# ИСТОЧНИКИ БАЗИТОВОГО МАГМАТИЗМА ЗАПАДНОГО ЗАБАЙКАЛЬЯ В ПОЗДНЕМ ПАЛЕОЗОЕ ПО ГЕОХИМИЧЕСКИМ И ИЗОТОПНЫМ ДАННЫМ Р.А. Бадмацыренова, М.В. Бадмацыренов

Геологический институт СО РАН, 670047, Улан-Удэ, ул. Сахьяновой, ба, Россия

Изученные массивы Западного Забайкалья (Арсентьевский и Оронгойский) сложены пироксенитами, высокотитанистыми, субщелочными габбро, габбро-диоритами, монцодиоритами, анортозитами и сиенитами. В Оронгойском массиве выделяются небольшие тела оливинитов, плагиоперидотитов. Габброиды характеризуются высокими концентрациями Sr, Ba, Nb, Ta, Zr и Hf, что свойственно для базитов внутриплитного типа. В тренде распределения редкоземельных элементов наблюдается обогащенность легкими лантаноидами (La/Yb<sub>N</sub> — 5.35—25.82). Величины изотопных отношений <sup>87</sup>Sr/<sup>86</sup>Sr лежат в интервале 0.705—0.7054 и  $\varepsilon_{Nd}$  в пределах 1.44…–1.18. Формирование габброидов Западного Забайкалья с учетом радиогенного состава неодима и обогащенности <sup>87</sup>Sr, возможно, происходило при вовлечении их в процессы плавления литосферной мантии типа EM-II.

Высокотитанистые массивы, геохимия габброидов, петрохимия, изотопия Sr, Nd, Западное Забайкалье.

# THE SOURCES OF BASIC MAGMATISM IN WESTERN TRANSBAIKALIA IN THE LATE PALEOZOIC (from geochemical and isotope data)

### R.A. Badmatsyrenova and M.V. Badmatsyrenov

The studied massifs in western Transbaikalia (Arsent'ev and Orongoi) are composed of pyroxenites, high-Ti subalkalic gabbro, gabbro-diorites, monzodiorites, anorthosites, and syenites. The Orongoi massif also includes small olivinite and plagioperidotite bodies. The gabbroids have high contents of Sr, Ba, Nb, Ta, Zr, and Hf, which is typical of intraplate basites. The REE pattern shows the rock enrichment in LREE (La/Yb<sub>N</sub> = 5.35-25.82). The <sup>87</sup>Sr/<sup>86</sup>Sr values vary from 0.7050 to 0.7054, and  $\varepsilon_{Nd}$ , from 1.44 to -1.18. The presence of radiogenic Nd in the gabbroids and their enrichment in <sup>87</sup>Sr suggest their formation as a result of the melting of the EM-II-type lithospheric mantle.

High-Ti massifs, geochemistry of gabbroids, petrochemistry, Sr and Nd isotopes, western Transbaikalia

### введение

Массивы габбро-сиенитового формационного типа широко распространены в структурах Центрально-Азиатского складчатого пояса (ЦАСП): когтахский комплекс Кузнецкого Алатау, гутарский комплекс Восточного Саяна, зубовский комплекс Тувы, массивы Западной Монголии и др. [Кривенко, 1973; Изох и др., 1998]. В Западном Забайкалье к этому формационному типу относятся Арсентьевский, Оронгойский, Зуйский и, возможно, Иройский массивы, входящие в моностойский интрузивный комплекс [Богатиков, 1966]. Массивы характеризуются помимо повышенной щелочности высокими концентрациями некоторых редких (ниобий, тантал, стронций и особенно барий) и редкоземельных элементов (легкие лантаноиды) относительно примитивной мантии. Эти массивы почти всегда сопровождаются интрузиями сиенитов, возможно, генетически с ними связанных. Повышенные содержания стронция и неодима в базитах не подвергаются значительному изменению при коровой контаминации, и поэтому могут характеризовать их первичные источники [Ярмолюк, Коваленко, 2000].

В предлагаемой статье впервые представлены результаты петрогеохимического и изотопного (Sr, Nd) изучения базитов Западного Забайкалья для характеристики их источника.

## МЕТОДИКА ИССЛЕДОВАНИЙ

При проведении анализа состава пород были использованы традиционные методы (фотометрический, атомно-абсорбционный, гравиметрический, потенциометрический, пламенно-фотометрический). Для определения микроэлементного состава пород использовались методы рентгенофлуоресцентного анализа (Rb, Sr, Ba, Zr, Nb, Y, элементы группы железа), нейтронно-активационного анализа (редкоземельные элементы, Ta, Hf, Th, U), масс-спектрометрии с индуктивно-связанной плазмой (для широкого круга элементов). Исследования проводились в лабораториях ИГХ СО РАН, ГИН СО РАН и ИГМ СО РАН.

### © Р.А. Бадмацыренова, М.В. Бадмацыренов, 2011

Изотопный состав Nd и Sr измерялся на масс-спектрометре МИ-1201 T (ГИН СО РАН, г. Улан-Удэ) и Finnigan MAT–262 (Байкальский аналитический центр коллективного пользования, г. Иркутск). Состав стронция и его концентрации устанавливались методом двойного изотопного разбавления, а содержание Rb — простым изотопным разбавлением. Для контроля измерений состава Sr использовались стандарты BHИИМ и NBS-987, по которым получены <sup>87</sup>Sr/<sup>86</sup>Sr = 0.70798 ± 0.00008 и 0.71026 ± 0.00001. Погрешности определения отношений с учетом параллельных измерений для <sup>87</sup>Sr/<sup>86</sup>Sr и <sup>87</sup>Rb/<sup>86</sup>Sr составили не более 0.05 и 1 % (2 $\sigma$ ) соответственно. Расчет возраста выполнялся по общепринятой программе «ISOPLOT». Ввиду низких значений Rb/Sr в большинстве валовых проб, использовались выборки определения возраста по схеме вал—минерал.

### ГЕОЛОГИЧЕСКОЕ СТРОЕНИЕ

Арсентьевский массив расположен на юго-восточном склоне хр. Моностой в его центральной части, в 4—5 км к западу и северо-западу от сел Арсентьевка и Сутой, расположенных на левом берегу Селенги. В плане он имеет овальную форму, слегка удлиненную в меридиональном направлении, и занимает площадь около 20 кв. км (рис. 1). Сложен массив породами габброидной и сиенитовой серий. Габброиды слагают его южную часть, а сиениты — северную [Богатиков, 1966]. Породы первой серии образуют ряд от ультрамафических разновидностей (пироксенитов) до анортозитов, которые участвуют в концентрически-зональном строении интрузива. Центральная часть сложена анортозитами, окаймленными лейкократовыми габброи и трахитоидными оливиновыми габброидами (рис. 2, *a*). Судя по магнитометрической съемке, интрузив продолжается в юго-западном направлении еще на несколько сотен метров. В целом габброидная часть интрузива в разрезе имеет форму пологой асимметричной воронки с центром, несколько смещенным к югу. Сиениты относятся к более поздним образованиям. В пределах массива широко развиты жилы гранитных пегматитов и габбро-пегматитов, дайки кислых и средних пород. В массиве отмечено титаномагнетит-ильменитовое оруденение [Смирнов, Перелыгина, 1959; Кислов и др., 2009].

