УДК 662:642

Влияние обработки пучком ускоренных электронов на состав и надмолекулярное строение бурых и каменных углей ряда метаморфизма

П. Н. КУЗНЕЦОВ¹, Ю. Ф. ПАТРАКОВ², А. С. ТОРГАШИН¹, Л. И. КУЗНЕЦОВА¹, С. А. СЕМЕНОВА², Н. К. КУКСАНОВ³, С. Н. ФАДЕЕВ³

¹Институт химии и химической технологии Сибирского отделения РАН, ул. К. Маркса, 42, Красноярск 660049 (Россия)

E-mail: kuzpn@krsk.info

²Институт угля и углехимии Сибирского отделения РАН, проспект Советский, 18, Кемерово 630099 (Россия)

E-mail: chem.@kemnet.ru

³Государственный научный центр Институт ядерной физики Сибирского отделения РАН, проспект Академика Лаврентьева, 11, Новосибирск 630090 (Россия)

(Поступила 06.02.04)

Аннотация

Изучено воздействие ускоренных электронов, генерированных электронным ускорителем, на состав и показатели надмолекулярного строения бурых и каменных углей ряда метаморфизма. Показано, что эффекты ионизирующего воздействия в существенной степени определяются условиями облучения и стадией метаморфизма угля. Средне- и высокометаморфизованные каменные угли проявляют устойчивость к действию электронного пучка: их состав, способность к набуханию и выход растворимых веществ мало изменяются при облучении дозами до 200 Мрад. Это может быть связано с тем, что в составе указанных углей содержатся производные поликонденсированных ароматических соединений, которые, обладая большим сродством к электрону и захватывая медленные электроны, приводят к затуханию радикальных и ион-радикальных реакций в органической массе. Низкометаморфизованные угли (бурые и каменные) с большим количеством алифатических цепей сравнительно легко подвергаются радиационно-химическим превращениям. При поглощении небольших доз (10–50 Мрад) преобладают процессы деструкции, включая частичное разрушение валентных сшивок между макромолекулами, что приводит к разрыхлению надмолекулярной структуры и увеличению ее способности к взаимодействию с молекулами органических растворителей. Большие дозы радиации (более 50–100 Мрад) стимулируют преимущественно процессы сшивания и структурной упорядоченности.

введение

В углехимических исследованиях последнего десятилетия значительное внимание уделяется поиску эффективных способов активации углей с целью стимулирования деструктивных превращений в мягких условиях [1]. С развитием этого направления во многом связывается решение проблемы повышения реакционной способности углей и создания эффективных технологий нового поколения. Чаще всего активацию осуществляют обработкой различными химическими реагентами, а также механическим воздействием без применения реагентов в энергонапряженных мельницах-активаторах [2–7].

Эффективным безреагентным методом воздействия на органические вещества является высокоэнергетическое ионизирующее излучение, которое рассматривается как способ введения в вещество быстрых электронов [8]. Основная часть энергии этих электронов диссипирует, генерируя большое количество медленных электронов (энергия порядка нескольких десятков и сотен электронвольт), которые путем возбуждения и иони-

ТАБЛИЦА 1

Влияние дозы облучения на состав бурых и каменных углей разной стадии метаморфизма

Марка угля,	Показатель отражения	Доза	Элемен	тный сост	Атомное	
место отбора		облучения,	С	Н	(O + N + S)	отношение
	витринита	Мрад				H/C
	$R_0, \%$					
Б, разрез "Кайчакский"	0.30	_	72.5	5.1	22.4	0.84
		10	71.5	4.6	23.9	0.77
		50	71.7	4.8	23.5	0.80
Д, разрез "Задубровский"	0.44	-	79.7	5.8	14.5	0.87
		10	77.2	5.7	17.1	0.79
		50	76.6	5.5	17.9	0.86
		200	78.1	5.8	16.1	0.89
Д, шахта "Грамотеинская"	0.56	_	78.6	5.6	15.8	0.86
		10	77.5	4.9	17.6	0.76
		50	78.0	5.2	16.8	0.81
Г, шахта "Заречная"	0.72	-	81.8	5.8	13.1	0.86
		10	79.4	5.7	14.9	0.86
		50	79.1	5.4	15.5	0.82
		200	79.8	5.7	14.5	0.86
Ж, шахта "Чертинская"	0.98	_	86.5	5.9	7.7	0.81
		10	85.6	5.8	8.6	0.79
		50	85.9	5.7	8.4	0.79
		200	85.9	5.9	8.2	0.82
ОС, разрез "Томусинский"	1.56	_	88.8	5.0	6.2	0.68
		10	87.9	4.8	7.3	0.65
		50	88.5	4.7	6.8	0.64
		200	88.4	4.9	6.7	0.66

