УДК 536.46+536.2+541.123

О МЕХАНИЗМЕ ОГРАНИЧЕНИЯ МАКСИМАЛЬНЫХ ТЕМПЕРАТУР В ВОЛНАХ ФИЛЬТРАЦИОННОГО ГОРЕНИЯ ГАЗОВ

С. И. Футько

Институт тепло- и массообмена НАН Беларуси, 220072 Минск, Беларусь, foutko@itmo.by

Установлен физический механизм, обусловливающий наблюдаемое в эксперименте сильное замедление роста максимальной температуры каркаса в волне фильтрационного горения газа с ростом расхода. При этом максимальные температуры газа и каркаса сравниваются и сильно сокращается зона тепловой релаксации. Введена классификация режимов на основе критерия температурной гетерогенности φ_1 . Получены явные аналитические решения для волны в случаях $\varphi_1\ll 1$ и $\varphi_1\to 1$. Рассмотрена поправка на обратные реакции в продуктах горения. Путем численных расчетов с детальной кинетической схемой изучено влияние состава на поведение волн. Проведена оценка энергии активации для ультрабогатых и ультрабедных метановоздушных смесей. Сделан вывод о достижении при $arphi_1 o 1$ предельной эффективности теплового рекуперативного цикла в волне, предложены способы ее максимизации.

Ключевые слова: фильтрационное горение, предельная эффективность, цикл рекуперации тепла, сверхадиабатический эффект, влияние состава, детальное моделирование, ультрабогатые смеси.

Возможность достижения аномально высоких температур в процессах дозвукового горения была впервые сформулирована в [1] как концепция сжигания топлива с избытком энтальпии. В этом случае максимальная температура в системе может многократно превышать адиабатическую температуру смеси вследствие рекуперации тепла от продуктов горения к исходным реагентам.

Аналогичная возможность существует и для процессов горения в пористых средах. В частности, в [2] впервые проанализирован способ получения сверхадиабатических температур при фильтрационном горении газов $(\Phi\Gamma\Gamma)$, стабилизированном внутри инертного пористого тела.

При нестабилизированном фильтрационном горении в режиме самоподдерживающейся волны также возможно достижение сверхадиабатических температур [3]. Более того, для волны $\Phi\Gamma\Gamma$ в работе [4] в приближении узкой реакционной зоны получено «резонансное» условие (скорость движения фронта горения приближается к скорости распространения тепла в системе), при достижении которого, в принципе, могут достигаться «бесконечно≫ высокие температуры. При этом единстющие максимальные температуры в сверхадиабатической волне.

венным механизмом, ограничивающим макси-

мальные температуры в системе, предполага-

ется предел термостойкости материала стенок

оретических и экспериментальных работ в

этой области (см., например, обзор [3]) во-

прос о механизмах, ограничивающих макси-

мальные температуры, реально достижимые в

волне ФГГ, остается открытым. В данной ра-

боте исследуются физические процессы, снижа-

Несмотря на значительное количество те-

реактора и пористой среды.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ

Уравнения, описывающие распространение волны ФГГ в инертной пористой среде в пренебрежении диффузией и теплопроводностью в газовой фазе (в системе координат, движущейся вместе с фронтом горения с постоянной скоростью u_w), имеют следующий вид

$$c_{p,g}G\frac{dT_g}{dx} = -\varepsilon \sum_{k=1}^{K} h_k \dot{\omega}_k W_k + \alpha_V (T_s - T_g), \quad (1)$$

 $^{-(1-\}varepsilon)c_s\rho_s u_w \frac{dT_s}{dx} = (1-\varepsilon)\frac{d}{dx}\lambda_s \frac{dT_s}{dx} -\alpha_V(T_s-T_q),$

$$G\frac{dY_k}{dx} = \varepsilon \dot{\omega}_k W_k. \tag{3}$$

Здесь T — температура; c_p — удельная теплоемкость; G — массовый расход; u_q — скорость фильтрации; u_w — скорость фронта горения; ρ — плотность; ε — пористость; Y_k , W_k — мольная доля и молярная масса k-го компонента; $\dot{\omega}_k$ — скорость образования k-го компонента; h_k — удельная энтальпия k-го компонента; $\lambda_s = \lambda_{s,0} + \left[32\varepsilon\sigma d/9(1-\varepsilon)\right]T_s^3$ теплопроводность каркаса с учетом излучения [7]; $\lambda_{s,0}$ — эффективная теплопроводность пористой среды; σ — постоянная Стефана — Больцмана; d — диаметр зерна засыпки; $-\varepsilon \sum_{k=1}^K h_k \dot{\omega}_k W_k = H$ — тепловыделение в системе; $\alpha_V = [\pi \lambda_g/d^2] (2 + 1)$ $1.1 {
m Re}^{0.6} {
m Pr}^{1/3})$ — коэффициент межфазного теплообмена [9]; $Re = Gd/\mu$ — число Рейнольдса; Pr — число Прандтля; μ — динамическая вязкость газа; индексы: g — газ, s — каркас.

При выводе уравнений (1)–(3) использовали условие $u_w \ll u_g$ и стационарное приближение для газовой фазы. Смесь поступает в систему с постоянным массовым расходом $G=\varepsilon \rho_q u_q$.

Полагая, что зона реакции мала по сравнению с зоной предварительного подогрева в волне $\Phi\Gamma\Gamma$ и результирующее тепловыделение происходит «мгновенно» при достижении некоторой температуры инициирования горения $T_{g,i}$ в точке x=0, можно показать, что система (1)–(3) имеет решение в следующем безразмерном виде [8]:

$$\tau = \exp(k_1 \varsigma), \ \theta = (1 + k_1) \exp(k_1 \varsigma), \ \varsigma < 0;$$
 (4)

$$\tau = \frac{k_1(1+k_1)}{k_2(1+k_2)} \exp(k_2\varsigma) + \frac{(k_2-k_1)(1+k_1)}{k_2},$$
(5)

$$\theta = \frac{k_1(1+k_1)}{k_2} \exp(k_2\varsigma) + \frac{(k_2-k_1)(1+k_1)}{k_2},$$

$$\varsigma > 0,$$

соответствующее граничным условиям [4, 7]

$$\theta_{-\infty} = \tau_{-\infty} = 0, \quad \theta'_{\pm \infty} = \tau'_{\pm \infty} = 0,$$
 (6)

а также условиям «сшивки» в зоне реакции

$$\tau_{-0} = 1, \quad \tau_{+0} - \tau_{-0} = \varphi_2, \tag{7}$$

$$\theta_{-0} = \theta_{+0}, \quad \theta'_{-0} = \theta'_{+0}.$$
 (8)

