2011. Том 52, № 6

Ноябрь – декабрь

С. 1176 – 1180

УДК 544.2:544.3.03:544.022:532.74

СТРОЕНИЕ БЛИЗКИХ К НАСЫЩЕНИЮ ВОДНЫХ РАСТВОРОВ ГЛИЦИНА ПО ДАННЫМ О СЖИМАЕМОСТИ

© 2011 О.В. Гринева*, Е.В. Беляева

Московский государственный университет им. М.В. Ломоносова, химический факультет

Статья поступила 25 мая 2011 г.

Измерены величины скорости ультразвука и плотности для водных растворов, содержащих 2,00, 4,00, 5,00 мол.% глицина в интервале 15—65 °С, 5,50 мол.% глицина (20— 65 °С) и 6,00 мол.% глицина (25—65 °С). Рассчитаны значения адиабатической сжимаемости (κ_s) и мольной адиабатической сжимаемости (K_s). Значения κ_s и K_s монотонно уменьшаются с увеличением концентрации глицина вплоть до насыщения при всех исследованных температурах. Температурные зависимости κ_s и K_s имеют минимум, характерный для воды и водных растворов, положение которого зависит от концентрации глицина. Смена знака температурного коэффициента мольной сжимаемости $\partial K_s / \partial T$ с отрицательного на положительный происходит при примерно на 10 градусов более низких температурах, чем смена знака $\partial \kappa_s / \partial T$.

Ключевые слова: строение жидкостей, кооперативные водородные связи, водные растворы, глицин, сжимаемость.

Одной из причин значительного интереса к изучению строения и свойств аминокислот и их растворов, который сохраняется на протяжении многих десятилетий, является потенциальная возможность использовать полученные в ходе таких исследований результаты при решении задач, связанных с живыми организмами: для более глубокого понимания биохимических процессов, создания лекарств и т.п. Однако строение и свойства этих объектов привлекают внимание и с чисто химической, и с физико-химической точек зрения. Например, для глицина (аминоуксусной кислоты) известно несколько полиморфных модификаций (часть из которых получена под давлением лишь в последнее десятилетие [1, 2]), различающихся как системой водородных связей между цвиттер-ионами, так и упаковкой сходных H-ассоциатов.

Описание топологии системы водородных связей в некристаллических фазах, в частности в жидкостях, представляет собой сложную задачу, которая не имеет однозначного решения. Примеры анализа данных о сжимаемости при обсуждении строения водных растворов органических веществ и сопоставлении систем водородных связей в индивидуальных жидкостях (воде, формамиде, одно- и двухатомных спиртах, целлозольвах, кетонах) приведены в [3, 4]. Следует отметить, что в [3] были исследованы растворы, в которых органические компоненты являются жидкостями в изученном интервале температур, обладают полной взаимной растворимостью с водой, их молекулы нейтральны, и положительные/отрицательные атомные заряды распределены в молекулах относительно равномерно. Очевидно, что глицин как органический компонент водных растворов обладает принципиально иными свойствами: кристаллы глицина растворяются в воде ограниченно, и хотя в целом молекулы глицина электронейтральны, они имеют явно выраженные электроположительные и электроотрицательные области (т.е. являются цвиттер-ионами), поэтому было интересно сопоставить свойства растворов, исследованных в [3], и растворов глицина.

^{*} E-mail: ovg@phys.chem.msu.ru

Таблица 1

1177

Статья	Максии в и	мальная концентрация гл исследованных растворах	Свойства	Температура, °С		
	M_2 , моль/л	<i>m</i> ₂ , моль/кг	<i>x</i> ₂ , мол.%			
[5]	2,68702*		5,24	υ, κ _s	25	
[6]		0,10064—0,11061**	~0,2	$(\rho - \rho_{\rm H_{2}O}), (\upsilon - \upsilon_{\rm H_{2}O})$	5, 15, 25, 35, 45	
[7]		0,5234*	0,93	υ, ρ	20, 25, 30, 35	

Статьи, содержащие численные значения скорости звука и плотности (или адиабатической сжимаемости) для водных растворов глицина

** При разных температурах и для разных свойств максимальная концентрация глицина была разной.

Для водных растворов глицина значения скорости ультразвука (υ) и плотности (ρ), которые позволяют рассчитать по уравнению Лапласа (1) адиабатическую сжимаемость (κ_s):

$$\kappa_{\rm S} = 1/\upsilon^2 \rho, \tag{1}$$

измеряли неоднократно, однако авторы большинства работ были заинтересованы в определении и последующем анализе парциальных величин, поэтому исследовали сильно разбавленные растворы глицина и, кроме того, не приводили экспериментальных значений υ и ρ. Краткая информация о публикациях, в которых есть численные данные для υ и ρ, представлена в табл. 1.

Наиболее важное, на наш взгляд, различие в характеристиках сжимаемости водных и неводных растворов состоит в том, что у водных растворов в некотором интервале температур и составов температурный коэффициент адиабатической сжимаемости ($\partial \kappa_S / \partial T$) отрицателен, т.е. с увеличением температуры сжимаемость уменьшается. Поскольку вода — единственная жидкость, у которой в определенной области температур $\partial \kappa_S / \partial T < 0$, логично связать аналогичную особенность водных растворов с сохранением в них структуры, характерной для жидкой воды.