зации молекул инициируют ион-радикальные реакции. В качестве источников ионизирующего излучения чаще всего используют γ -лучи, α - и β -частицы, испускаемые при радиоактивном ядерном распаде. Однако их технологическое использование проблематично в силу высокой проникающей способности, а исследования воздействия на уголь достаточно ограничены [1, 9, 10].

Прогресс в создании мощных электронных ускорителей [11] открывает новые возможности для ввода быстрых электронов в вещество без использования высокопроникающей радиации. Электронные ускорители позволяют увеличить энергию электронов и на несколько порядков – интенсивность излучения. В последнее время применение электронных ускорителей в технологических целях вызывает пристальный интерес и рассматривается как перспективный безреагентный способ стимулирования нефте- и углехимических процессов [1, 12–15], обработки различных неорганических материалов [16, 17].

В настоящей работе представлены результаты изучения воздействия пучка ускоренных электронов с энергией 1 МэВ, генерируемых электронным ускорителем, на химический состав и надмолекулярное строение углей различной стадии метаморфизма.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Исследования проводили на широкой серии образцов бурых и каменных углей ряда метаморфизма, отобранных на Бородинском месторождении Канско-Ачинского бассейна и месторождениях Кузнецкого бассейна. Из куз-

Характеристики и состав канско-ачинских бурых углеи								
Образец	Зольность,	Массовая доля золообразующих элементов, %			Элементный состав ОМУ, % (по массе)			
	% (по массе)	Ca	Mg	Fe	С	Η	Ν	S
Ka ₁	4.4	0.75	0.10	0.10	71.3	4.8	0.9	0.2
Ka_2	6.2	1.25	0.30	0.06	70.8	4.8	0.8	0.3

ТАБЛИЦА 2

Характеристики и состав канско-ачинских бурых углей

нецких углей выделены витринитовые концентраты (содержание витринита 95–98 %, зольность 1.5–2 %), состав которых приведен в табл. 1. Канско-ачинские бурые угли представлены двумя образцами, существенно различающимися по содержанию катионов щелочно-земельных металлов (с преобладанием калыция) (табл. 2), которые, как установлено в [4], участвуют в формировании надмолекулярной структуры органической массы, во многом определяя ее химические свойства.

Опыты по радиационной обработке углей осуществляли на электронном ускорителе ЭЛВ-8 (Институт ядерной физики СО РАН) в контейнере с окном из титановой фольги. Ускоритель генерировал электроны с энергией 1 МэВ, мощность дозы варьировали от 0.19 до 0.33 Мрад/с, общую дозу поглощения от 10 до 200 Мрад. Облучение проводили в инертной атмосфере, как в периодическом режиме путем многократного прохождения контейнера с углем под пучком электронов, так и при непрерывном пропускании электронного пучка через уголь. Температуру угольного слоя толщиной 7 мм контролировали с помощью термопары и поддерживали в пределах 60-70 и 250-260 °C. Выделяющиеся при радиолизе газообразные продукты собирали в газометре и анализировали на хроматографе.

Состав углей после радиационного воздействия изучали методами химического элементного анализа и ИК-спектроскопии. Элементный состав определяли на автоматическом анализаторе CHN-600 фирмы Leco. ИК-спектры угольных образцов в матрице из KBr записывали на ИК-Фурье спектрометре Vector 22 фирмы Bruker в области 4000-400 см⁻¹.