Выше использовались безразмерные переменные и параметры [4]:

$$\varsigma = \frac{x\alpha_V}{c_{p,q}G}, \quad \tau = \frac{T_g - T_0}{\Delta T_{q,i}}, \quad \theta = \frac{T_s - T_0}{\Delta T_{q,i}}, \quad (9)$$

$$u = \frac{u_w}{u_{th}}, \quad a = \frac{(1-\varepsilon)\lambda_s \alpha_V}{(c_{p,q}G)^2}, \quad \varphi_2 = \frac{\Delta T'_{ad}}{\Delta T_{q,i}}.$$
 (10)

Здесь $u_{th}=c_{p,g}G/(1-\varepsilon)c_s\rho_s$ — скорость тепловой волны; T_{ad} и $\Delta T_{ad}=T_{ad}-T_0$ — адиабатическая температура сгорания и адиабатический разогрев смеси, а $T'_{ad}=T_{ad}(T_{g,i})$ и $\Delta T'_{ad}=T_{ad}(T_{g,i})-T_0$ — соответствующие величины с учетом предварительного подогрева в зоне реакции волны ФГГ; T_0 — температура окружающей среды; $\Delta T_{g,i}=T_{g,i}-T_0$. Величина $\Delta T'_{ad}$ всегда меньше ΔT_{ad} , что объясняется возрастающим вкладом обратных реакций в продуктах горения с ростом $T_{g,i}$.

Система уравнений (1)–(3) (без источникового члена) имеет только два различных корня характеристического полинома:

$$k_j = -\frac{1}{2} \left(1 + \frac{u}{a} \right) \pm \frac{1}{2} \left(\left(1 + \frac{u}{a} \right)^2 + 4 \frac{1 - u}{a} \right)^{0.5},$$

$$j = 1, 2, (11)$$

где $k_1 > 0$, а $k_2 < 0$.

Подставляя решения для профилей температур (4), (5) во второе условие «сшивки» (7), запишем уравнение, определяющее совместно с (11) безразмерную скорость фронта реакции u:

$$\frac{k_2 - k_1}{1 + k_2} k_1 = \frac{\Delta T'_{ad}}{\Delta T_{a,i}}.$$
 (12)

Максимальная температура каркаса в волне $T_{s,\max}$ определяется из уравнения баланса энергии [4]:

$$T_{s,\text{max}} = T_0 + \frac{\Delta T'_{ad}}{1 - u}.$$
 (13)

Подставляя решение (5) в условие $\theta_{+\infty} \equiv \Delta T_{s,\max}/\Delta T_{g,i}$, где $\Delta T_{s,\max} = T_{s,\max} - T_0$, получаем следующее соотношение между температурой инициирования горения и максимальной температурой каркаса в волне:

$$\Delta T_{g,i} = \frac{k_2}{(k_2 - k_1)(1 + k_1)} \Delta T_{s,\text{max}}.$$
 (14)

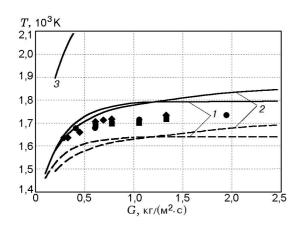


Рис. 1. Зависимость максимальной температуры каркаса от массового расхода смеси ($\Phi=4,0$): эксперимент [11]: • — d=3 мм, $\blacksquare-d=6$ мм, • — $\varnothing 5 \times 10$ мм; расчет (d=6 мм): $1-\alpha_V=10^5$ Вт/(м³·К), $2-\alpha_V(G)$ по [9], 3 — то же самое, но без учета обратных реакций; сплошные линии — $T_{s,\max}$, штриховые — $T_{q,i}$

В данной работе используется детальная схема окисления метана GRI 3.0 [10], состоящая из 325 обратимых элементарных реакций, 53 компонентов и оптимизированная в различных экспериментальных условиях.

ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

В работе [11] приведены результаты измерений максимальной температуры каркаса $T_{s,\mathrm{max}}$ в зависимости от массового расхода Gв волне ФГГ для метановоздушной смеси с коэффициентом избытка топлива $\Phi = 4.0$. Конструкция установки аналогична описанной в [4, 6, 12]. Использовалась теплоизолированная кварцевая труба длиной 0,66 м, с внутренним диаметром 41 мм, с пористой средой в виде засыпки из частиц сферической (диаметром d=3или 6 мм) и цилиндрической ($\varnothing 5 \times 10$ мм) формы, изготовленных из высокотемпературной алюмины (Al_2O_3). Измерения проводили в диапазоне расходов газа $G = 0.2 \div 2.0 \text{ кг/(м}^2 \cdot \text{c})$. В экспериментах зарегистрировано резкое замедление роста максимальной температуры каркаса при $G \ge 1.0 \div 1.2 \text{ кг/(м}^2 \cdot \text{c})$ для всех вариантов засыпок (рис. 1).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 представлены расчетные зависимости $T_{s,\max}(G)$ для смеси с $\Phi=4,0$. Для вычислений использовали следующие значения параметров (в соответствии с [11]): $\varepsilon=0,49$,

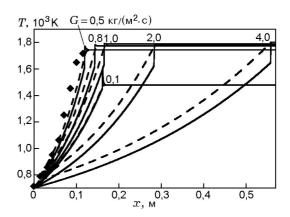


Рис. 2. Профили температур твердой и газовой фаз в волне $\Phi\Gamma\Gamma$ ($\Phi=4,0,\ \alpha_V=10^5\ {\rm Bt/(m^3\cdot K)}$):

сплошные линии — T_g , штриховые — T_s ; \spadesuit — экспериментальный профиль $T_s(x)$ для G=0.8 кг/(м²·с) [11]

 $c_s=794~\mathrm{Дж/(kr\cdot K)},~\rho_s=3,15\cdot 10^3~\mathrm{kr/m^3},~c_{p,g}=1,3\cdot 10^3~\mathrm{Дж/(kr\cdot K)},~\lambda_{s,0}=1,0~\mathrm{Bt/(m\cdot K)},~d=6~\mathrm{mm}.$ Отметим хорошее соответствие модели эксперименту. В частности, расчеты подтверждают сильное замедление роста температуры при $G\geq 1,0\div 1,2~\mathrm{kr/(m^2\cdot c)}.$ При дальнейшем увеличении G от 1 до 2,5 кг/(м²·с) температура каркаса растет очень медленно — примерно на $70\div 80~\mathrm{K}.$

Важно отметить, что пренебрежение поправкой на обратные реакции в продуктах горения (расчет с ΔT_{ad} вместо $\Delta T'_{ad}$) ведет к нереальному завышению максимальных температур каркаса в волне (ср. кривые 3 и 2 на рис. 1).

