УДК 531.66, 538.89

ПРОБИТИЕ ЛЕДЯНЫХ ПРЕГРАД КОНЕЧНОЙ ТОЛЩИНЫ СТАЛЬНЫМИ УДАРНИКАМИ

Е. И. Краус*, А. Ю. Мельников*, В. М. Фомин*,**, И. И. Шабалин*

* Институт теоретической и прикладной механики им. С. А. Христиановича СО РАН, 630090 Новосибирск, Россия

** Новосибирский национальный исследовательский государственный университет, 630090 Новосибирск, Россия

E-mails: Kraus@itam.nsc.ru, akcil@mail.ru, Fomin@itam.nsc.ru, Shabalin@itam.nsc.ru

Разработана и изготовлена одноступенчатая газовая установка, позволяющая ускорять тела массой 0,5 кг до скоростей порядка 1200 м/с. Проведены эксперименты по метанию стальных ударников в массивную ледяную мишень. Выполнено сравнение экспериментальных данных с результатами расчетов, полученными с использованием комплекса программ Reactor, а также результатов численного расчета процесса разрушения ледяной преграды конечной толщины при ударе одиночного ударника и нескольких ударников. Показано, что удар стальным кольцом по ледяной преграде конечной толщины приводит к выбиванию максимального объема льда и к практически полной потере кинетической энергии кольца.

Ключевые слова: лед, ударная адиабата, моделирование, разрушение.

DOI: 10.15372/PMTF20190315

Исследование динамических свойств льда показывает, что моделирование его поведения в широком диапазоне скоростей нагружения является очень сложной задачей [1–4]. В работе [3] приведены ударные адиабаты льда для различных диапазонов массовых скоростей, возникающих за фронтом ударной волны. С учетом данных [3] полагаем, что при массовых скоростях 200 ÷ 1000 м/с лед за фронтом ударной волны представляет собой смесь различных твердых фаз. Это предположение подтверждают результаты экспериментальных исследований, выполненных в работе [5], в которой построена кривая объемной сжимаемости льда, имеющая характерное плато в диапазоне $0,15 < \Delta V/V < 0,45$. Однако в расчетах лед моделировался сплошной средой без фазовых переходов с осредненными физико-механическими характеристиками [5–8]. Значения прочностных параметров, приведенные в работах [6–9], изменяются в пределах одного порядка. В данной работе используются значения прочностных параметров, близкие к приведенным в работе [9].

Целями настоящей работы являются проверка параметров модели льда по экспериментальным данным и проведение сравнения результатов моделирования разрушения ледяной преграды конечной толщины при ударе одиночного ударника и нескольких ударников.

В Институте теоретической и прикладной механики (ИТПМ) СО РАН разработана и изготовлена одноступенчатая газовая установка, позволяющая ускорять тела массой 0,5 кг

Работа выполнена в рамках Программы фундаментальных научных исследований государственных академий наук на 2013–2020 гг. (код проекта АААА-А17-117030610136-3).

[©] Краус Е. И., Мельников А. Ю., Фомин В. М., Шабалин И. И., 2019

Рис. 1. Схема баллистической установки: 1 — ресивер, 2 — поддон с метаемым телом, 3 — баллистический ствол, 4 — отсекатель и рамки-мишени, 5 — мишень

до скоростей 1200 м/с при длине ствола 20 м и диаметре 0,05 м. На рис. 1 представлена схема установки, состоящей из ресивера объемом 0,1 м³ и баллистического ствола со специальным устройством, удерживающим поддон с ударником. За отсекателем, который отделяет поддон от метаемого тела, устанавливаются рамы мишени, что позволяет регистрировать скорость движения метаемого тела. Сигнал, поступающий с рамки-мишени, считывался высокоскоростным аналого-цифровым преобразователем NI-PCI-6255 с частотой дискретизации 500 кГц, что позволяет измерять скорость с точностью до 0,2 %.