Надмолекулярное строение углей характеризовали по данным экстракции и набухания в органических растворителях и рентгеновской дифракции. Набухание углей измеряли волюметрическим методом в стеклянных ампулах диаметром 8 мм. Дифрактограммы снимали на приборе ДРОН-3 в СиК_α-излучении. Параметры структуры относительно упорядоченной графитоподобной фазы ОМУ определяли по основному рефлексу (002) [18, 19].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Воздействие электронного пучка на органическую массу угля стимулирует химические превращения, сопровождаемые выделением летучих веществ. Их состав зависит от свойств угля, дозы поглощения и температуры. Степень деструкции бурого угля в летучие продукты достигала 12.8-15.4 %. При дозе 200 Мрад и низкой температуре (60-70°C) в составе углеводородных газов, выделяющихся из сухого бурого угля, преобладали метан (65.9 %) и *н*-бутан (23.1 %) (табл. 3). При температуре облучения 250-260 °C наб-людалось резкое уменьшение содержания метана (до 27.9 %) и н-бутана (до 11.8 %), увеличивалось содержание этилена, пропилена, пропана и изобутана. При облучении рядового бурого угля, содержащего нативную влагу (18 %), при температуре 250-260 °С доля метана снижалась до 12.2 %, а н-бутана возрастала до 58.1 %. Установлено присутствие в летучих продуктах также углеводородов С5-С8. Во всех случаях углеводороды имели преимущественно нормальное строение: так, содержание *н*-бутана в 5-10 раз превышало содержание изобутана. При малой дозе поглощения (50 Мрад) и температуре 60-70 °C выделение летучих продуктов деструкции незначительно.

По данным элементного анализа (см. табл. 1), в результате облучения уменьшается содержание углерода и водорода, при небольших дозах облучения (≤50 Мрад) уменьшается атомное отношение H/C.

ТАБЛИЦА 3

Состав углеводородных газов, выделяющихся при обработке бурого угля Ка $_1$ пучком ускоренных электронов дозой 200 Мрад, %

Газ	Уголь						
	Сухой		Влажный				
	Температура облучения, °С						
	60-70	250 - 260	60-70	250-260			
Метан	65.9	27.9	54.7	12.2			
Этан	8.7	12.5	14.2	4.5			
Этилен	-	15.2	-	2.2			
Пропан	2.3	17.6	3.3	8.9			
Пропилен	-	12.7	-	12.8			
Изобутан	-	2.3	-	1.3			
н-Бутан	23.1	11.8	27.8	58.1			

Существенные изменения состава происходили при облучении бурых углей. В ИКспектрах уменьшалась интенсивность полос в широкой области 1600–1770 см⁻¹, обусловленной сложными эфирами, лактонами, свободными карбоновыми кислотами и водородносвязанными карбонильными группами (рис. 1).

В дифференциальных спектрах образцов, облученных дозой 200 Мрад, отмеченные изменения отчетливо проявляются в виде отрицательного сигнала (см. рис. 1, спектры 4, 5). Исходный образец Ка₂ содержал повышенное количество карбоксилатов металлов (в основном Са), которые в ИК-спектре обнаруживались по характерному поглощению в области 1520-1570 см⁻¹ (см. рис. 1, спектр 2, плечо на полосе с максимумом при 1600 см⁻¹). После облучения дозой 200 Мрад плечо уменьшается, что свидетельствует о частичном разложении металл-карбоксилатных групп. Уменьшается также интенсивность полос с максимумами при 3250 см⁻¹ и 2920-2850 см⁻¹, обусловленных водородно-связанными ОН-группами и алкильными заместителями соответственно. Одновременно несколько увеличивается интенсивность полос при 1040 и 1160 см⁻¹, соответствующих простым эфирам и спиртам. В области внеплоскостных деформационных колебаний С-Н-связей ароматических колец увеличивается интенсивность полос с максимумами при 800 и 750 см⁻¹, соответствующих ароматическим

Рис. 1. ИК-спектры исходного бурого угля Ка₂ (2) и после облучения пучком ускоренных электронов дозой 50 (1) и 200 Мрад (3) при температуре 60-70 °C: 4 – дифференциальный спектр для угля Ка₂ (разность между 3 и 2), 5 – дифференциальный спектр для угля Ка₁ (разность между облученным дозой 200 Мрад при 260 °C и исходным).

Рис. 2. ИК-спектры витринитов исходных каменных углей (1) марок Ж (a) и ОС (б), а также после облучения пучком ускоренных электронов дозой 50 Мрад при температуре 60-70 °С (2).

кольцам с числом атомов водорода в кольце 1-2 и 4 соответственно. После облучения дозой 200 Мрад при повышенной температуре 260 °С для образца Ка₁ максимум полосы поглощения при 1600 см⁻¹ смещается в низкочастотную область (на 8 см⁻¹), что может указывать на увеличение степени конденсированности ароматических колец. Последнее согласуется с усилением поглощения в области 3040 см⁻¹, обусловленного валентными колебаниями ароматических связей С-Н.