Не снижая общности полученных результатов, проведем анализ решений в предположении, что коэффициент теплообмена не зависит от расхода. Аппроксимация экспериментальных значений $T_{s,\max}=1710\div 1780$ К для $G\geq 1,0\div 1,2$ кг/(м²·с) достигается с относительной точностью не менее 3 % для значений $\alpha_V=5\cdot 10^4\div 1\cdot 10^5$ Вт/(м³·К). Из этого диапазона выбрано значение $\alpha_V=10^5$ Вт/(м³·К) (см. кривую 1 на рис. 1), при котором достигается также хорошее соответствие расчетной длины зоны предварительного подогрева $\Delta x_{g,i}$ с результатами термопарных измерений (рис. 2).

На рис. 2 представлено типичное изменение температур в волне (соответствует кривой 1 на рис. 1) при варьировании расхода газа в диапазоне $G=0.1\div 4.0~{\rm kr/(m^2\cdot c)}$. Для удобства сравнения распределения температур пока-

заны с некоторым пространственным сдвигом так, чтобы $T_s|_{x=0} \cong 700 \text{ K}.$

Поскольку температура $T_{s,\max}$ определяется нагревом каркаса газом в зоне тепловой релаксации, то характерные изменения длины этой зоны $\Delta x_{t,r}$ и разности температур газа и каркаса $T_{g,\max}-T_{s,i}=\Delta T'_{ad}-\Delta T_{s-g,i}$ (где $\Delta T_{s-g,i}=T_{s,i}-T_{g,i}$) при увеличении расхода обусловливают некоторые качественные особенности тепловой структуры волны $\Phi\Gamma\Gamma$.

Длины зон предварительного подогрева и тепловой релаксации оцениваются из (4):

$$\Delta x_{g,i} = \frac{c_{p,g}G}{\alpha_V k_1},\tag{15}$$

$$\Delta x_{t,r} = \frac{c_{p,g}G}{\alpha_V |k_2|}. (16)$$

Анализ свойств решений сводится к анализу функций $k_i(a, u)$ по (11).

При «малых» расходах газа, таких, что $a\gg 1$, корни $k_1,\ k_2$ имеют следующие пределы:

$$k_1 \cong \frac{1-u}{a}, \quad k_2 \cong -\left(1+\frac{1}{a}\right). \tag{17}$$

Используя (11), (15)–(17), можно показать, что в этом случае

$$\Delta x_{g,i} \sim \frac{\Delta T_{s,\text{max}}}{G}, \quad \Delta x_{t,r} \sim \frac{G}{\alpha},$$

$$\Delta T_{s-g,i} \sim \frac{\Delta T'_{ad}G^2}{\alpha_V},$$
(18)

т. е. зона предварительного подогрева уменьшается как 1/G, зона тепловой релаксации растет линейно с увеличением расхода, а различие между температурами газа и каркаса незначительное, но быстро нарастает как G^2 . В этих условиях происходит интенсивный нагрев каркаса газом в зоне тепловой релаксации, поэтому в данной области расходов (менее $0.3 \text{ кг/(m}^2 \cdot \text{c})$) на рис. 1, 2) наблюдается быстрое увеличение $T_{s,\text{max}}$ с ростом G.

Квадратичный рост $\Delta T_{s-g,i}$ в зависимости от G приводит к тому, что значения $T_{g,\max} - T_{s,i}$ и $\Delta x_{t,r}$ постепенно уменьшаются, замедляя увеличение $T_{s,\max}$ с ростом G. Как показывают расчеты, в области расхода \tilde{G} , определяемого из условия

$$a \cong 1,$$
 (19)

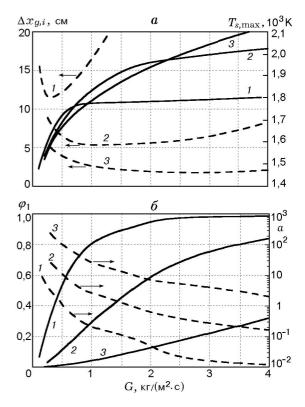


Рис. 3. Зависимости величин $\Delta x_{g,i}$, $T_{s,\max}$ (a) и параметров φ_1 , a (b) от расхода газа: α_V , $\mathrm{Br}/(\mathrm{M}^3\cdot\mathrm{K})$: $1-10^5$, $2-10^6$, $3-10^7$

на зависимости $\Delta x_{g,i}(G)$ имеется точка минимума ($\tilde{G}\cong 0,4$ кг/(м $^2\cdot$ с) на рис. 3,a). Наблюдается характерный «реверс» хода михельсоновских профилей: если при $G<\tilde{G}$ зона $\Delta x_{g,i}$ убывает с ростом G, то при $G>\tilde{G}$, наоборот, увеличивается. Соотношение (19) дает зависимость $\tilde{G}\sim \alpha_V^{0,5}$, что подтверждается расчетами (см. таблицу).

При «больших» расходах газа, когда $a\ll 1$, корни $k_1,\ k_2$ имеют пределы

$$k_1 \cong \frac{1-u}{u}, \quad k_2 \cong -\frac{u}{a} - \frac{1}{u}. \tag{20}$$

Используя соотношения (11), (15), (16) и (20), можно показать, что

$\alpha_V, \mathrm{Bt/(M^3 \cdot K)}$	\tilde{G} , kg/(m ² ·c)	
	$\Phi = 4$	$\Phi = 1$
10^{5}	0,3	0,4
10 ⁶	1,2	1,6
10 ⁷	4,0	_

$$\Delta x_{g,i} \sim \frac{c_{p,g}G}{\alpha_V \Delta T'_{ad}}, \quad \Delta x_{t,r} \sim \frac{1}{G},$$
$$\Delta T_{s-q,i} \cong \Delta T'_{ad}. \tag{21}$$

В данной области параметров увеличение расхода приводит к тому, что «скачок» температуры газа на величину $\Delta T'_{ad}$ сравнивается с разницей температур $T_{s,i}-T_{g,i}$ в точке инициирования горения. В результате происходят «исчезновение» зоны тепловой релаксации ($\Delta x_{t,r} \to 0$) и выравнивание максимальных температур газа и каркаса ($T_{g,\max}-T_{s,\max}\to 0$). Как следствие, блокируется дальнейший нагрев каркаса; в результате резко замедляется рост зависимости $T_{s,\max}(G)$, а зона предварительного подогрева $\Delta x_{g,i}$ в волне значительно растягивается (см. область $G \geq 1,0 \div 1,2$ кг/($\mathbf{M}^2 \cdot \mathbf{c}$) на рис. 1,2).