**Оронгойский массив** расположен в крайней северо-западной части хр. Моностой в 5 км к югозападу от устья р. Оронгой и в 2 км к востоку от пос. Нижний Убукун. Массив занимает площадь около 20 кв. км, имеет овальную, слегка вытянутую в широтном направлении форму [Богатиков, 1966]. По многим петрографическим параметрам Оронгойский массив сходен с Арсентьевским, но в его составе преобладают лейкократовые разности габброидной серии пород. Вся средняя часть массива образована анортозитами, в которых встречаются ксенолиты лейкогаббро. Анортозиты в виде полосы переменной мощности (от 1 до 2 км) прослеживаются в субширотном направлении, на их долю приходится около



70 % площади интрузива. В крайней северной части массива наблюдаются щелочные роговообманковые габбро. В южном направлении эти породы сменяются зоной мелкозернистых пироксен-керсутитовых габбро. Крайняя западная часть массива и полоса между анортозитами и зоной пироксен-керсутитовых габбро сложена трахитоидными лейкогаббро. Оливиновые габбро распространены крайне ограниченно. Они отмечены в юго-восточной части массива, где образуют неправильной формы участок с нечеткими контурами среди

# Рис. 1. Схематическая петрографическая карта Арсентьевского габбро-сиенитового массива (по [Богатиков, 1965], с дополнениями и изменениями авторов).

1 — четвертичные отложения; 2 — сиениты; 3 — анортозиты и лейкогаббро; 4 — трахитоидные оливиновые габбро и мезогаббро, габбро-диориты, монцодиориты; 5 — ильменит-титаномагнетитовые руды: а — массивные, б — вкрапленные; 6 — габбро, керсутитовые габбро, пироксениты; 7 — диориты, гранодиориты, монцониты; 8 — гранито-гнейсы; 9 — элементы залегания трахитоидности; 10 — распадки.



#### Рис. 2. Микрофотографии шлифов.

*а* — габбро Арсентьевского массива, б — оливинит Оронгойского массива. Срх — клинопироксен, Krs — керсутит, Ар — апатит, Pl — плагиоклаз, Ol — оливин, Mgt — титаномагнетит.

трахитоидных мезо- и лейкогаббро. Ультраосновные породы (серпентинизированные оливиниты) в виде нескольких мелких (до 150 м в поперечнике) округлых тел закартированы в восточной части массива среди анортозитов и трахитоидных лейкогаббро (см. рис. 2,  $\delta$ ). Особенностью Оронгойского массива является присутствие в составе ультраосновных пород плагиоперидотитов. Контакты ультрабазитов с вмещающими породами очень четкие и нередко тектонизированны. Ближе к северной периферии массива габброиды прорываются щелочными сиенитами, в которых встречаются ксенолиты габбро. Оронгойский массив, как и Арсентьевский, богат дайками и жилами пород кислого состава.

# ПЕТРОГЕОХИМИЧЕСКАЯ ХАРАКТЕРИСТИКА БАЗИТОВ

Габброиды Западного Забайкалья представлены нормальной и субщелочной сериями (табл. 1). В поле субщелочных пород попадают средние составы габброидов Арсентьевского массива, в поле нормальных и субщелочных пород — средние составы габброидов Оронгойского массива (рис. 3). Средние химические составы габброидов близки к составам базальтов океанических островов (OIB) [Sun, Mc-Donough, 1989]. Содержания щелочей в габброидах Арсентьевского массива имеют более широкий разброс значений по Na<sub>2</sub>O (1.7—6.4 мас.%) и по K<sub>2</sub>O (0.3—2.5 мас.%) по сравнению с габброидами Оронгойского массива (0.5—3.44 и 0.17—3.06 мас. % соответственно). Здесь можно выделить два типа пород: первый — с положительной зависимостью между Na<sub>2</sub>O и K<sub>2</sub>O и второй — с повышенными содержаниями K<sub>2</sub>O при постоянных значениях Na<sub>2</sub>O (рис. 4). Такая картина объясняет присутствие в этих породах

большого количества биотита, керсутита и сине-зеленой роговой обманки. В габброидах рассматриваемых массивов наблюдается большой разброс содержаний A1<sub>2</sub>O<sub>3</sub> (10—24 мас.%). Главную роль при дифференциации пород Арсентьевского массива играло фракционирование плагиоклаза и моноклинного пироксена (рис. 5).

Для выявления особенностей фракционирования внутри лейкократовых и меланократовых дифференциатов ультрабазит-базитовых магм применим коэффициент фракционирования ( $K_{\rm Fe}$  = FeO/FeO + MgO, оксиды в молекулярных количествах), который отражает изменение соотношении железа и магния в породах ранних и поздних этапов. Ликвидусный оливин всегда менее железистый, чем со-

Рис. 3. Соотношение щелочь—кремнезем в габброидах Арсентьевского (1) и Оронгойского (2) массивов.



| (мас.'             |  |
|--------------------|--|
| массива            |  |
| Арсентьевского     |  |
| тоdоп              |  |
| зновидностей       |  |
| pa                 |  |
| основных ра        |  |
| состав основных ра |  |