Отмеченные изменения в ИК-спектрах бурых углей свидетельствуют о преобладании процессов радиационной деструкции простых и сложных эфиров, лактонов, отщеплении алкильных групп при малых дозах поглощения. При увеличении дозы деструкции подвергаются также металл-карбоксилатные группы. Повышение температуры облучения до 260 °С стимулирует процессы конденсации ароматических циклов.

Состав каменных углей в результате облучения изменялся в меньшей степени. Для угля марки Ж основные изменения в ИКспектрах проявлялись в уменьшении интенсивности полос поглощения СО-групп простых и сложных эфиров ($1100-1300 \text{ сm}^{-1}$), деформационных колебаний групп CH₃ (1380 сm^{-1}), в меньшей степени – групп CH₂ (1460 cm^{-1}), а также внеплоскостных деформационных колебаний CH-групп ароматических колец (690- 870 сm^{-1}) (рис. 2). Для более метаморфизованного витринита угля марки ОС изменения состава менее заметны. Полученные данные свидетельствует о повышении устойчивости органической массы в ряду метаморфизма к воздействию электронного пучка.

Выход спирто-бензольного экстракта из исходных необлученных витринитов в ряду метаморфизма проходил через максимум для длиннопламенного угля (рис. 3, *a*). После облучения дозой 50 Мрад выход экстракта уменьшался для низкометаморфизованных витринитов и мало изменялся для витринитов средней и высокой стадии метаморфизма.

Данные по коэффициенту набухания отражают изменения в плотности сшивок в полимероподобной матрице ОМУ. Коэффициент набухания в пиридине для низкометаморфизованных витринитов (бурого и каменного)

Рис. 3. Выход спиртобензольного экстракта (*a*) и коэффициент набухания в пиридине (б) витринита в зависимости от стадии метаморфизма: 1 – исходный, 2 – облученный дозой 50 Мрад.

существенно возрастал после облучения (см. рис. 3, б). Для метаморфизованных углей марок Ж и ОС существенных изменений не наблюдалось.

Характер зависимости коэффициента набухания бурого угля в тетрагидрофуране от

2.4 кливах 2.2 1.8 0 50 100 150 200 Доза поглощения, Мрад

Рис. 4. Изменение коэффициента набухания в тетрагидрофуране бурых углей в зависимости от дозы поглощения: 1, 2 – образцы углей Ка₁ и Ка₂ соответственно.

дозы облучения различался в областях малых и больших доз (рис. 4). Небольшие дозы (≤ 50 Мрад) увеличивали способность к набуханию. Дальнейшее увеличение дозы приводило к уменьшению набухания.

В низкометаморфизованных углях изменялось также пространственное строение относительно упорядоченной графитоподобной фазы под действием электронного пучка. После облучения бурого угля дозами 100 Мрад и менее (при 60–70 °C) наблюдалось частичное расщепление пакетов. В случае угля Ка₂ их толщина уменьшалась от 8.5 до 7.6 Å, а число слоев в пакетах уменьшалось от 3.3 до 3.0 (табл. 4). Действие больших доз радиации (200 Мрад) и температуры 260 °C, напротив, приводило к укрупнению пакетов за счет кон-

ТАБЛИЦА 4

Рентгеноструктурные параметры исходных и облученных бурых углей

Образец	Доза облучения	, Межслоевое	Толщина пакетов,	Число слоев	
	Мрад	расстояние, Å	Å	в пакетах	
Ka ₁	_	3.7	8.8	3.4	
	10	3.7	8.7	3.4	
	50	3.7	8.3	3.2	
	200	3.7	8.8	3.4	
	200	3.7	10.6	3.9	
Ka ₂	_	3.7	8.5	3.3	
	100	3.7	7.6	3.0	
	200	3.7	8.9	3.4	

денсации слоев без изменения межслоевого расстояния.

ЗАКЛЮЧЕНИЕ

Полученные данные свидетельствуют о том, что эффекты ионизирующего воздействия электронного пучка в существенной степени определяются условиями облучения и стадией метаморфизма угля. Средне- и высокометаморфизованные каменные угли относительно устойчивы к ионизирующему воздействию: их состав, способность к набуханию и выход растворимых веществ мало изменяются при облучении дозами до 200 Мрад. Это может быть связано с тем, что в основе данных углей лежат преимущественно поликонденсированные ароматические структуры, которые, обладая большим электросродством, осуществляют захват медленных электронов. В результате происходит затухание радикальных и ион-радикальных реакций.