Классификация по параметру $arphi_1$

Особенности тепловой структуры волны в зависимости от расхода газа удобно характеризовать критерием температурной гетерогенности φ_1 :

$$\varphi_1 \equiv \frac{\Delta T_{s-g,i}}{\Delta T'_{s,d}},\tag{22}$$

или согласно (4), (10)

$$\varphi_1 = k_1 \frac{\Delta T_{g,i}}{\Delta T'_{ad}} = \frac{k_1}{\varphi_2}.$$
 (23)

При $\varphi_1 \to 0$ и $a \gg 1$ задача является существенно однотемпературной, а при $\varphi_1 \to 1$ и $a \ll 1$ системе свойственна максимальная температурная гетерогенность.

Естественным образом возникает следующая классификация областей параметров волны (по данным рис. 1, 2) в зависимости от значения φ_1 . «Нормальная» область ($\varphi < 0.3, \varphi_1 \cong$ $1/a,\ a\gg 1)$ характеризуется быстрым (квадратичным) ростом зависимости $T_{s,\max}(G)$ и уменьшением зоны предварительного подогрева $\Delta x_{g,i}$ с ростом G. «Переходная» область $(0.3 < \varphi_1 < 0.7, a \approx 1)$ соответствует сниженному (слабее, чем $\sim G^2$) приросту температуры $T_{s,\max}$ и увеличению роста зависимости $\Delta x_{q,i}(G)$. «Предельная» область $(0,7 \le \varphi_1 < 1,$ $\varphi_1 \xrightarrow{\cdot} 1, \ a \ll 1$) характеризуется резким замедлением роста зависимости $T_{s,\max}(G)$ и сильным увеличением зоны $\Delta x_{g,i}$ с ростом G. Подробное обсуждение физического смысла «предельной» области приведено ниже.

На рис. З представлены расчетные зависимости $T_{s,\max}(G)$, $\Delta x_{g,i}(G)$, $\varphi_1(G)$ и a(G) для состава с $\Phi=4,0$ и коэффициентов межфазного теплообмена $\alpha_V=10^5,\,10^6$ и $10^7~{\rm BT/(m^3\cdot K)}$. Из сравнения данных на рис. 3,a и $3,\delta$ видно, что критерий гетерогенности φ_1 является удобным «индикатором» состояния системы. Последнее же сильно зависит от значения α_V : например, для $G\cong 2~{\rm kr/(m^2\cdot c)}$ система находится в «предельной» области при $\alpha_V=10^5~{\rm BT/(m^3\cdot K)}$, в «переходной» для $\alpha_V=10^6~{\rm BT/(m^3\cdot K)}$, и «нормальной» области параметров для $\alpha_V=10^7~{\rm BT/(m^3\cdot K)}$.

Автомодельность решения для волны ФГГ при $arphi_1 o 1$

В данном случае «исчезновение» зоны тепловой релаксации и сравнивание максимальных температур газа и каркаса в волне приводят к характерной перестройке температурных профилей, которые имеют специфический автомодельный вид. При $\alpha_V \cong \text{const}$ в «предельной» области параметров максимальная температура в волне практически не меняется с ростом расхода: $T_{s,\max}(G) \cong \text{const}$. Из балансового соотношения (13) следует, что и безразмерная скорость фронта будет практически постоянной: $u(G) \cong \text{const}$. Используя (10), (13), (14) и (20), можно показать, что в этом случае в волне имеют место соотношения

$$\Delta T_{g,i} \cong u \, \Delta T_{s,\text{max}}, \quad u \cong 1/(1+\varphi_2). \quad (24)$$

Следуя общей процедуре решения системы (1)–(3), перепишем уравнения, определяющие $T_{g,i}$, с учетом (9) в безразмерных пространственных координатах:

$$\frac{dY_k}{d\zeta} = \varepsilon \frac{c_{p,g}}{\alpha} \,\omega_k(T_g(\zeta), Y_k),\tag{25}$$

где $T_g(\zeta) = T_0 + (T_{01} - T_0) \exp(k_1, \zeta)$, а $T_{01} \leq 700~\mathrm{K}$ — температура, достаточно низкая для того, чтобы тепловыделением и изменением состава смеси в системе можно было пренебречь. Так как согласно (20) в этом случае $k_1 \cong (1-u)/u \cong \mathrm{const}$, то уравнения (25) не зависят от G. Обратный переход к пространственной координате x по (9) показывает, что длина зоны предварительного подогрева в волне при этом линейно зависит от расхода газа (см. рис. 2 и формулу (21)).

Отметим, что условие $u \cong \text{const}$ (см. (10)), в «предельной» области приводит также и к

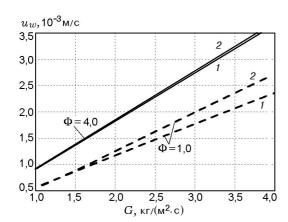


Рис. 4. Зависимость скорости фронта волны от расхода газа:

$$\alpha_V$$
, Bt/(m³·K): 1 — 10⁵, 2 — 10⁶

линейной зависимости скорости фронта реакции u_w от расхода: $u_w = u \cdot u_{th} \sim G$, что подтверждается результатами численных расчетов (рис. 4). Таким образом, можно ожидать, что характерная для экспериментов с волнами в режиме низких скоростей U-образная зависимость $u_w(G)$ [3] со стороны «больших» расходов будет заканчиваться участком, близким к линейному.

АНАЛИТИЧЕСКИЕ РЕШЕНИЯ ПРИ $arphi_1 \ll 1$ И $arphi_1 o 1$

Упростим кинетическую схему переходом в (1) и (3) к одностадийной реакции аррениусовского типа. В этом случае тепловыделение примет вид [4, 7]:

$$H = \varepsilon \, c_{p,g} \Delta T'_{ad} \, \rho_g K A \exp\left(-\frac{E}{RT_g}\right). \quad (26)$$

Здесь E — энергия активации, R — универсальная газовая постоянная, K — предэкспоненциальный множитель, A — безразмерная концентрация лимитирующего реагента.