Уникальность строения кристаллических модификаций воды заключается в наличии в них различных вариантов трехмерного (3D) каркаса кооперативных водородных связей. Есть основания полагать, что и в жидкой воде кооперативные водородные связи связывают молекулы в 3D каркас, при этом, разумеется, он не имеет кристаллографической симметрии, постоянно видоизменяется и в отдельные моменты времени может сильно отличаться от любого из кристаллических каркасов.

В водных растворах изменение знака $\partial \kappa_S / \partial T$ зависит не только от температуры, но и от концентрации, размера и химической природы молекул растворенных веществ [3]. При комнатных температурах у растворов с небольшими по объему органическими молекулами смена знака $\partial \kappa_S / \partial T$ происходит, когда содержание неводных компонентов составляет несколько мольных процентов. Как видно из табл. 1, имеющиеся литературные данные для водных растворов глицина не позволяли зафиксировать смену знака $\partial \kappa_S / \partial T$, поскольку в [5] измерения были проведены только при одной температуре, а в [6, 7] были исследованы растворы с относительно небольшим содержанием глицина, для которых максимальная температура опытов была недостаточно высокой. Таким образом, цель настоящей работы состояла в получении экспериментальных данных в достаточно широком интервале температур для растворов, содержащих несколько мольных процентов глицина, т.е. для водных растворов глицина, близких к насыщенным [8].

Для приготовления растворов был использован глицин фирмы MP Biomedicals (electrophoresis grade) без дополнительной очистки. Проводимость деионизированной воды составляла 0,09—0,12 мкСм/см. Растворы готовили весовым методом; точность задания концентрации бы-

^{*} Отмечен способ выражения концентрации в оригинальной публикации.

Таблица 2

<i>x</i> ₂ , мол.%	0,	00	2,	00	4,0	00	5,	00	5,	50	6,	00
<i>m</i> ₂ , моль/кг	0,00		1,13		2,31		2,92		3,22		3,54	
<i>T</i> , °C	υ	ρ	υ	ρ	υ	ρ	υ	ρ	υ	ρ	υ	ρ
15,00	1466,0	0,9991	1525,5	1,0333	1580,8	1,0635	1607,1*	1,0778*				
20,00	1482,4	0,9982	1539,8	1,0320	1593,2	1,0619	1618,6*	1,0761*	1630,9*	1,0826*		
25,00	1496,7	0,9970	1552,4	1,0305	1604,1	1,0603	1628,6	1,0743	1640,5*	1,0806*	1652,5*	1,0874*
30,00	1509,2	0,9956	1563,4	1,0288	1613,5	1,0584	1637,2	1,0723	1648,7	1,0786	1660,4*	1,0853*
35,00	1519,8	0,9940	1572,7	1,0269	1621,5	1,0564	1644,6	1,0702	1655,7	1,0765	1667,2	1,0832
40,00	1528,9	0,9922	1580,6	1,0249	1628,1	1,0542	1650,7	1,0680	1661,6	1,0744	1672,7	1,0810
45,00	1536,4	0,9902	1587,2	1,0226	1633,5	1,0520	1655,7	1,0657	1666,3	1,0721	1677,2	1,0786
50,00	1542,6	0,9880	1592,3	1,0203	1637,8	1,0498	1659,5	1,0633	1669,9	1,0697	1680,7	1,0762
55,00	1547,4	0,9857	1596,2	1,0180	1641,0	1,0473	1662,3	1,0609	1672,7	1,0673	1683,2	1,0737
60,00	1551,0	0,9832	1599,1	1,0155	1643,3	1,0447	1664,2	1,0584	1674,5	1,0647	1684,8	1,0711
65,00	1553,4	0,9806	1601,1	1,0128	1644,6	1,0420	1665,3	1,0558	1675,5	1,0620	1685,4	1,0685

Значения скорости звука (υ , м/с) и плотности (ρ , г/см³) для растворов вода—глицин при разных температурах (T, °C)

* Отмеченные значения получены для переохлажденных растворов (согласно данным [8] с пересчетом концентраций в мол.% растворимость глицина при 20 °C составляет 4,986, при 25 °C — 5,464, при 30 °C — 5,965 мол.%); при проведении соответствующих измерений образование кристаллов или иные внешние изменения растворов не замечены.

ла не хуже чем ±0,005 мол.%. Для каждой из выбранных концентраций растворы были приготовлены дважды. Как правило, измерения проводили сразу после приготовления растворов; максимальное время хранения растворов до начала измерений не превышало двух суток. Плотность растворов определяли пикнометрически; объем пикнометров составлял ~20 мл; при каждой температуре плотность каждого независимо приготовленного раствора измеряли 1—3 раза; воспроизводимость результатов была не хуже чем ±0,0001 г/см³. Скорость ультразвука определяли на частоте 5,5 МГц с помощью установки, описанной в [9]. Для калибровки пикнометров и установки измерений скорости звука использовали деионизированную воду. Калибровочные значения скорости звука мы оцениваем как ±0,1 м/с при температурах 15—45 °C и ±0,2 м/с при других температурах. Точность поддержания температуры была не хуже чем ±0,01 °C. Измеренные значения υ и ρ для водных растворов глицина вместе с калибровочными значениями для воды приведены в табл. 2. Для удобства сопоставления данных с другими работами концентрация глицина выражена двумя способами: через мольные проценты (*x*₂) и моляльность (*m*₂).