|       |           |          |           | 1         |            |          |           |          |           |            | 1         |
|-------|-----------|----------|-----------|-----------|------------|----------|-----------|----------|-----------|------------|-----------|
|       |           |          |           | Субщелоч  | ные габбро |          |           |          |           | Щелочны    | е габбро  |
| 75-02 | Ap 55a-02 | Ap 62-02 | Ap 51a-02 | Ap 28a-01 | Ар 14в-01  | Ap 12-01 | Ap 106-01 | Ap 11-01 | Ap 11a-01 | Ap 52/1-02 | Ap 69a-02 |
| 2.50  | 47.40     | 50.00    | 44.80     | 44.30     | 49.00      | 49.20    | 46.30     | 46.60    | 46.90     | 50.40      | 49.00     |
| 1.10  | 1.13      | 2.19     | 3.18      | 1.25      | 2.52       | 3.06     | 3.36      | 3.52     | 3.53      | 3.07       | 2.48      |
| 9.60  | 18.20     | 22.75    | 19.00     | 18.65     | 18.30      | 15.80    | 16.30     | 16.60    | 15.60     | 18.10      | 16.30     |
| 3.40  | 3.18      | 3.05     | 4.97      | 4.91      | 4.17       | 3.36     | 2.51      | 3.44     | 4.17      | 3.52       | 4.03      |
| 4.15  | 6.37      | 4.55     | 7.22      | 6.84      | 6.08       | 6.40     | 7.57      | 7.22     | 7.41      | 9.65       | 6.37      |
| 0.13  | 0.13      | 0.06     | 0.13      | 0.13      | 0.14       | 0.17     | 0.17      | 0.16     | 0.21      | 0.14       | 0.15      |
| 3.34  | 6.31      | 2.27     | 4.34      | 10.26     | 3.52       | 4.29     | 5.10      | 4.85     | 4.74      | 1.13       | 4.22      |
| 6.30  | 10.14     | 6.27     | 9.30      | 6.35      | 8.38       | 7.70     | 10.00     | 8.88     | 8.33      | 3.27       | 5.05      |
| 4.77  | 3.54      | 5.20     | 4.13      | 2.50      | 4.65       | 4.45     | 3.32      | 3.60     | 3.89      | 5.60       | 5.20      |
| 2.95  | 1.75      | 1.97     | 0.42      | 1.17      | 0.91       | 2.20     | 1.39      | 1.69     | 1.57      | 3.38       | 3.37      |
| 0.33  | 0.19      | 0.47     | 1.26      | 0.19      | 0.85       | 1.79     | 1.96      | 2.02     | 2.19      | 0.59       | 2.23      |
| 1.06  | 1.42      | 0.80     | 1.54      | 3.79      | 1.14       | 1.29     | 1.11      | 0.66     | 1.56      | 1.35       | 1.51      |
| 99.63 | 99.76     | 99.58    | 100.29    | 100.34    | 99.66      | 99.71    | 60.66     | 99.24    | 100.10    | 100.20     | 99.91     |
| 31    | 40        | 23       | 26        | 47        | 25         | 30       | 34        | 31       | 29        | 8          | 29        |
| 81    | 39        | 28       | 4         | 27        | 8          | 24       | 12        | 13       | 24        | 7          | 38        |
| 1180  | 1120      | 2830     | 1930      | 1170      | 2100       | 1220     | 1570      | 1550     | 1340      | 1020       | 250       |
| 23    | 12        | 9        | 16        | 9         | 24         | 58       | 34        | 37       | 54        | 24         | 16        |
| 200   | 74        | 19       | 47        | 36        | 65         | 130      | 100       | 150      | 120       | 120        | 32        |
| 6     |           |          | 2         |           | 4          | 19       | 10        | 7        | 6         | 7          | 5         |
| 1110  | 670       | 7500     | 780       | 480       | 066        | 660      | 770       | 1030     | 1130      | 550        | 1500      |
|       |           | 30       |           | 30        | 50         | 180      | 120       | 130      | 170       |            |           |
| 19    | 06        |          | 38        | 160       | 6          | 13       | 8         | 14       | 6         |            |           |
| 22    | 50        | 20       | 43        | 40        | 7          | 14       | 17        | 22       | 26        | 18         | 32        |
| 82    | 65        | 77       | 58        | 88        | 86         | 100      | 88        | 100      | 130       | 06         | 41        |
| 22    | 23        | 10       |           | 7         | 8          | 5        | 7         | 11       | 6         |            |           |
| 32    | 40        | 34       | 35        | 120       | 57         | 5        | 74        | 64       | 64        | 44         | 24        |
| 140   | 320       | 130      | 91        | 450       | 100        | 06       | 100       | 100      | 71        | 79         | 200       |
| 140   | 210       | 021      | 001       |           |            |          |           |          |           |            |           |

| (                           |                       | Субщелоч. | ные диориты-м | онцониты |          |          | Cy6щ      | елочные габбрс | иды с вкрапл | енным орудене | снием     |           |
|-----------------------------|-----------------------|-----------|---------------|----------|----------|----------|-----------|----------------|--------------|---------------|-----------|-----------|
| Оксид                       | Ap 5 <sub>B</sub> -01 | Ap 7-01   | Ар 51в-02     | Ap 68-02 | Ap 73-02 | Ap 60-02 | Ap 58a-02 | Ap 53/1-02     | Ap 54-02     | Ap 56-01      | Ap 16a-01 | Ap 166-01 |
| $SiO_2$                     | 41.30                 | 61.30     | 54.30         | 53.90    | 54.50    | 41.70    | 38.70     | 40.20          | 36.60        | 41.30         | 41.60     | 42.60     |
| $TiO_2$                     | 3.00                  | 0.88      | 0.64          | 1.72     | 1.25     | 2.70     | 3.22      | 4.92           | 5.22         | 3.00          | 3.18      | 3.62      |
| $Al_2O_3$                   | 15.30                 | 16.30     | 26.50         | 19.70    | 18.60    | 16.25    | 14.50     | 14.20          | 10.15        | 15.30         | 14.40     | 15.80     |
| $\mathrm{Fe}_2\mathrm{O}_3$ | 7.69                  | 2.61      | 0.87          | 2.04     | 3.05     | 6.96     | 9.20      | 5.81           | 10.82        | 7.69          | 6.14      | 4.84      |
| FeO                         | 8.19                  | 3.12      | 1.20          | 4.01     | 4.53     | 7.22     | 8.38      | 9.61           | 11.03        | 8.19          | 9.75      | 8.70      |
| MnO                         | 0.16                  | 0.09      | 0.02          | 0.10     | 0.14     | 0.15     | 0.18      | 0.20           | 0.22         | 0.16          | 0.23      | 0.23      |
| MgO                         | 5.50                  | 2.07      | 0.44          | 2.58     | 2.82     | 5.95     | 7.00      | 6.50           | 7.74         | 5.50          | 6.28      | 5.40      |
| CaO                         | 11.60                 | 4.00      | 9.00          | 5.18     | 5.25     | 12.20    | 12.24     | 11.16          | 13.04        | 11.60         | 11.00     | 9.52      |
| $Na_2O$                     | 2.86                  | 4.00      | 5.77          | 5.56     | 5.10     | 2.85     | 2.64      | 3.07           | 1.67         | 2.86          | 3.00      | 3.16      |
| $\rm K_2O$                  | 0.47                  | 4.14      | 0.65          | 3.37     | 3.49     | 0.42     | 0.46      | 0.47           | 0.42         | 0.47          | 0.32      | 1.37      |
| $P_2O_5$                    | 2.25                  | 0.29      | 0.09          | 0.78     | 0.42     | 2.28     | 2.17      | 2.52           | 1.51         | 2.25          | 2.12      | 2.75      |
| П.п.п.                      | 1.13                  | 0.92      | 0.59          | 0.46     | 1.04     | 1.04     | 1.21      | 1.32           | 1.26         | 1.25          | 1.99      | 2.09      |
| Сумма                       | 99.45                 | 99.72     | 100.07        | 99.40    | 100.19   | 99.72    | 96.66     | 99.98          | 99.68        | 99.57         | 100.01    | 100.08    |
| #gm                         | 26                    | 26        | 17            | 30       | 27       | 29       | 28        | 30             | 26           | 26            | 28        | 28        |
| Rb                          | 70                    | 09        | 5             | 29       | 62       | 4        |           | 3              |              | 9             | 4         | 34        |
| Sr                          | 820                   | 820       | 2500          | 1870     | 1000     | 1940     | 1950      | 1350           | 830          | 1800          | 1680      | 1710      |
| Υ                           | 31                    | 17        |               | 22       | 28       | 26       | 23        | 37             | 26           | 26            | 41        | 38        |
| Zr                          | 250                   | 190       | 39            | 32       | 150      | 32       | 40        | 76             | 83           | 38            | 45        | 80        |
| Nb                          | 21                    | 6         |               | 7        | 12       |          | 5         | 9              |              | 3             | 4         | 3         |
| Ba                          | 1050                  | 1360      | 800           | 9400     | 1450     | 1270     | 1750      | 530            | 380          | 2100          | 660       | 1150      |
| Ce                          | 120                   | 80        |               |          |          |          |           |                |              | 90            | 100       | 140       |
| Ni                          | 17                    | 8         |               |          |          | 15       | 24        |                | 26           | 17            | 18        | 10        |
| Cu                          | 27                    | 15        |               | 15       | 18       | 56       | 75        | 46             | 46           | 30            | 16        | 22        |
| Zn                          | 88                    | 70        |               | 60       | 79       | 82       | 100       | 100            | 130          | 110           | 140       | 130       |
| Pb                          | 13                    | 15        | 12            |          | 21       |          | 16        | 30             |              |               | 9         | 5         |
| Co                          | 69                    | 50        | 35            | 21       | 24       | 42       | 44        | 41             | 47           | 57            | 71        | 83        |
| Cr                          | 57                    | 160       | 130           | 130      | 130      | 75       | 80        | 50             | 140          | 130           | 110       | 76        |
| >                           | 220                   | 100       | 56            | 68       | 140      | 280      | 290       | 240            | 550          | 430           | 240       | 180       |