Будем считать, что горение инициируется в момент, когда ход михельсоновского профиля в газовой фазе начинает заметно искажаться вследствие тепловыделения. Учитывая, что для распределений температуры (4) в зоне предварительного подогрева волны в отсутствие тепловыделения характерно неравенство $dT_g/dx < dT_s/dx$, определим $T_{g,i}$, используя условие

$$\frac{dT_g}{dx} = \frac{dT_s}{dx}. (27)$$

Подставляя (1), (2) с H из (26) в (27) и пренебрегая потреблением лимитирующего компонента, так что $A\cong 1$, получим уравнение для определения $T_{q,i}$:

$$\frac{\Delta T'_{ad}}{\Delta T_{q,i}} \frac{\varepsilon c_{p,g} \rho_g K}{\alpha_V} \exp\left(-\frac{E}{R T_{q,i}}\right) = k_1^2.$$
 (28)

В общем случае решение для волны горения получается неявно, путем совместного решения нелинейных уравнений (12) и (28). Однако в «нормальной» и «предельной» областях данная система уравнений имеет приближенные аналитические решения в явном виде. Действительно, при $\varphi_1 \ll 1$ и $\varphi_1 \to 1$ выражение (28) с помощью (20) и уравнения состояния газа $\rho_g T_g = \rho_{g,0} T_0$ приводится к следующим явным решениям:

$$T_{g,i} \cong E/R \ln \frac{\varepsilon c_{p,g} \rho_{g,0} T_0 K a^y}{\alpha_V \Delta T'_{g,d}},$$
 (29)

где y=2 для «нормальной» и y=0 для «предельной» области.

Максимальная температура каркаса при $\varphi_1 \ll 1$ и $\varphi_1 \to 1$ определяется с помощью соотношений (14), (17) и (20) соответственно как

$$T_{s,\max} \cong T_{g,i}, \quad T_{s,\max} \cong T_{g,i} + \Delta T'_{ad}.$$
 (30)

Решения (29), (30) с учетом определения (10), по которому $a \sim \alpha_V$, дают монотонно падающую зависимость $T_{s,\max}(\alpha_V)$ в «нормальной» области в отличие от монотонно растущей зависимости в «предельной» области, что согласуется с численными расчетами (см. рис. 3,a).

ВЛИЯНИЕ СОСТАВА СМЕСИ

Решение исходной системы уравнений (1)—(3) с граничными условиями (6)—(8) и одностадийной кинетикой аррениусовского типа первого порядка зависит только от четырех независимых безразмерных параметров ψ_1 , ψ_2 , ψ_3 и a, где

$$\psi_1 = \frac{\alpha_V}{\varepsilon c_{p,g} \rho_{g,0} K}, \ \psi_2 = \frac{E}{RT_0}, \ \psi_3 = \frac{\Delta T'_{ad}}{T_0}.$$
 (31)

Безразмерные функции φ_1 , φ_2 выражаются через эти параметры в соответствии с определениями:

$$\varphi_1 = \frac{k_1}{\varphi_2}, \quad \varphi_2 = \frac{\psi_3}{\varphi_3 - 1}, \tag{32}$$

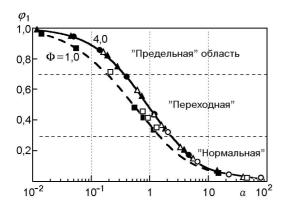


Рис. 5. Зависимость критерия φ_1 от безразмерного параметра a для различных составов смеси:

■, ▲ —
$$\alpha_V = 10^5 \text{ BT/(M}^3 \cdot \text{K}); \Box, \Delta - \alpha_V = 10^6 \text{ BT/(M}^3 \cdot \text{K}); \bullet - \alpha_V \text{ no [9]}; \circ - \alpha_V = 10^7 \text{ BT/(M}^3 \cdot \text{K})$$

а функция $\varphi_3 = T_{g,i}/T_0$ — неявно, путем совместного решения уравнений (12) и (28). В частности, решение (29) в безразмерном виде перепишется как

$$\varphi_3 = -\frac{\psi_2}{\ln(\psi_1 \psi_3 a^{-y})}. (33)$$

Найдем функциональную связь критерия φ_1 с основными параметрами системы в пределе $\varphi_1 \to 1$. Используя разложение $k_1 \cong \frac{1-u}{u} - \frac{1-u}{u^3} \, a + O(a^2)$, из (23), (24) получаем

$$\varphi_1 \cong 1 - \frac{a}{u^2}$$
 или (по (24)) $\varphi_1 \cong 1 - a(1 + \varphi_2)^2$. (34)

Соотношение (34) с помощью следующей оценки параметров по порядку величины для метановоздушных составов:

$$a = O(10^{-1} \div 10^{-2}), \quad \psi_1 = O(10^{-3} \div 10^{-4}),$$

 $\psi_2 = O(10^2), \quad \psi_3 = O(1)$
(35)

— дает искомую функциональную зависимость $\varphi_1(a, \psi_1, \psi_2, \psi_3)$ в «предельной» области:

$$\varphi_1 \cong 1 - a\left(1 - \frac{2\psi_3}{\psi_2} \ln(\psi_1\psi_3)\right). \tag{36}$$

На рис. 5 представлена фазовая диаграмма $\varphi_1(a)$, в которую включены результаты расчетов для разных значений α_V (в том числе с нелинейными зависимостями $\alpha_V(G)$ по [9]).

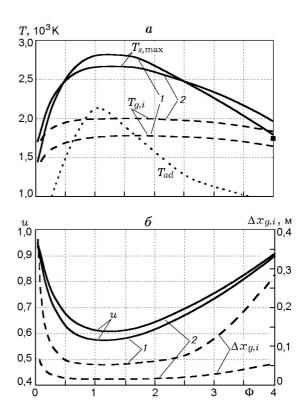


Рис. 6. Зависимости макрохарактеристик волны ФГГ от состава смеси для различных коэффициентов теплообмена:

$$\alpha_V$$
, Вт/(м 3 ·К): 1 — 10^5 , 2 — 10^6 ; ■ — эксперимент [11]

Данные всех расчетов для состава с $\Phi = 4.0$ с точностью не менее 0.5~% ложатся на кривую

$$\varphi_1(a) \cong 0.5(\exp(-2.2 \, a) + \exp(-0.15 \, a)).$$
 (37)

Для смеси с $\Phi = 1,0$ зависимость $\varphi_1(a)$ аналогичная (по данным с $\alpha_V = 10^5 \text{ BT/(M}^3 \cdot \text{K})$):

$$\varphi_1(a) \cong 0.5(\exp(-4.5 a) + \exp(-0.28 a)).$$
 (38)

Небольшой разброс точек для $\Phi=1,0$ обусловлен заметной зависимостью $\lambda_s(T_s)$. Из рис. 5 видно, что расчеты подтверждают сильную зависимость φ_1 от a по (36) и гораздо более слабую — от ψ_i , а также сдвиг кривой $\varphi_1(a)$ влево при увеличении калорийности смеси (параметра ψ_3). При этом кривые для $\Phi=4,0$ и 1,0 определяют границы состояний системы в том смысле, что результаты расчетов для всех других значений составов с $\Phi=0,1\div 4,0$ не выходят за эти пределы для всех значений α_V . Соответствующие оценки для $\varphi_1(a)$ в зависимости от Φ можно получить интерполяцией функций (37), (38).