Для верификации физико-механических параметров модели льда проведен ряд экспериментов по ударному нагружению массивных ледяных мишеней стальными бойками в форме цилиндра со следующими параметрами: диаметр $d_6 = 1,5$ см, высота $h_6 = 1,5$ см, масса $m_6 \approx 20$ г. Для приготовления ледяных мишеней (диаметр $d_{\rm M} = 26,2$ см, высота $h_{\rm M} = 35,0$ см) пресная вода заливалась в пластиковые емкости и замораживалась при температуре -23 °C. В результате экспериментов по прониканию стальных ударников в ледяную преграду определена глубина кратера, составившая L = 11,0; 11,5; 10,5 см при скорости соударения U = 191, 275, 285 м/с соответственно.

Для моделирования процесса формирования кратера в ледяных мишенях использовался разработанный в ИТПМ СО РАН программный комплекс Reactor [10, 11], который прошел успешную апробацию при решении динамических задач деформирования и разрушения твердых тел. Математическая модель среды основана на лагранжевом подходе и включает следующие уравнения [12]:

— уравнения траектории движения материальных частиц

 $\dot{x}_i = u_i;$

— уравнение неразрывности среды

$$V_0\rho_0 = V\rho_0$$

— закон изменения импульса материальной частицы

$$\rho \dot{u}_i = \sigma_{ij,j};$$

— закон изменения внутренней энергии частицы

$$\rho \dot{e} = \sigma_{ij} \dot{\varepsilon}_{ij},$$

где $\dot{\varepsilon}_{ij} = (u_{i,j} + u_{j,i})/2$ — тензор скоростей деформаций; $\sigma_{ij} = -\delta_{ij}P + s_{ij}$ — тензор напряжений; s_{ij} — девиатор тензора напряжений; δ_{ij} — символ Кронекера; ρ — плотность; P — функция давления в форме функции Ми — Грюнайзена [13] для стали. Для расчета ударной адиабаты льда использовалось соотношение Ренкина — Гюгонио с учетом линейной связи скорости ударной волны и массовой скорости:

$$D = a + \lambda U,$$
 $P = \frac{\rho a^2 (\rho/\rho_0 - 1)}{[\rho/\rho_0 - \lambda(\rho/\rho_0 - 1)]^2}$

Таблица 1

Материал	ρ , кг/м ³	K, ГПа	G, ГПа	Y_0 , МПа	$σ_1^*$, ΜΠα	$\varepsilon^*, \%$	$\tau^*, \%$
Лед	920	9,72	$3,\!64$	2,3	12,4	12	17
Сталь	7870	171,00	80,00	230,0	780,0	25	25

Параметры материалов, при которых проводились расчеты

Здесь D — скорость ударной волны; U — массовая скорость за фронтом ударной волны; a, λ — параметры материала. При этом, как показано в работах [3, 4], для каждой фазы льда выбирается собственная ударная адиабата.

Используются уравнения упругопластического течения Прандтля — Рейсса [14]

$$\hat{s}_{ij} + d\lambda' s_{ij} = 2G\dot{\varepsilon}'_{ij}$$

с условием пластичности Губера — Мизеса

$$s_{ij}s_{ij} \leqslant 2Y_0^2/3,$$

где $\dot{\varepsilon}'_{ij} = \dot{\varepsilon}_{ij} - \dot{\varepsilon}_{kk}/3$; Y_0 — динамический предел текучести; для определения скалярного множителя $d\lambda'$ используется известная процедура приведения компонент девиатора тензора напряжений к кругу текучести [14].

Поскольку материалы обладают конечной прочностью, в систему уравнений добавляются следующие критерии разрушения:

- критерий максимальной деформации растяжения $|\varepsilon_1| < \varepsilon^*$;
- критерий максимальной деформации сдвига $\tau_1 = (\varepsilon_1 \varepsilon_3)/2 < \tau^*;$
- критерий максимального касательного напряжения $\sigma_{\tau} = (\sigma_1 \sigma_3)/2 < \sigma_{\tau}^*;$
- модифицированный критерий разрушения Тулера Бучера [15]

$$\sigma_t = \sum (\sigma_1 - \sigma_1^*)_i / \sum \Delta t_i > \sigma_t^*$$

(суммирование на временных слоях Δt_i выполняется при условии $\sigma_1 - \sigma_1^* > 0$).