| табл.     |  |
|-----------|--|
| Окончание |  |

|             | Ap 51в-02  | 54.30   | 0.64    | 26.50     | 0.87      | 1.20  | 0.02  | 0.44  | 9.00  | 5.77    | 0.65       | 0.09     | 0.59   | 100.07 | 17  | 5       | 2500          |         | 39  |    | 800  |     |    |     |     | 12      | 35  | 130 | 56  | іыше чувс-                      |
|-------------|------------|---------|---------|-----------|-----------|-------|-------|-------|-------|---------|------------|----------|--------|--------|-----|---------|---------------|---------|-----|----|------|-----|----|-----|-----|---------|-----|-----|-----|---------------------------------|
|             | Ap 62-02   | 50.00   | 2.19    | 22.75     | 3.05      | 4.55  | 0.06  | 2.27  | 6.27  | 5.20    | 1.97       | 0.47     | 0.80   | 99.58  | 23  | 28      | 2830          | 9       | 19  |    | 7500 | 30  |    | 20  | 77  | 10      | 34  | 130 | 170 | чения мен                       |
| ЫТЫ         | Ap 75-02   | 52.50   | 1.10    | 19.60     | 3.40      | 4.15  | 0.13  | 3.34  | 6.30  | 4.77    | 2.95       | 0.33     | 1.06   | 99.63  | 31  | 81      | 1180          | 23      | 200 | 6  | 1110 |     | 19 | 22  | 82  | 22      | 32  | 140 | 140 | рк — зна                        |
| Анортоз     | 02-226     | 43.37   | 3.962   | 19.87     | 16.28     |       | 0.117 | 2.9   | 5.419 | 4.52    | 1.874      | 0.586    | 0.07   | 98.96  | 15  | He onp. | \$            | \$      | \$  | \$ | \$   | \$  | \$ | \$  | \$  | \$      | \$  | \$  | *   | ы). Проче                       |
|             | 02-216     | 52.63   | 1.527   | 23.48     | 3.98      |       | 0.059 | 1.67  | 8.27  | 6.42    | 0.762      | 0.367    | 0.1    | 99.26  | 29  | Не опр. | \$            | \$      | \$  | \$ | \$   | \$  | \$ | \$  | \$  | \$      | \$  | \$  | *   | $0 + \mathrm{Fe}_2\mathrm{O}_3$ |
|             | 02-205     | 52.47   | 1.066   | 23.69     | 4.38      |       | 0.051 | 1.469 | 8.629 | 5.11    | 1.297      | 0.434    | 0.99   | 99.58  | 25  | Не опр. | \$            | \$      | \$  | *  | \$   | \$  | \$ | \$  | \$  | \$      | \$  | \$  | \$  | sO + FeC<br>M.                  |
|             | 01-2       | 53.89   | 0.241   | 27.14     | 1.51      |       | 0.017 | 0.314 | 9.81  | 5.17    | 0.814      | 0.163    | 0.56   | 99.62  | 17  | 3       | 2400          | Не опр. | \$  | \$ | \$   | \$  | 20 | 20  | 10  | He onp. | S   | 10  | 50  | -100/(М <u></u> д<br>ношинын    |
|             | Ap 50-02   | 43.00   | 3.59    | 14.50     | 8.25      | 8.80  | 0.20  | 6.53  | 10.00 | 2.88    | 06.0       | 0.28     | 1.51   | 100.44 | 28  | 9       | 1120          | 23      | 110 | 4  | 062  |     | 52 | 40  | 110 | 12      | 36  | 82  | 320 | # = MgO<br>C. Mexoi             |
|             | Ap 50c-02  | 43.00   | 3.58    | 14.80     | 5.96      | 9.77  | 0.19  | 6.46  | 10.07 | 3.14    | 0.64       | 0.33     | 1.64   | 99.58  | 29  | 5       | 1100          | 23      | 66  | 4  | 580  |     | 48 | 68  | 110 |         | 43  | 73  | 330 | сутск). mg:<br>авлены А.        |
| W           | Ap 23-01   | 41.70   | 3.69    | 15.20     | 7.10      | 10.75 | 0.17  | 6.15  | 10.27 | 2.70    | 0.50       | 0.53     | 1.59   | 100.35 | 26  | 6       | 980           | 20      | 100 | 3  | 530  | 40  | 29 | 100 | 110 | 9       | 130 | 42  | 620 | АН (г. Ирн<br>6 предост         |
| руденениел  | Ap 52/3-02 | 44.10   | 5.38    | 15.80     | 3.79      | 9.80  | 0.17  | 5.33  | 9.38  | 3.25    | 0.66       | 0.25     | 1.90   | 99.81  | 28  | 11      | 1190          | 16      | 110 | 5  | 620  |     | 16 | 45  | 86  |         | 39  | 100 | 300 | ИГХ СО Р<br>16 и 02-22          |
| пленным о   | Ap 52-02   | 44.00   | 5.34    | 15.40     | 5.01      | 8.30  | 0.17  | 6.05  | 10.57 | 3.12    | 0.85       | 0.21     | 0.94   | 96.66  | 31  | 9       | 1220          | 21      | 110 | 5  | 620  |     | 17 | 25  | 84  |         | 45  | 140 | 290 | ан-Удэ) и ]<br>-205, 02-2       |
| иды с вкра  | Ap 52/2-02 | 44.60   | 5.08    | 16.20     | 4.45      | 8.72  | 0.17  | 5.08  | 10.07 | 3.33    | 0.77       | 0.20     | 1.08   | 99.75  | 28  | 12      | 1270          | 19      | 110 | 11 | 580  |     | 20 | 32  | 80  |         | 41  | 120 | 270 | РАН (г.Ула<br>ы 01-2, 02        |
| ные габброі | Ap 65/1-02 | 41.20   | 5.93    | 14.20     | 11.26     | 5.75  | 0.21  | 6.39  | 10.49 | 2.80    | 0.74       | 0.30     | 0.73   | 100.00 | 27  | 29      | 860           | 12      | 20  | 3  | 3120 |     |    | 34  | 110 | 13      | 25  | 140 | 94  | гИН СО<br>юсь. Проб             |
| убщелочн    | Ap 21-01   | 32.80   | 7.40    | 10.95     | 7.66      | 13.71 | 0.27  | 7.37  | 11.62 | 1.32    | 1.92       | 3.37     | 1.81   | 100.20 | 26  | 71      | 710           | 47      | 87  | 10 | 470  | 120 | 15 | 30  | 160 | 14      | 140 | 25  | 520 | олнены в<br>определял           |
|             | Ap 15-01   | 43.20   | 3.92    | 15.60     | 3.94      | 8.39  | 0.21  | 5.90  | 10.40 | 3.20    | 1.15       | 2.10     | 1.55   | 99.56  | 32  | 21      | 1470          | 43      | 110 | 13 | 890  | 120 | 20 | 20  | 100 | 12      | 74  | 51  | 260 | лизы вып<br>тр. — не (          |
|             | Ap 20-01   | 44.50   | 3.74    | 15.90     | 3.24      | 8.54  | 0.18  | 5.36  | 10.50 | 3.29    | 0.96       | 2.29     | 1.26   | 99.76  | 31  | 14      | 1670          | 40      | 60  | ∞  | 062  | 120 | 10 | 19  | 95  | 11      | 61  | 67  | 230 | ние. Ана<br>ода. Не ог          |
|             | Ap 17a-01  | 41.00   | 3.66    | 15.60     | 5.94      | 8.97  | 0.20  | 5.68  | 9.52  | 3.36    | 0.67       | 3.26     | 2.33   | 100.19 | 27  | 11      | 1740          | 47      | 74  | 6  | 750  | 120 | 18 | 21  | 120 | 7       | 74  | 51  | 200 | <u>Триме</u> ча<br>ности мет    |
|             | Оксид      | $SiO_2$ | $TiO_2$ | $Al_2O_3$ | $Fe_2O_3$ | FeO   | MnO   | MgO   | CaO   | $Na_2O$ | $\rm K_2O$ | $P_2O_5$ | П.п.п. | Сумма  | mg# | Rb      | $\mathbf{Sr}$ | Y       | Zr  | Nb | Ba   | Ce  | Ni | Cu  | Zn  | Pb      | Co  | Cr  | >   | Твитель:                        |

