Не исключено, что это также отрицательно сказывается на его стабильности при сжатии.

Дифракционные эксперименты выполнены на оборудовании Научно-образовательного центра "Молекулярный дизайн и экологически безопасные технологии" (Новосибирский государственный университет). Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 13-05-00457).

СПИСОК ЛИТЕРАТУРЫ

- 1. Fois E., Gamba A., Tabacchi G. et al. // Amer. Mineral. 2005. 90. P. 28.
- 2. Gatta G.D. // Eur. J. Mineral. 2005. 17. P. 411.
- 3. Григорьева А.А., Зубкова Н.В., Пеков И.В., Пущаровский Д.Ю. // Докл. РАН. 2009. 428, № 1. С. 61.
- 4. Sheldrick G.M. // Acta Crystallogr. 2008. A64. P. 112.
- 5. Boehler R. // Rev. Sci. Instrum. 2006. 77. art. No. 115103.
- 6. Piermarini G.J., Block S., Barnett J.D., Forman R.A. // J. Appl. Phys. 1975. 46. P. 2774.
- Budzianowski A., Katrusiak A. In: High-Pressure Crystallography / Eds. A. Katrusiak and P.F. McMillan. – Dordrecht: Kluwer Academic Publishers, 2004. – P. 101 – 112.
- 8. Angel R.J. // J. Appl. Crystallogr. 2004. 37. P. 486.
- 9. Илюшин Г.Д., Воронков А.А., Невский Н.Н. и др. // Докл. АН СССР. 1981. 260, № 5. С. 1118.
- 10. Пущаровский Д.Ю., Пеков И.В., Пазеро М. и др. // Кристаллография. 2002. 47. С. 814.
- 11. Likhacheva A.Yu., Rashchenko S.V., Seryotkin Yu.V. // Miner. Magazine. 2012. 76, N 1. P. 129.
- 12. Hazen R.M., Finger L.W. // Phase Transit. 1979. 1. P. 1.