В приведенных выше уравнениях использованы следующие обозначения: каждый из индексов *i*, *j* пробегает значения 1, 2, 3; по повторяющимся индексам проводится суммирование; точка над символом обозначает производную по времени, индекс после запятой производную по соответствующей координате; x_i , u_i — компоненты векторов положения и скорости материальной частицы соответственно; G — модуль сдвига; ε_1 , ε_3 — главные деформации; ε^* , τ^* — предельные значения деформаций на растяжение и сдвиг; σ_1 , σ_3 главные напряжения; σ_{τ}^* , σ_1^* , σ_t^* — предельные значения сдвиговых, откольных и накопленных напряжений. Параметры материалов, при которых проводились расчеты, приведены в табл. 1 (K — модуль объемного сжатия).

Расчетные области покрывались разностной сеткой без зазоров и перехлестов [16]. Метод построения конечно-разностных соотношений подробно изложен в работах [12, 14], там же приведено описание симметричного алгоритма расчета контактных границ для нестационарных задач.

Моделирование процесса образования каверны в массивной ледяной мишени при ударе стального цилиндра выполнено как в аксиальной двумерной, так и в трехмерной постановке. При внедрении ударника в поверхностные слои мишени лед разрушался, осколки, образующиеся на периферии ударника, выносились за пределы каверны. Фрагменты льда, находившиеся перед стальным цилиндром, уплотнялись и двигались вместе с ним до полной остановки.

В расчетах использовалась ударная адиабата для фазы льда VII (a = 1340 м/с, $\lambda = 1,4$). На рис. 2 представлены зависимости глубины пробития мишени от скорости,

Рис. 2. Зависимость глубины каверны L от скорости соударения U: 1 -экспериментальные данные; 2 -результаты двумерного расчета (фаза льда VII); 3 -результаты двумерного расчета для смеси фаз льда VI и VII; 4 -результаты трехмерного расчета (фаза льда VII); штриховая линия — расчетная зависимость L(U) для уравнения состояния фазы льда VII, сплошная — расчетная зависимость для уравнения состояния смеси фаз льда VI и VII

Таблица 2

	r, cm	h, см	Выбитое отверстие			
Форма ударника			R_{\max} , см	$R_{\min},$ см	U _{OCT} , M/C	
Одиночный диск	3,44	0,5	9,1	6,5	75	
Кольцо	$6,00 \div 5,48$	$1,\!0$	10,0	7,7	32	
Цилиндр (7 шт.)	0,75	1,5	Семь сквозных отверстий		136	
Сфера (7 шт.)	0,8585		Семь сквозных отверстий		192	
Малый диск (7 шт.)	1,06	$_{0,5}$	9,2	7,2	33	

Зависимость радиуса R отверстия, полученного при пробитии ледяной мишени, и остаточной скорости ударника $U_{\rm oct}$ от его радиуса r и высоты h

полученные при решении как двумерной, так и трехмерной задачи. При значениях скорости удара U = 275, 285 м/с глубины каверны, полученные в расчетах и экспериментах, хорошо согласуются, а при U = 191 м/с существенно различаются. При использовании ударной адиабаты для фазы льда VI (a = 388 м/с, $\lambda = 2,61$) [3] глубина пробития составляет приблизительно 10,3 см при скорости удара U = 191 м/с. Таким образом, при описании процессов ударного нагружения ледяной преграды при малых скоростях необходимо использовать прямое численное моделирование смеси фаз льда VI и VII [17]. При этом объемная концентрация фазы льда VII линейно увеличивается от значения $\alpha_{\rm VII} = 0$ при U = 190 м/с до значения $\alpha_{\rm VII} = 1$ при U = 300 м/с. Применение такого подхода позволяет с достаточной точностью воспроизвести экспериментальную зависимость глубины кратера от скорости соударения (см. рис. 2).