став кристаллизующегося расплава, а поздние фемические минералы, наоборот, более железистые относительно расплава. Поэтому железистость всегда возрастает от ранних дифференциатов к поздним. Но в открытой для кислорода системе железо окисляется и кристаллизуется магнетит, при этом силикатные минералы могут быть менее железистыми [Fenner, 1929; Ферсман, 1937; Bowen, 1947; Ферштатер и др., 2001].

Для пород Арсентьевского и Оронгойского массивов характерен широкий диапазон изменения  $K_{\rm Fe}$  (0.35—0.75 и 0.39—0.79). Зависимость между содержанием MgO и  $K_{\rm Fe}$  в габброидах рассматриваемых массивов условно можно назвать отрицательной гиперболической (обратная связь) (рис. 6).

В породах Оронгойского массива содержания  $P_2O_5$  достигают 0.35 мас.%. В габброидах Арсентьевского массива, напротив, отмечаются повышенные концентрации  $P_2O_5$  (0.06—3.63 мас.%), при этом 45 % пород содержит более 1.5 мас.%  $P_2O_5$ . По содержанию  $TiO_2$  и  $P_2O_5$  среди габброидов Западного Забайкалья можно выделить две группы. Первая — это породы с нечетко выраженной прямой корреляционной зависимостью между содержаниями  $TiO_2$  и  $P_2O_5$  и вторая — породы, в которых такая зависимость отсутствует, но наблюдаются высокие концентрации  $TiO_2$  (2—5 мас.%) при очень низких концентрациях  $P_2O_5$  (0.01—0.15 мас.%).

Габброиды Западного Забайкалья характеризуются незначительным разбросом содержаний MgO и Al<sub>2</sub>O<sub>3</sub>, высокой щелочностью и повышенными содержаниями P<sub>2</sub>O<sub>5</sub>, по содержанию щелочей близки к базальтам океанических островов [Когарко, Асавин, 2007].

Редкоземельные элементы являются одними из наименее подвижных, на них слабо влияют процессы гидротермального изменения и низкотемпературного метаморфизма, поэтому их содержание наиболее корректно отражает состав магматических пород и степень плавления мантийного вещества [Балашов, 1976].

