УДК 539.3

ЧИСЛЕННОЕ ИССЛЕДОВАНИЕ НЕЛИНЕЙНЫХ КОЛЕБАНИЙ ВЯЗКОУПРУГИХ ПЛАСТИН И ЦИЛИНДРИЧЕСКИХ ПАНЕЛЕЙ В ПОТОКЕ ГАЗА

Б. А. Худаяров, Н. Г. Бандурин*

Ташкентский институт ирригации и мелиорации, 100135 Ташкент, Узбекистан

* Волгоградский государственный архитектурно-строительный университет, 400001 Волгоград

E-mails: bakht-flpo@yandex.ru, bandurin_n@bayard.ru

Рассматриваются нелинейные колебания вязкоупругих элементов авиационных конструкций. Разработаны методика и алгоритм численного решения интегродифференциальных уравнений. Определена критическая скорость потока при обтекании вязкоупругих пластин.

Ключевые слова: нелинейные колебания, вязкоупругость, цилиндрические панели.

В данной работе изучается влияние вязкоупругих свойств материала конструкций на характер нелинейных колебаний цилиндрических панелей в потоке газа. Используются нелинейные уравнения теории тонких пологих оболочек Маргерра [1–3], из которых в частном случае можно получить уравнения Кармана [4].

1. Постановка задачи и метод решения. Рассмотрим вязкоупругую пологую прямоугольную в плане оболочку, обтекаемую с внешней стороны в направлении образующих сверхзвуковым потоком газа со скоростью V.

С учетом вязкоупругих свойств материала конструкций уравнения Маргерра относительно перемещений u, v, w в декартовой системе координат можно записать в следующем виде:

$$(1 - R^*) \left(\frac{\partial^2 u}{\partial x^2} + \frac{1 - \mu}{2} \frac{\partial^2 u}{\partial y^2} + \frac{1 + \mu}{2} \frac{\partial^2 v}{\partial x \partial y} + L_1(w) \right) - \rho \frac{1 - \mu^2}{E} \frac{\partial^2 u}{\partial t^2} = 0,$$

$$(1 - R^*) \left(\frac{\partial^2 v}{\partial y^2} + \frac{1 - \mu}{2} \frac{\partial^2 v}{\partial x^2} + \frac{1 + \mu}{2} \frac{\partial^2 u}{\partial x \partial y} + L_2(w) \right) - \rho \frac{1 - \mu^2}{E} \frac{\partial^2 v}{\partial t^2} = 0,$$

$$D(1 - R^*) \nabla^4 w + L_3^*(u, v, w) + \rho h \frac{\partial^2 w}{\partial t^2} = q.$$

$$(1)$$

Здесь

$$L_{1}(w) = -(\varkappa_{x} + \mu \varkappa_{y}) \frac{\partial w}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial^{2}w}{\partial x^{2}} + \frac{1+\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial x \partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial x} \frac{\partial^{2}w}{\partial y^{2}},$$

$$L_{2}(w) = -(\mu \varkappa_{x} + \varkappa_{y}) \frac{\partial w}{\partial y} + \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} + \frac{1+\mu}{2} \frac{\partial w}{\partial x} \frac{\partial^{2}w}{\partial x \partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial x^{2}},$$

$$L_{3}^{*}(u, v, w) = (1 - R^{*}) \frac{Eh}{1-\mu^{2}} \Big[-(\varkappa_{x} + \mu \varkappa_{y}) \frac{\partial u}{\partial x} - (\mu \varkappa_{x} + \varkappa_{y}) \frac{\partial v}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial x^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y^{2}} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial^{2}w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial w}{\partial y} \frac{\partial w}{\partial y} + \frac{1-\mu}{2} \frac{\partial w}{\partial y} \frac{\partial w}{\partial y} + \frac{1-\mu}{2}$$

$$+ \left(\varkappa_{x}^{2} + \varkappa_{y}^{2} + 2\mu\varkappa_{x}\varkappa_{y}\right)w - \frac{\varkappa_{x} + \mu\varkappa_{y}}{2}\left(\frac{\partial w}{\partial x}\right)^{2} - \frac{\varkappa_{x} + \mu\varkappa_{y}}{2}\left(\frac{\partial w}{\partial y}\right)^{2}\right] - \frac{Eh}{1 - \mu^{2}}\frac{\partial}{\partial x}\left[\frac{\partial w}{\partial x}\left(1 - R^{*}\right)\left(\frac{\partial u}{\partial x} + \mu\frac{\partial v}{\partial y} - (\varkappa_{x} + \mu\varkappa_{y})w\right) + \frac{1 - \mu}{2}\frac{\partial w}{\partial y}\left(1 - R^{*}\right)\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right] - \frac{Eh}{1 - \mu^{2}}\frac{\partial}{\partial y}\left[\frac{\partial w}{\partial y}\left(1 - R^{*}\right)\left(\mu\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} - (\mu\varkappa_{x} + \varkappa_{y})w\right) + \frac{1 - \mu}{2}\frac{\partial w}{\partial x}\left(1 - R^{*}\right)\left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x}\right)\right],$$

 \varkappa_x, \varkappa_y — главные кривизны поверхности оболочки; D — цилиндрическая жесткость оболочки; μ, E, ρ — коэффициент Пуассона, модуль упругости и плотность материала обо-

лочки;
$$h$$
 — толщина оболочки; R^* — интегральный оператор: $R^*\varphi(t)=\int\limits_0^t R(t-\tau)\varphi(\tau)\,d\tau;$

 $R(t-\tau)$ — ядро релаксации; аэродинамическое давление q, действующее на оболочку, определяется по теории Ильюшина [5].