Определив физико-механические параметры льда, рассмотрим задачу о пробивании отверстия в ледяной мишени при заданных скорости удара и массе ударника (нескольких

Рис. 3. Начальная геометрия задачи о соударении ледяной преграды и ударника в форме кольца (*a*) и семи сфер (*б*): 1 — высокопрочная сталь, 2 — лед

ударников). Пусть задана ледяная пластина конечной толщины, например $h_t = 15$ см. Требуется определить форму наибольшего отверстия, пробиваемого в ней одним или несколькими ударниками. Были выбраны следующие стальные ударники: 1) одиночный диск; 2) кольцо (рис. 3, a); 3) семь цилиндров; 4) семь сфер (рис. 3, б); 5) семь малых дисков. Суммарная масса всех ударников одинакова. Скорость соударения для всех рассматриваемых случаев составляла U = 450 м/с. Формы, размеры ударников и пробитых отверстий указаны в табл. 2 (R_{\min} , R_{\max} — минимальный и максимальный радиусы пробитого отверстия конической формы).

Приведем краткое описание отверстия в ледяной пластине, пробитого ударником (несколькими ударниками) каждого типа.

При соударении ударника с преградой (рис. 4,a) в ней распространяется импульс волны сжатия. В тот момент, когда импульс достигает свободной тыльной поверхности, начинается разгрузка. Взаимодействие двух волн разгрузки, распространяющихся с тыльной и лицевой поверхностей, приводит к формированию волны растяжения, которая вызывает откол (рис. $4, \delta$). Диск, продолжая движение, разрушает лед и выносит его в область за преградой, при этом пробивается отверстие конической формы, поскольку диаметр кратера, образовавшегося на начальной стадии удара, больше диаметра отверстия на тыльной поверхности. На рис. 4 представлены результаты расчета процесса пробития ледяного блока стальным диском (мелкие осколки льда не показаны).

При ударе кольцом по ледяной преграде происходит выброс разрушенного льда в виде струи (рис. 5), направление которой противоположно направлению скорости удара. Данное явление обусловлено образованием кольцевого кратера, выброс внутри кольца представляет собой сходящийся поток фрагментов льда, что и приводит к формированию струйного течения. Продвижение кольца вглубь ледяной пластины приводит к образованию "пробки" и практически полному торможению кольца.

Известно, что удар группы тел по тонкой металлической преграде приводит к увеличению пробиваемого в ней отверстия [18, 19]. Разбиение массы ударника на семь частей обусловлено тем, что в этом случае края расположенных по кругу кратеров, образовавшихся в результате удара шести ударников небольшого размера, соприкасаются. Предполагалось, что центральное тело воздействует на выбиваемую "пробку" и удаляет ее из

Рис. 4. Кинограмма процесса пробития стальным диском ледяного блока (разрез вдоль оси ледяного блока):

 $a-t=0, \ b -t=130$ мкс, e-t=1000 мкс, r-t=2000 мкс

Рис. 5. Процесс пробития ледяного блока стальным кольцом (t = 2000 мкс)

Рис. 6

Рис. 6. Ледяной блок с отдельными отверстиями, образовавшимися при ударе семи цилиндров (t = 2000 мкс)

Рис. 7. Выбивание "пробки" из ледяного блока семью малыми стальными дисками при t = 2000 мкс (разрез блока вдоль оси отверстия)

преграды. Однако удар семи цилиндров или семи сфер, размеры которых приведены в табл. 2, на конечной стадии процесса пробития приводит к возникновению семи сквозных отверстий, не образующих одно отверстие (рис. 6). При этом скорость ударников за преградой остается достаточно большой ($U_{\text{ост}} = 150 \text{ м/c}$), тогда как при ударе семи малых дисков (радиус больше высоты) формируется одно отверстие и выбивается "пробка" (рис. 7).

Таким образом, в работе проведено прямое численное моделирование процесса пробития ледяной мишени ударниками различной формы.