Габброиды Западного Забайкалья характеризуются высокими концентрациями РЗЭ (табл. 2, рис. 7) и более крутым наклоном кривой распределения в сторону тяжелых РЗЭ (La/Yb<sub>N</sub> — 5.35—25.82). По содержанию РЗЭ и P<sub>2</sub>O<sub>5</sub> выделяются три типа пород. К первому типу относятся рудные и оливиновые габбро, в них отмечаются наиболее высокие концентрации РЗЭ при содержании P<sub>2</sub>O<sub>5</sub> (1.11—3.44 мас.%), значения La/Yb<sub>N</sub> от 10.37 до 19.45. Второй представлен оливин-керсутитовым габбро со средними концентрациями РЗЭ и высоким содержанием P<sub>2</sub>O<sub>5</sub> (0.53—1.08 мас.%) при максимально пологом спектре распределения РЗЭ (La/Yb<sub>N</sub> = 6.02 до 10.06). В спектрах распределения третьего типа пород (оливино-

| -           |          |         | 1         |        |        |         | 1       |        |        | ,             |               |             |
|-------------|----------|---------|-----------|--------|--------|---------|---------|--------|--------|---------------|---------------|-------------|
| Элемент     | Ар10б-01 | Ap23-01 | Ap52/2-01 | Ap6-01 | M01-19 | М01-38Б | M01-38B | M01-72 | M01-76 | ОГ<br>16/1-05 | ОГ<br>17/2-05 | ОГ<br>19-05 |
|             | 1        | 2       | 3         | 4      | 5      | 6       | 7       | 8      | 9      | 10            | 11            | 12          |
| La          | 35       | 16.2    | 12.2      | 11.88  | 13.07  | 29.87   | 35.63   | 61.75  | 12.69  | 5.31          | 5.31          | 7.35        |
| Ce          | 85       | 39      | 28        | 26.04  | 30.55  | 71.96   | 90.28   | 148.60 | 31.37  | 9.66          | 10.04         | 14.22       |
| Pr          | 12.8     | 5.8     | 4.2       | 2.80   | 3.21   | 9.05    | 11.19   | 17.60  | 4.00   | 1.08          | 1.26          | 2.18        |
| Nd          | 56       | 27      | 19.0      | 14.26  | 16.34  | 47.51   | 63.38   | 92.20  | 21.90  | 4.69          | 5.36          | 10.23       |
| Sm          | 11.9     | 6.2     | 4.5       | 2.32   | 3.00   | 9.21    | 12.31   | 17.13  | 4.91   | 0.86          | 1.20          | 2.56        |
| Eu          | 3.9      | 2.1     | 1.92      | 1.81   | 2.00   | 3.30    | 4.10    | 4.96   | 1.98   | 0.32          | 0.34          | 1.20        |
| Gd          | 11.1     | 6.0     | 4.7       | 2.09   | 2.69   | 8.09    | 10.77   | 15.33  | 5.11   | 0.81          | 1.07          | 2.39        |
| Tb          | 1.44     | 0.89    | 0.69      | 0.26   | 0.31   | 0.93    | 1.22    | 1.82   | 0.69   | 0.09          | 0.10          | 0.25        |
| Dy          | 7.5      | 4.9     | 3.9       | 1.31   | 1.52   | 4.95    | 6.39    | 9.33   | 4.30   | 0.52          | 0.70          | 1.37        |
| Но          | 1.36     | 0.93    | 0.71      | 0.24   | 0.26   | 0.77    | 1.07    | 1.57   | 0.77   | 0.11          | 0.15          | 0.25        |
| Er          | 3.6      | 2.4     | 1.99      | 0.56   | 0.68   | 1.93    | 2.53    | 3.74   | 2.00   | 0.29          | 0.41          | 0.58        |
| Tm          | 0.42     | 0.32    | 0.26      | 0.07   | 0.08   | 0.22    | 0.30    | 0.46   | 0.26   | 0.04          | 0.05          | 0.07        |
| Yb          | 2.5      | 1.93    | 1.64      | 0.33   | 0.47   | 1.19    | 1.62    | 2.56   | 1.70   | 0.29          | 0.34          | 0.51        |
| Lu          | 0.33     | 0.25    | 0.23      | 0.05   | 0.06   | 0.15    | 0.21    | 0.36   | 0.23   | 0.04          | 0.06          | 0.06        |
| ΣREE        | 232      | 114     | 84        | 64     | 74     | 189     | 241     | 377    | 92     | 24            | 26            | 43          |
| Eu/Eu*      | 1.01     | 1.02    | 1.27      | 2.46   | 2.11   | 1.14    | 1.06    | 0.92   | 1.20   | 1.15          | 0.89          | 1.46        |
| $(La/Yb)_N$ | 10.06    | 6.02    | 5.35      | 25.82  | 19.95  | 18.00   | 15.78   | 17.30  | 5.35   | 12.99         | 11.25         | 10.37       |

| Таблица 2. | Содержание редкоземельных элементов          | в габброилах   | Запалного   | Забайкалья.     | г/т   |
|------------|----------------------------------------------|----------------|-------------|-----------------|-------|
| raomiga zi | e ogephilanie pegitosentenbilbil strententob | o i noopon,qui | 34114,11010 | <b>Sucurity</b> | - / - |

Примечание. Массивы: 1—9 — Арсентьевский, 10—12 — Оронгойский. Анализы выполнены: 1—4 в ИГМ (г. Новосибирск), 5—12 в ИГХ СО РАН (г. Иркутск) методом ICP MS. Аналитики С.В. Палесский, И.В. Николаева, Л.А. Левантуева. Eu/Eu\* = (Sm<sub>N</sub> + Gd<sub>N</sub>)/2. *N* — нормировано на хондрит [Sun, McDonough, 1989].



Рис. 4. Вариационные диаграммы распределения петрогенных элементов в породах Западного Забайкалья.

Усл. обозн. см. на рис. 3.

# Рис. 5. Соотношение MgO и Al<sub>2</sub>O<sub>3</sub> в габброидах Западного Забайкалья.

Линии фракционирования минералов отражают составы минералов, слагающих габброиды Арсентьевского массива.

вое габбро) появляется характерный Еи максимум, и отмечается существенная разница в концентрациях легких и тяжелых РЗЭ (La/Yb<sub>N</sub> — от 19.95 до 25.82). Данные по распределению РЗЭ в базитах Западного Забайкалья свидетельствуют о том, что состав родоначальной магмы сопоставим с основными магмами повышенной щелочности, имеющими плюмовую природу [Rollinson, 1993].

Появление Eu-аномалий обычно связано с вариациями окислительно-восстановительных условий в кристаллизующихся расплавах. В восстановительных условиях Eu находится в виде Eu<sup>2+</sup>, а в окислительных — Eu<sup>3+</sup>. В плагиоклаз может входить только Eu<sup>2+</sup>, поэтому коэффициент распределения Eu для плагиоклаза в восстановительных условиях оказыва-



ется аномально высоким по отношению к другим РЗЭ. В окислительных условиях он низок, и поведение Eu не отличается от других РЗЭ [Rollinson, 1993]. Отсутствие положительной Eu-аномалии в плагиоклазсодержащих породах указывает на кристаллизацию в окислительных условиях.

Учитывая последовательность кристаллизации пород Арсентьевского массива, можно видеть переход восстановительной обстановки к окислительной в направлении от ранних дифференциатов к поздним.

Взаимосвязь между содержаниями La и MgO, Eu и CaO, Eu и Sr, La и CaO, La и Sr в габброидах Западного Забайкалья отсутствует. В них прослеживается четкая прямая корреляционная зависимость между содержаниями La и P<sub>2</sub>O<sub>5</sub>, свидетельствующая о том, что основным концентратором РЗЭ в этих породах является апатит.