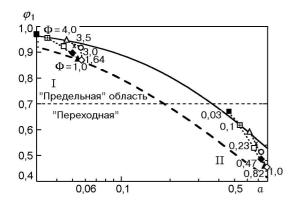


Рис. 7. Зависимость критерия φ_1 от безразмерного параметра a для различных составов смеси: $G = 2 \text{ кг/(м}^2 \cdot \text{c}); \alpha_V, \text{Вт/(м}^3 \cdot \text{K}): \text{I} — 10^5, \text{II} — 10^6$

Отметим, что все основные качественные результаты, полученные выше на примере смеси с $\Phi = 4.0$, справедливы и для других составов. Результаты расчетов зависимостей $T_{s,\max}$, $T_{g,i}$, u и $\Delta x_{g,i}$ в волне ФГГ ($G=2,0~{\rm kr/(m^2\cdot c)}$) от состава смесей ($\Phi=0.03\div$ 4,0) приведены на рис. 6. Соответствующая этим данным диаграмма $\varphi_1(a)$ представлена на рис. 7, из которого видно, что результаты для $\alpha_V = 10^5 \; {\rm Br/(m^3 \cdot K)} \; {\rm cootsetct}$ «предельной» области, а для $\alpha_V = 10^6 \ \mathrm{Br/(m^3 \cdot K)}$ — «переходной». Учитывая термостойкость типичных керамических материалов ($T \le 2000 \div$ 2300 К), отметим, что для наблюдения волн ФГГ в «предельной» области необходимы низкокалорийные составы ($\Phi \leq 0.4$ или $\Phi \geq 3.0$, рис. 6,a).

Подчеркием тот нетривиальный факт, что значение критерия φ_1 изменяется незначительно (рис. 7), в то время как макрохарактеристики волны ФГГ (максимальная температура каркаса и скорость фронта волны) сильно варьируются при увеличении теплосодержания смеси (см. рис. 6). Из соотношений (24) и (32), (33) получаем выражение, определяющее безразмерную скорость фронта u при $\varphi_1 \to 1$:

$$u \cong 1 + \frac{\psi_3}{\psi_2} \ln(\psi_1 \psi_3). \tag{39}$$

Из (39) следует сильное (более, чем линейное) уменьшение скорости u и (см. формулу (21)) зоны предварительного подогрева $\Delta x_{g,i}$ с ростом $\Delta T'_{ad}$, что согласуется с расчетами (см. рис. $6,\delta$). Из рис. 6,a видно, что в отличие от $T_{s,\max}$ температура $T_{g,i}$ меняется относитель-

но слабо (логарифмически) при варьировании состава смеси (ср. (29) и (30)).

Сильная зависимость $\varphi_1(a)$ (см. (36)) позволяет переносить результаты параметрического анализа, например, для «предельной» области на другие состояния системы. Из рис. 7 видно, что увеличение α_V от 10^5 до 10^6 Вт/(м³·К) (меняющее значения a в ≈ 10 раз) приводит с небольшими искажениями к параллельному переносу данных по Φ из «предельной» области в «переходную». Данное свойство системы можно использовать для аппроксимации решения в «переходной» области, где прямой анализ нелинейной зависимости $k_1(a,u)$ затруднен, путем интерполяции по φ_1 с

$$y = 2(1 - \varphi_1) \tag{40}$$

явных выражений (29), (30), полученных для «нормальной» и «предельной» областей. Таким образом, формулы (29), (30) (с учетом (40)) и (37), (38) позволяют оценить решение в «переходной» области в явном виде. Точность такой аппроксимации повышается по мере приближения к значению $a \cong 1$, что обусловлено тем, что точка перегиба зависимости $\varphi_1(a)$ находится вблизи данной точки и, таким образом, центральная часть «переходной» области хорошо передается линейной зависимостью $\varphi_1 \sim a$ (см. рис. 5).

Важным результатом проведенного выше анализа является вывод о том, что «состояния» системы, задаваемые критерием φ_1 , очень слабо зависят от кинетических свойств смеси. Следовательно, и эффект резкого замедления роста зависимости $T_{s,\max}(G)$ в «предельной» области имеет существенно термодинамическую природу.

ОЦЕНКА КИНЕТИЧЕСКИХ КОЭФФИЦИЕНТОВ

Зависимость $\ln(\Delta T'_{ad})$ от $1/T_{g,i}$, построенная по (29), даст эффективное значение энергии активации E. На рис. 8 представлен такой график, где использованы результаты расчетов с $\Phi=0.03\div 4.0$ при $\alpha_V=10^5~{\rm Br/(m^3\cdot K)}$ и $G=2.0~{\rm kr/(m^2\cdot c)}$. Зависимость имеет характерную «мысообразную» форму с двумя отчетливыми разными наклонами, соответствующими ультрабедным ($\Phi\le 0.4$) и ультрабогатым ($\Phi\ge 2.0$) составам. Таким образом, для метановоздушных смесей получаются следующие оценки энергии активации:

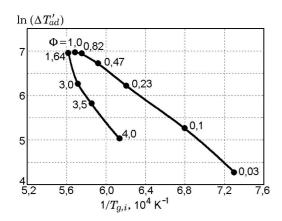


Рис. 8. Зависимость $\ln(\Delta T'_{ad})$ от $1/T_{g,i}$ ($\alpha_V = 10^5~{\rm Bt/(m^3 \cdot K)})$

$$E/R \cong (1.7 \pm 0.15) \cdot 10^4 \text{ K} \quad (\Phi \le 0.4),$$

 $E/R \cong (2.8 \pm 0.1) \cdot 10^4 \text{ K} \quad (\Phi \ge 2.0).$ (41)

Наименьшая величина E из (41) для бедных составов близка к оценке в [13], где на основе аппроксимации результатов измерения скорости горения ламинарного метановоздушного пламени ($\Phi = 0.5 \div 1.0$) в свободном пространстве приведены следующие значения кинетических коэффициентов:

$$E/R \cong 1,564 \cdot 10^4 \text{ K}, \quad K \cong 2,6 \cdot 10^8 \text{ c}^{-1}.$$
 (42)

Аналогичные данные для ультрабогатых составов в литературе отсутствуют.