Низкометаморфизованные угли с большим количеством алифатических цепей сравнительно легко подвергаются радиационно-химическим превращениям. При поглощении небольших доз излучения (10-50 Мрад, что соответствует 25-125 ккал/кг, т. е. менее 3 % от теплосодержания угля) преобладают процессы частичной деструкции ОМУ, включая расщепление сшивок между макромолекулами. Это приводит к формированию разрыхленной (менее сшитой) надмолекулярной структуры, фрагменты которой способны к эффективному взаимодействию с молекулами органических растворителей. Большие дозы радиации (более 100 Мрад) стимулировали преимущественно процессы сшивания и структурной упорядоченности.

Установленные закономерности изменения состава и строения органической массы углей при прохождении быстрых электронов, генерируемых электронным ускорителем, представляют интерес для осуществления направленного воздействия на их свойства с целью активации для последующих процессов химической переработки.

Работа выполнена при поддержке Программы 4.6. Отделения химии и наук о материалах РАН, РФФИ-ККФН "енисей_а" (грант № 03-03-96119) и Красноярского краевого фонда науки (грант 14G279).

СПИСОК ЛИТЕРАТУРЫ

- 1 Н. М. Лихтерова, В. В. Лунин, Химия и технология топлив и масел, 6 (1998) 3.
- 2 M. Nishioka, Fuel, 71 (1992) 941.
- 3 K. Sakanishi, I. Watanabe, T. Nonaka et al., Ibid., 80 (2001) 273.
- 4 П. Н. Кузнецов, *XTT*, 3 (1998) 53.
- 5 П. Н. Кузнецов, Я. Бимер, П. Д. Салбут и др., ДАН, 339, 1 (1994) 55.
- 6 Ю. Ф. Патраков, Н. И. Федорова, В. Ф. Камьянов, Л. В. Горбунова, XTT, 5 (2001) 43.
- 7 А. В. Полубенцев, Ф. Г. Пройдаков, Л. А. Кузнецова, Химия в интересах устойчивого развития, 7 (1999) 203.
- 8 В. В. Сараева, Радиолиз углеводородов в жидкой фазе, Изд-во МГУ, Москва, 1986, 280 с.
- 9 M. W. Haenel, U-B Richter, S. Solar, N. Getoff, in: Coal Science: Proc. of the 8th Int. Conf. on Coal Science, Spain, 1995, vol. 1, p. 445.
- 10 G. B. Skripchenko, G. S. Golovin, V. I. Sekrieru, *Ibid.*, vol. 2, p. 1379.
- 11 Ю. И. Голубенко, М. Е. Вейс, Н. К. Куксанов и др., Ускорители электронов серии ЭЛВ: Состояние, применение и новые разработки, изд. ИЯФ им. Будкера СО РАН, Новосибирск, 1997, с. 9.
- 12 В. В. Лунин, Ю. И. Соловецкий, Тез. докл. VII конф. по химии и технологии твердого топлива России и стран СНГ, Звенигород, 22 ноября 1996, Изд-во МГУ, Москва, 1996, с. 261.
- 13 Ю. Зайкин, Р. Зайкина, Н. Надирова, *Нефть России*, 5-6 (1997) 72.
- 14 А. Н. Ермаков, Б. М. Житомирский, В. Н. Попов, А. В. Теребилин, XTT, 5 (1991) 43.
- 15 П. Н. Кузнецов, Л. И. Кузнецова, А. Н. Борисевич, Н. К. Куксанов, Там же, 2 (2003) 63.
- 16 N. Lyakhov, V. Boldyrev, A. Voronin et al., J. Therm. Analysis, 43 (1995) 21.
- 17 А. Ю. Аджиев, Б. Я. Адигамов, В. В. Лунин и др., Кинетика и катализ, 32, 2 (1991) 433.
- 18 T. F. Yen, J. G. Erdman, S. S. Pollack, Anal. Chem., 33, 11 (1961) 1587.
- 19 В. И. Саранчук, А. Т. Айруни, К. Е. Ковалев, Надмолекулярная организация, структура и свойства угля, Наук. думка, Киев, 1998, 192 с.