В результате изучения распределения РЗЭ в габброидах Западного Забайкалья установлено, что главным их носителем является апатит. Кроме того, отмечается, что РЗЭ в большей степени обогащены породы, содержащие существенное количество керсутита. Для рудных габброидов, образовавшихся на поздних этапах магматического процесса, характерны повышенные концентрации РЗЭ и отсутствие Еи аномалий, указывающее на окислительные условия кристаллизации. По содержанию РЗЭ габброиды массивов Западного Забайкалья наиболее близки базальтам океанических островов.



Рис. 6. Соотношение MgO и K<sub>Fe</sub> в габброидах Западного Забайкалья.

Усл. обозн. см. на рис. 3.



Рис. 7. Спектры редкоземельных элементов, нормированных к хондриту *C*1 [Boynton, 1984].

Цифрами указано содержание P<sub>2</sub>O<sub>5</sub> в породах (мас.%).



Рис. 8. Спектры редких элементов, нормированных к примитивной мантии [Sun, McDonough, 1989], в габброидах Арсентьевского и Оронгойского массивов.

Усл. обозн. см. на рис. 3.

Габброиды Западного Забайкалья характеризуются высокими концентрациями Sr, Ba, Nb, Ta, Zr, Hf (рис. 8). Для наиболее меланократовых прослоев (обогащенных Fe) в габбро наблюдается увеличение содержания Mn, Ni. Наоборот, для лейкократовых прослоев наиболее характерны микроэлементы Sr и Ba, входящие в состав полевого шпата. Для рудных габброидов характерны высокие концентрации Sr, Ba и широкий диапазон содержа-

ний Zr (4—640 г/т), Hf (0.62—25 г/т), Nb (1.5—90 г/т) и Ta (0.03—10 г/т). В габброидах Арсентьевского и Оронгойского массивов наблюдаются более высокие концентрации Ba и Sr относительно базальтов островных дуг и океанических островов, а также более низкие содержания Rb, Cs, Th, U, Nb, Ta, Zr и Hf по сравнению с базальтами океанических островов (см. рис. 8). Подобными геохимическими характеристиками обладают постколлизионные габброиды Западного Сангилена [Шелепаев, 2006]. Для них типичны более крутые наклоны кривых в сторону тяжелых РЗЭ (La/ Yb — от 2 до 18) по сравнению с доколлизионными и синколлизионными габброидами.

# ИЗОТОПНЫЙ СОСТАВ БАЗИТОВ

Результаты Rb-Sr и Sm-Nd исследований в базитах представлены в табл. 3. Для изотопного анализа были отобраны образцы габбро по магистральной канаве № 1 (пр. Ар 10б-01 и Ар 23-01) и центральной части массива (пр. Ар 52-02). Канава проходит через наиболее изученный восточный участок на левом склоне пади Шулута и на водоразделе пади Шулута и Аргалты. Пробы Ар 10б-01 и Ар 52-02 представляют собой неизмененное габбро, сложенное плагиоклазом, пироксеном, второстепенное положение занимают биотит, амфибол. В качестве акцессорных минералов отмечаются магнетит, ильменит, апатит, эпидот. Проба Ар 23-01 — керсутитовое габбро. Керсутит здесь не образует самостоятельных выделений, а обрастает в виде каймы вокруг титаномагнетита и пироксена. В соответствии с этим преобладающей микроструктурой породы является венцовая, с переходами в гипидиоморфно-зернистую. Характерно резко колеблющееся количественное соотношение роговой обманки и моноклинного пироксена.

Первичные <sup>87</sup>Sr/<sup>86</sup>Sr отношения для пород Арсентьевского и Оронгойского массивов обладают составами, обогащенными относительно деплетированной мантии радиогенным стронцием (<sup>87</sup>Sr/<sup>86</sup>Sr до 0.7054) и имеющими значения  $\varepsilon_{\rm Nd}$  от 1.44 до – 1.18. Повышенные начальные отношения изотопов стронция ( $I_{\rm Sr} = 0.70572$ ) не могут трактоваться как признак ассимиляции основными магмами корового материала, поскольку такие значения обычны для основных пород повышенной щелочности [Литвиновский и др., 1998]. Чтобы облегчить интерпретацию изотопных данных, при нанесении отношений <sup>143</sup>Nd/<sup>144</sup>Nd и <sup>87</sup>Sr/<sup>86</sup>Sr была использована диаграмма с изотопными отношениями в CHUR для Nd и UR

Рис. 9. Изотопные отношения неодима, стронция в базитах Западного Забайкалья (1), ЕМ-I (2) и ЕМ-II (3) и базальтах океанических островов (OIB), данные по [Фор, 1989].

PREMA — деплетированный мантийный источник.



Таблица 3. Изотопный состав Sr, Sm и Nd в базитах Западного Забайкалья

| Проба     | Возраст, | Rb    | Sr     | <sup>87</sup> Rb/ <sup>86</sup> Sr | <sup>87</sup> Sr/ <sup>86</sup> Sr | I.              | Sm   | Nd | <sup>147</sup> Sm/ <sup>144</sup> Nd | <sup>143</sup> Nd/ <sup>144</sup> Nd | ъ( <i>Т</i> )                  |
|-----------|----------|-------|--------|------------------------------------|------------------------------------|-----------------|------|----|--------------------------------------|--------------------------------------|--------------------------------|
| npoou     | млн лет  | Г     | ΎТ     | 100/ 51                            | 517 51                             | <sup>1</sup> Sr | Г/   | 'T | Sill/ Tru                            | 110/110                              | <sup>o</sup> Nd <sup>(1)</sup> |
| Ар 10б-01 | 285      | 15.26 | 1589   | 0.0245                             | 0.70518                            | 0.7050          | 11.9 | 56 | 0.1279                               | 0.5125                               | -1.1837                        |
| Ap 23-01  | 285      | 6.999 | 1012.3 | 0.02                               | 0.705                              | 0.7049          | 6.2  | 27 | 0.1382                               | 0.5127                               | 1.4487                         |
| Ap 52-02  | 285      | 10.29 | 1268.8 | 0.0235                             | 0.70542                            | 0.7053          | 4.5  | 19 | 0.1425                               | 0.5125                               | -0.8729                        |

Примечание. Анализы выполнены в ГИН СО РАН (г. Улан-Удэ), и ИГХ СО РАН (г. Иркутск). Аналитики В.Ф. Посохов, Г.П. Сандимирова.

для Sr [Фор, 1989]. Изотопные составы близки к CHUR и соответствуют мантийному источнику EM-II (рис. 9) и ложатся в поле базальтов островов Кергелен [Zindler, Hart, 1986]. Компонент EM-II, характеризуясь высокими отношениями  $^{87}$ Sr/ $^{86}$ Sr и низкими значениями  $\epsilon_{Nd}$ , связывается с субдуцированием в мантию терригенных осадков [Dickin, 1995].