Для определения предэкспоненциального множителя выбирали наиболее низкие значения E из (41), а величину K оценивали аппроксимацией (с точностью не менее 1 %) расчетных значений $T_{s,\max}$ путем совместного решения уравнений (12), (29), (30). В результате получены следующие значения кинетических коэффициентов:

$$E_l/R \cong 1.564 \cdot 10^4 \text{ K}, \quad K_l \cong 2.0 \cdot 10^6 \text{ c}^{-1} \quad (43)$$
 для ультрабедных смесей $(0.1 \leq \Phi \leq 0.47)$ и

$$E_r/R \cong 2.7 \cdot 10^4 \text{ K}, \quad K_r \cong 5.8 \cdot 10^8 \text{ c}^{-1}$$
 (44)
для ультрабогатых (2.0 $< \Phi < 4.0$).

В [14, 15] показано, что снижение генерации основных радикалов в зоне реакции волны $\Phi\Gamma\Gamma$ ультрабогатых составов обусловливает более высокие значения $T_{s,\max}$ [6] по сравнению с ультрабедными смесями той же калорийности и является причиной того, что всегда выполняется неравенство $E_r > E_l$ (ср. (44) и (43)).

ПРЕДЕЛЬНАЯ ЭФФЕКТИВНОСТЬ ТЕПЛОВОГО РЕКУПЕРАТИВНОГО ЦИКЛА ВОЛНЫ ФГГ

Выясним физический смысл полученных выше решений. Известно, что «спутные» волны ФГГ характеризуются конвективно-кондуктивным тепловым рекуперативным циклом с конвективным потоком, обусловленным движением твердой фазы относительно реакционного фронта волны [3, 16]. Рассмотрим изменение эффективности рекуперативного цикла в волне по мере увеличения расхода газа. Следуя [16], под эффективностью будем понимать перепад температур:

$$\Delta T \equiv T_{a,\text{max}} - T_{ad},\tag{45}$$

который, ввиду сильной зависимости скоростей реакций от температуры, определяет «производительность» рекуперативного цикла. Определение (45) можно переписать в эквивалентном виде:

$$\Delta T = \Delta T_1 - \Delta T_2, \quad \Delta T_1 \equiv \Delta T_{g,i},$$

$$\Delta T_2 \equiv \Delta T_{ad} - \Delta T'_{ad}.$$
 (46)

Из (46) видно, что учет обратных реакций в продуктах горения снижает эффективность рекуперативного цикла волны, что в явном виде выражается слагаемым ΔT_2 , а также зависимостью ΔT_1 от $\Delta T'_{ad}$, так как в соответствии с (29)

$$\Delta T_1 = \Delta T_{g,i} \cong E / R \ln \frac{\varepsilon c_{p,g} \rho_{g,0} T_0 K a^y}{\alpha_V \Delta T'_{ad}} - T_0. \tag{47}$$

Из выражения (47) видно, что по мере увеличения расхода и, соответственно, при переходе системы из «нормальной» в «предельную» область эффективность теплового рекуперативного цикла волны монотонно растет, достигая максимального значения ΔT_1^* при $\varphi_1 \to 1$ (y=0):

$$\Delta T_1^* = E / R \ln \frac{\varepsilon c_{p,g} \rho_{g,0} T_0 K}{\alpha_V \Delta T_{ad}'} - T_0.$$
 (48)

Зависимость (48) представляет собой функционал, медленно меняющийся с ростом G согласно зависимости $\alpha_V(G) \sim G^m$, где $m \cong 0,4 \div 0,6$ [9, 17]. Действительно, из (48) следует, что прирост эффективности рекуперативного цикла $\delta \Delta T_1/\delta G$ с ростом G равен

$$\frac{\delta \Delta T_1}{\delta G} = \frac{R\Delta T_1^2}{E} \frac{m}{G} \tag{49}$$

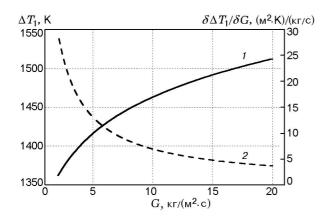


Рис. 9. Зависимость предельной эффективности теплового рекуперативного цикла в волне $\Phi\Gamma\Gamma$ от расхода газа ($\Phi=4,0$):

$$1 - \Delta T_1$$
, $2 - \delta \Delta T_1/\delta G$

и быстро спадает по закону 1/G в области «больших» $(a\ll 1)$ расходов (рис. 9). Таким образом, функционал (48) описывает максимальное асимптотическое значение ΔT_1^* , к которому стремится эффективность теплового рекуперативного цикла волны $\Phi\Gamma\Gamma$ по мере увеличения расхода газа.

Из выражений (48), (49) следует, что чем меньше коэффициент теплообмена α_V и/или показателя m в зависимости $\alpha_V(G) \sim G^m$, тем для меньших расходов (примерно, как $\sqrt{\alpha_V}$) достигается «предельная» область, и в этой области максимальная температура каркаса ближе к постоянному (независимому от расхода) значению. Одним из способов приближения к таким свойствам системы является, например, формирование пористой среды из каналовкапилляров.

Еще раз подчеркием, что непосредственной физической причиной («механизмом») существования «предельной» области являются постепенное «исчезновение» зоны тепловой релаксации в волне и выравнивание максимальных температур газа и каркаса в результате перестройки тепловой структуры волны с ростом G, при которой «скачок» температуры в газовой фазе в результате тепловыделения сравнивается с разницей между температурами газа и каркаса в точке инициирования горения (условие $\varphi_1 \to 1$). В этой ситуации для удержания стабильного горения в возрастающем потоке газа система вынуждена максимально поднимать температуру в зоне предварительного подогрева (по контрасту с быстрым подъемом $T_{q,\max}$ с ростом G в «нормальной» области), что приводит к сильному пространственному растяжению этой зоны.