На основе данных табл. 2 были рассчитаны значения адиабатической сжимаемости по уравнению (1) и мольной адиабатической сжимаемости (K_S): K_S = $\kappa_S \cdot V_m$ (V_m — мольный объем). На рис. 1 приведены графики $\kappa_S(x_2)$, а на рис. 2 — K_S(T) (общий вид зависимостей K_S(x_2) и $\kappa_S(T)$ аналогичен рис. 1 и рис. 2 соответственно).

Видно (см. рис. 1), что с увеличением концентрации глицина вплоть до насыщения значения сжимаемости монотонно уменьшаются при всех исследованных температурах, что отличает эти растворы от исследованных нами ранее [3, 11, 12] систем, в которых концентрационные зависимости сжимаемости имели минимум в некотором интервале низких температур.

В то же время отмеченное выше уникальное свойство температурных зависимостей сжимаемости воды и водных растворов: смена знака температурного коэффициента сжимаемости

Рис. 1. Зависимость адиабатической сжимаемости ($\kappa_{\rm S} \cdot 10^{10}$, Πa^{-1}) от концентрации растворов вода—глицин (x_2 , мол.%) при разных температурах (T, °C)

Рис. 2. Зависимость мольной адиабатической сжимаемости ($K_S \cdot 10^{15}$, $M^3 \cdot \Pi a^{-1} \cdot MORDot MORDON MORDON (X_2, MORDON)$ растворов вода—глицин

Рис. 3. Зависимость температурного коэффициента мольной адиабатической сжимаемости ($\partial K_S \cdot 10^{15} / \partial T$, м³. $\cdot \Pi a^{-1} \cdot \text{моль}^{-1} \cdot \text{град}^{-1}$) от температуры (*T*, °C) при разных концентрациях (*x*₂, мол.%) растворов вода—глицин. Обозначения, как на рис. 2

с отрицательного на положительный (чему соответствует минимум на кривых $\kappa_s(T)$ и $K_s(T)$) — наблюдается и в водных растворах глицина (см. рис. 2 и 3). Как и в других ранее исследованных нами системах, для раствора определенной концентрации минимумы на зависимостях $K_s(T)$ и $\kappa_s(T)$ соответствуют разным температурам. Для растворов вода—глицин смена знака $\partial K_s/\partial T$ с отрицательного на положительный происходит при примерно на 10 градусов более низких температурах, чем смена знака $\partial \kappa_s/\partial T$. Поскольку значения мольной адиабатической сжимаемости по определению относятся к одинаковому числу молекул (молю) в отличие от κ_s , мы полагаем, что при оценке температуры, которая соответствует началу критического изменения (нарушения связности) трехмерного каркаса водородных связей, следует ориентироваться на смену знака $\partial K_s/\partial T$ (см. рис. 3).

О.В. ГРИНЕВА, Е.В. БЕЛЯЕВА

СПИСОК ЛИТЕРАТУРЫ

- 1. Болдырева Е.В., Ивашевская С.Н., Сова Г. и др. // Докл. РАН. 2004. 396, № 3. С. 358 361.
- 2. Dawson A., Allan D.R., Belmonte S.A. et al. // Cryst. Growth Des. 2005. 5, N 4. P. 1415 1427.
- 3. Гринева О.В. // Журн. структур. химии. 2006. 47, № 1. С. 185 191.
- 4. Гринева О.В. // Журн. структур. химии. 2007. 48, № 4. С. 802 807.
- 5. Gucker F.T., Lamb F.W., Marsh G.A., Haag R.M. // J. Amer. Chem. Soc. 1950. 72, N 1. P. 310 317.
- 6. Kikuchi M., Sakurai M., Nitta K. // J. Chem. Eng. Data. 1995. 40, N 4. P. 935 942.
- 7. Sahin M., Yesil Z., Gunel M. et al. // Fluid Phase Equilib. 2011. 300, N 1-2. P. 155 161.
- 8. Jelińska-Kazimierczuk M., Szydłowski J. // J. Solut. Chem. 1996. 25, N 12. P. 1175 1184.
- 9. Белогольский В.А., Оводов Г.И., Саморукова Л.М. и др. // Заявка на изобр. № 92000526, дата публ. 20.12.1996. Б.И. № 5.
- 10. Marczak W. // J. Acoust. Soc. Amer. 1997. 102, N 5. P. 2776 2779.
- 11. Дакар Г.М., Гринева О.В. // Журн. физ. химии. 2002. 76, № 5. С. 862 867.
- 12. Гринева О.В., Абрамович А.И. // Журн. физ. химии. 2004. 78, № 7. С. 1181 1184.