# ЗАКЛЮЧЕНИЕ

Базитовый магматизм Западного Забайкалья в период позднего палеозоя (280—290 млн лет) [Бадмацыренова, Орсоев, 2006] был связан с внутриплитной магматической активностью [Богнибов и др., 2000]. Проведенные исследования позволяют сделать вывод, что все многообразие пород обусловлено процессами кристаллизационной дифференциации, протекавшими в интрузивной камере. Источник базитового магматизма был обогащен несовместимыми элементами, что объясняется участием в формировании пород обогащенного мантийного источника.

Изотопно-геохимические данные для пород массива отвечают производным щелочно-базальтовых магм, связанных с палеозойским мантийным плюмом. Об этом свидетельствуют высокие содержания щелочей, титана, фосфора, бария, стронция, легких РЗЭ, фтористая специализация расплава, которая фиксируется по апатиту и флогопиту. Присутствие же субдукционных меток на мультиэлементных диаграммах, которые выражаются в минимумах по Nb, обусловлено взаимодействием мантийного плюма [Maruyama, 1994] с литосферной мантией [Ярмолюк и др., 2000], образовавшейся на раннем островодужном этапе формирования земной коры данного региона [Ярмолюк и др., 2006].

Авторы благодарят А.С. Мехоношина за критические замечания и ценные советы, высказанные при рецензировании работы.

Работа выполнена при поддержке Фонда содействия отечественной науке.

### ЛИТЕРАТУРА

Бадмацыренова Р.А., Орсоев Д.А. Титаноносный расслоенный Арсентьевский массив (Западное Забайкалье): новые U-Pb изохроны и изотопно-геохимические данные // Изотопное датирование процессов рудообразования, магматизма, осадконакопления и метаморфизма (Материалы III Российской конференции по изотопной геохронологии. 6—8 июня 2006 г., Москва, ИГЕМ РАН). Т. 1. М., ГЕОС, 2006, с. 65—70.

Балашов Ю.А. Геохимия редкоземельных элементов. М., Наука, 1976, 268 с.

Богатиков О.А. Петрология и металлогения габбро-сиенитовых комплексов Алтае-Саянской области. М., Наука, 1966, 240 с.

Богнибов В.И., Изох А.Э., Поляков Г.В., Гибшер А.С., Мехоношин А.С. Состав и геодинамические обстановки формирования титаноносных ультрабазит-базитовых массивов Центрально-Азиатского складчатого пояса // Геология и геофизика, 2000, т. 41 (8), с. 1083—1097.

Изох А.Э., Богнибов В.И., Поляков Г.В., Мельгунов М.С. Геохимические особенности и геодинамические условия формирования высокотитанистых габброидов Центрально-Азиатского складчатого пояса // Докл. РАН, 1998, т. 360, № 5, с. 360—362.

Кислов Е.В., Гусев Ю.П., Орсоев Д.А., Бадмацыренова Р.А. Титаноносность Западного Забайкалья // Руды и металлы, 2009, № 4, с. 3—12.

Когарко Л.Н., Асавин А.М. Региональные особенности щелочных первичных магм Атлантического океана // Геохимия, 2007, № 9, с. 915—932.

**Кривенко А.П.** Сиенит-габбровый плутон Большой Таскыл в Кузнецком Алатау. Новосибирск, Наука, 1973, 107 с.

**Литвиновский Б.А., Занвилевич А.Н.** Направленность изменения химических составов гранитоидных и основных магм в процессе эволюции Монголо-Забайкальского подвижного пояса // Геология и геофизика, 1998, т. 39 (2), с. 157—177.

Смирнов С.М., Перелыгина А.И. О некоторых основных чертах строения и рудоносности массивов основных и средних пород в хребте Моностой (Бурятская АССР) // Изв. вузов. Геология и разведка, 1959, № 6, с. 3—12.

Ферсман А.Е. Избранные труды. Т. 3. Геохимия. Л., ОНТИ, Госхимиздат, 1937, 355 с.

Ферштатер Г.Б., Холоднов В.В., Бородина Н.С. Условия формирования и генезис рифейских ильменит-титаномагнетитовых месторождений Урала // Геология рудных месторождений, 2001, т. 43, № 2, с. 112—128.

Фор Г. Основы изотопной геологии. М., Мир, 1989, 590 с.

Шелепаев Р.А. Эволюция базитового магматизма Западного Сангилена (Юго-Восточная Тува): Автореф. дис. ... к.г.-м.н. Новосибирск, 2006.

**Ярмолюк В.В., Коваленко В.И.** Геохимические и изотопные параметры аномальной мантии Северной Азии в позднем палеозое—раннем мезозое (данные изучения внутриплитного базитового магматизма) // Докл. РАН, 2000, т. 375, № 4, с. 525—530.

**Ярмолюк В.В., Коваленко В.И. Кузьмин М.И.** Северо-Азиатский суперплюм в фанерозое: магматизм и глубинная геодинамика // Геотектоника, 2000, № 5, с. 3—29.

Ярмолюк В.В., Коваленко В.И., Ковач В.П., Рыцк Е.Ю., Козаков И.К., Котов А.Б., Сальникова Е.Б. Ранние стадии формирования Палеоазиатского океана: результаты геохронологических, изотопных и геохимических исследований позднерифейских и венд-кембрийских комплексов Центрально-Азиатского складчатого пояса // Докл. РАН, 2006, т. 410, № 5, с. 657—662.

Bowen N.L. Magmas // Bull. Geol. Soc. America, 1947, v. 58, № 4, p. 263–280.

**Boyton W.V.** Geochemistry of the REE: meteorite studies / Ed. P. Henderson // REE geochemistry. Amsterdam, Elsevier, 1984, p. 63—114.

Dickin A.P. Radiogenic isotope geology. Cambridge, U.K. Cambridge University Press, 1995, 450 p.

Fenner C.N. The crystallization of basalts // Amer. J. Sci., 1929, v. 18, № 150, p. 225–253.

Maruyma Sh. Plume tectonics // J. Geol. Soc. Japan, 1994, v. 100, p. 24-49.

**Rollinson H.R.** Using geochemacal data: evaluation, presentation, interpretation. Essex: London Group UK Ltd., 1993, 352 p.

Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes / Eds. A.D. Saunders, M.J. Norry. Magmatism in the ocean basins // Geol. Soc. Special Publ., 1989, № 42, p. 313—345.

Zindler A., Hart S.R. Geochemical geodynamics // Ann. Rev. Earth Planet. Sci., 1986, v. 14, p. 493-571.

Рекомендована к печати 31 августа 2010 г. А.Э. Изохом Поступила в редакцию 11 января 2010 г., после доработки — 21 июня 2010 г.