Результаты численного моделирования показывают, что удар стальным кольцом по ледяной преграде конечной толщины приводит к образованию в ней отверстия наибольшего размера. Близкие результаты получены при ударе семью малыми стальными дисками.

ЛИТЕРАТУРА

- Millot M., Hamel S., Rygg J. R., et al. Experimental evidence for superionic water ice using shock compression // Nature Phys. 2018. V. 14. P. 297–302.
- Gaffney E. S. Hugoniot of water ice // Ices in the solar system. Dordrecht: Springer, 1985. P. 119–148.
- Stewart S. T., Ahrens T. J. Shock hugoniot of H₂O ice // Geophys. Res. Lett. 2003. V. 30, N 6. 1332. DOI: 10.1029/2002GL016789.
- Stewart S. T., Ahrens T. J. Shock properties of H₂O ice // J. Geophys. Res.: Planets. 2005. V. 110. E03005. DOI: 10.1029/2004JE002305.
- 5. Баландин В. В., Крылов С. В., Повереннов Е. Ю., Садовский В. В. Численное моделирование ударного взаимодействия упругого цилиндра со льдом // Пробл. прочности и пластичности. 2017. Т. 79, № 1. С. 93–103.

- Глазырин В. П. Ударное и взрывное нагружение льда // Изв. вузов. Физика. 2007. Т. 50, № 9/2. С. 60-64.
- 7. Герасимов А. В., Пашков С. В. Численное исследование 3D-процесса проникания ударников в лед // Мат. моделирование и краевые задачи. 2008. Ч. 1. С. 96–98.
- Орлова Ю. Н., Глазырин В. П. Математическое моделирование процесса пробития тонкого льда цилиндрическим ударником // Тр. Том. гос. ун-та. Сер. физ.-мат. 2010. Т. 276. С. 56–59.
- 9. **Лобанов В. А.** Моделирование взаимодействия льда с конструкциями // Вестн. науч.-техн. развития. 2011. № 10. С. 31–39.
- Kraus E. I., Shabalin I. I. Reactor2D: A tool for simulation of shock deformation // AIP Conf. Proc. 2016. V. 1770. 030092. DOI: 10.1063/1.4964034.
- Kraus E. I., Shabalin I. I. The tool for high-velocity interaction and damage of solids // Math. Montisnigri. 2017. V. 39. P. 18–29.
- 12. Фомин В. М. Высокоскоростное взаимодействие тел / В. М. Фомин, А. И. Гулидов, Г. А. Сапожников и др. Новосибирск: Изд-во СО РАН, 1990.
- 13. Краус Е. И., Фомин В. М., Шабалин И. И. Модельные уравнения термодинамических функций состояния веществ. 1. Твердое тело // Физ. мезомеханика. 2004. Т. 7. С. 285–288.
- Wilkins M. L. Computer simulation of dynamic phenomena. Berlin; Heidelberg; N. Y.: Springer, 1999.
- Tuler F. R., Butcher B. M. A criterion for the time dependence of dynamic fracture // Intern. J. Fracture Mech. 1968. V. 4, N 4. P. 431–437.
- Kraus E. I., Shabalin I. I., Shabalin T. I. Automatic tetrahedral mesh generation for impact computations // AIP Conf. Proc. 2017. V. 1893. 30129.
- 17. Kraus E. I., Shabalin I. I., Shabalin T. I. Numerical analysis of wave propagation in a cermet composite // AIP Conf. Proc. 2017. V. 1893, N 1. 030130. DOI: 10.1063/1.5007588.
- 18. **Хорев И. Е., Зелепугин С. А., Коняев А. А. и др.** Разрушение преград группой высокоскоростных тел // Докл. АН. 1999. Т. 369, № 4. С. 481–485.
- 19. Герасимов А. В., Барашков В. Н., Пашков С. В. Удар группы компактных элементов по тонкой преграде // Изв. вузов. Физика. 2009. Т. 52, № 7/2. С. 59–63.

Поступила в редакцию 11/X 2018 г., после доработки — 11/X 2018 г. Принята к публикации 29/X 2018 г.