Ввиду особой важности для практики режимов с большими массовыми скоростями горения и малой калорийностью (величиной $\Delta T'_{ad}$) смесей, например, в целях очистки отходящих газов от органических примесей [18] или конверсии топлив (производство синтез-газа [11, 12]), рассмотрим способы увеличения производительности таких процессов на основе ФГГ. Есть две основные возможности: обеспечить функционирование системы в «предельной» области (например, увеличив расход газа, см. (47)); увеличить предельную эффективность теплового рекуперативного цикла. В соответствии с (48) последнее достигается (в отсутствие выраженных каталитических эффектов) увеличением коэффициента теплообмена α_V (уменьшая, например, средний размер пор в каркасе [17]), а также таким изменением кинетических свойств смеси, при котором возрастает энергия активации (как, например, при переходе от ультрабедных составов к ультрабогатым) и/или уменьшается предэкспоненциальный множитель.

Возрастание роли каталитических свойств поверхности пористой среды при уменьшении внутрипорового диаметра каркаса может приводить (при прочих равных условиях) к снижению температур $T_{g,i}$ и $T_{s,\max}$ и, соответственно, характеризоваться меньшим значением энергии активации. Из (47), (48) видно, что при этом эффективность рекуперативного цикла в волне $\Phi\Gamma\Gamma$ также снижается.

На практике «сопротивление» системы наращиванию температуры в «предельной» области проявляется и в наклонной неустойчивости фронта, вероятность возникновения которой значительно возрастает в «спутных» режимах волн ФГГ по мере увеличения расхода газа [19].

Рассмотренные выше ограничения эффективности теплового рекуперативного цикла в волне ФГГ имеют место и для «гибридного» (частично каталитического) фильтрационного горения [20], горения с присутствием жидкой фазы в реагентах и т. д. Единственным условием применимости полученных результатов, по-видимому, является требование того, чтобы тепловыделение в системе в основном происходило в газофазных реакциях.

Подчеркием актуальность основных выво-

дов и для более широкого класса систем с внешними теплообменниками (типа «swiss-roll» и др. [21]), принимая во внимание прямую аналогию основных протекающих в них процессов (межфазного теплообмена, обратных реакций в продуктах горения и т. п.) с условиями $\Phi\Gamma\Gamma$, а также ввиду подобия зависимостей $\Phi_{\min}(G)$ для ультрабедных смесей в этих случаях (ср. [21] и [18]).

ЛИТЕРАТУРА

- 1. Wienberg F. J. Combustion temperature: The future? // Nature. 1971. V. 233. P. 239–241.
- 2. **Takeno T., Sato K.** An analytical study on excess enthalpy flames // Combust. Sci. Technol. 1979. V. 20. P. 73.
- 3. Babkin V. S. Filtrational combustion: present state of affaires and prospects // Pure Appl. Chem. 1993. V. 65. P. 335–344.
- 4. Zhdanok S. A., Kennedy L. A., Koester G. Superadiabatic combustion of methane air mixtures under filtration in a packed bed // Combust. Flame. 1995. V. 100. P. 221–231.
- Hsu P. F., Matthews R. D. The necessity of using detailed kinetics in models for premixed combustion within porous media // Combust. Flame. 1993. V. 93. P. 457–466.
- Kennedy L. A., Binque J. P., Saveliev A. V., et al. Chemical structures of methane-air filtration combustion waves for fuel-lean and fuel rich conditions // 28th Intern. Symp. on Combustion. Pittsburgh, PA, 2000. P. 26.
- Foutko S. I., Shabunya S. I., Zhdanok S. A., Kennedy L. A. Superadiabatic combustion wave in a diluted methane-air mixture under filtration in a packed bed // 26th (Intern.) Symp. on Combustion. Pittsburgh, PA, 1997. P. 3377–3382.
- 8. **Бабкин В. С., Дробышевич В. И., Лаевский Ю. М., Потытняков С. И.** Фильтрационное горение газов // Физика горения и взрыва. 1983. Т. 19, № 2. С. 17–26.
- 9. Wakao N., Kaguei S., Funazkri T. Effect of fluid dispersion coefficients on particle-tofluid heat transfer coefficients in packed beds. Correlation of Nusselt numbers // Chem. Eng. Sci. 1979. V. 34. P. 325–336.
- 10. Smith G. P., Golden D. M., Frenklach M., et al. GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/

11. Гаврилюк В. В., Дмитренко Ю. М., Жданок С. А. и др. Исследование процесса конверсии метана в водород в режиме одиночной волны фильтрационного горения // IV Минский Междунар. форум. Минск, 2000. Т. 5. С. 43–49.

- 12. Kennedy L. A., Fridman A. A., Saveliev A. V. Superadiabatic combustion in porous media: wave propagation, instabilities, new type of chemical reactor // Intern. J. Fluid Mech. Res. 1995. V. 2. P. 1–27.
- Yoshizawa Y., Echigo R., Sasaki K. Analytical study on the structure of radiation controlled flame // Intern. J. Heat Mass Transfer. 1988. V. 31. P. 311–319.
- 14. **Футько С. И.** Химическая структура волн фильтрационного горения газов в инертных пористых средах. Ч. 1. Ультраобедненные метановоздушные составы. Минск, 2002. (Препр. / НАНБ. ИТМО, № 1.)
- 15. **Футько С. И.** Химическая структура волн фильтрационного горения газов в инертных пористых средах. Ч. 2. Ультраобогащенные метановоздушные составы. Минск, 2002. (Препр. / НАНБ. ИТМО, № 2.)
- 16. **Лаевский Ю. М.**, **Бабкин В. С.** Фильтрационное горение газов // Распространение тепловых волн в гетерогенных средах. Новосибирск: Наука, 1988. С. 118–120.
- 17. Younis L. B., Viskanta R. Experimental determination of the volumetric heat transfer coefficient between stream of the air and ceramic foam // Intern. J. Heat Mass Transfer. 1993. V. 36, N 6. P. 1425–1434.
- 18. Hoffman J. G., Echigo R., Yoshida H., Tada S. Experimental study on combustion in a porous media with a reciprocating flow system // Combust. Flame. 1997. V. 111. P. 32–46.
- 19. Минаев С. С., Потытняков С. И., Бабкин В. С. О неустойчивости фронта пламени при фильтрационном горении газов // Физика горения и взрыва. 1994. Т. 30, № 3. С. 49–54.
- 20. **Бабкин В. С., Баранник Г. Б., Измаги- лов З. Р. и др.** Гибридная волна фильтрационного горения газов // Докл. АН СССР. 1989. Т. 304. С. 630–633.
- Advanced Combustion Methods / F. J. Wienberg (Ed.) London: Academic Press Inc., 1986.
 P. 183.

Поступила в редакцию 14/VII~2000~г., в окончательном варианте — 17/VII~2002~г.