Граничные условия имеют вид

$$x = 0, x = a$$
: $w = 0, v = 0, N_x = 0, M_x = 0,$
 $y = 0, y = b$: $w = 0, u = 0, N_y = 0, M_y = 0.$

При изгибе в срединной поверхности возникают нормальные и касательные усилия:

$$N_x = \frac{Eh}{1 - \mu^2} (1 - R^*) (\varepsilon_x + \mu \varepsilon_y) \quad (x \rightleftharpoons y), \qquad N_{xy} = \frac{Eh}{2(1 + \mu)} (1 - R^*) \varepsilon_{xy}.$$

Здесь ε_x , ε_y , ε_{xy} — компоненты конечной деформации, определяемые формулами

$$\varepsilon_x = \frac{\partial u}{\partial x} - \varkappa_x w + \frac{1}{2} \left(\frac{\partial w}{\partial x} \right)^2, \quad \varepsilon_y = \frac{\partial v}{\partial y} - \varkappa_y w + \frac{1}{2} \left(\frac{\partial w}{\partial y} \right)^2, \quad \varepsilon_{xy} = \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} + \frac{\partial w}{\partial x} \frac{\partial w}{\partial y}.$$

Моменты M_x , M_y , M_{xy} определяются через функцию прогиба w:

$$M_x = -D(1 - R^*) \left(\frac{\partial^2 w}{\partial x^2} + \mu \frac{\partial^2 w}{\partial y^2} \right), \qquad M_y = -D(1 - R^*) \left(\frac{\partial^2 w}{\partial y^2} + \mu \frac{\partial^2 w}{\partial x^2} \right),$$
$$M_{xy} = D(1 - \mu)(1 - R^*) \frac{\partial^2 w}{\partial x \partial y}.$$

Приближенное решение системы (1) будем искать в виде

$$u(x,y,t) = \sum_{n=1}^{N} \sum_{m=1}^{M} u_{nm}(t) \cos \frac{n\pi x}{a} \sin \frac{m\pi y}{b},$$

$$v(x,y,t) = \sum_{n=1}^{N} \sum_{m=1}^{M} v_{nm}(t) \sin \frac{n\pi x}{a} \cos \frac{m\pi y}{b},$$

$$w(x,y,t) = \sum_{n=1}^{N} \sum_{m=1}^{M} w_{nm}(t) \sin \frac{n\pi x}{a} \sin \frac{m\pi y}{b}.$$
(2)

Подставляя (2) в систему (1) и используя метод Бубнова — Галеркина, в безразмерных переменных x/a, y/b, u/h, v/h, w/h, $V_{\infty}t/a$ (сохраняя прежние обозначения) получим систему интегродифференциальных уравнений

$$\ddot{u}_{kl} + (1 - R^*) M_E \pi^2 \left(\alpha_{kl} u_{kl} + g_{kl} v_{kl} + \omega_k w_{kl} + \frac{k_g}{\pi \lambda_1} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} D_{klnmir} w_{nm} w_{ir} \right) = 0,$$

$$\ddot{v}_{kl} + (1 - R^*) M_E \pi^2 \Big(g_{kl} u_{kl} + \beta_{kl} v_{kl} + \lambda \omega_l w_{kl} + \frac{k_g \lambda}{\pi \lambda_1} \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} E_{klnmir} w_{nm} w_{ir} \Big) = 0,$$

$$\ddot{w}_{kl} + M_{\lambda} \dot{w}_{kl} + (1 - R^*) \Omega \Big(d_k u_{kl} + s_1 v_{kl} + \omega_{kl} w_{kl} - k_g \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} p_{klnmir} w_{nm} w_{ir} \Big) -$$

$$- k_g \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} w_{nm} (1 - R^*) \{ A_{klnmir} u_{ir} + B_{klnmir} v_{ir} + C_{klnmir} w_{ir} \} \Omega +$$

$$+ \chi M_p \Big(2\lambda_1 M^* \sum_{n=1}^{N} \gamma_{nk} w_{nl} + \frac{\chi + 1}{4} (M^*)^2 k_a \sum_{n,i=1}^{N} \sum_{m,r=1}^{M} \Gamma_{klnmir} w_{nm} w_{ir} \Big) = 0,$$

$$k = \overline{1, N}, \qquad l = \overline{1, M},$$

где

$$\Omega = \frac{M_E}{1 - \mu^2}, \qquad \alpha_{kl} = \frac{k^2}{1 - \mu^2} + \frac{l^2 \lambda^2}{2(1 + \mu)}, \qquad \beta_{kl} = \frac{k^2}{2(1 + \mu)} + \frac{\lambda^2 l^2}{1 - \mu^2},$$

$$\omega_k = (\varkappa_x + \mu \varkappa_y) \frac{k\beta_1 \lambda_1}{\pi(1 - \mu^2)}, \qquad g_{kl} = \frac{kl\lambda}{2(1 - \mu)}, \qquad d_k = (\varkappa_x + \mu \varkappa_y)k\pi\lambda_1\beta_1,$$

$$\omega_{kl} = \frac{\pi^4}{12\lambda_1^2} (k^2 + l^2 \lambda^2)^2 + (\varkappa_x^2 + \varkappa_y^2 + 2\mu \varkappa_x \varkappa_y)\lambda_1^2(\beta_1)^2,$$

$$\omega_l = (\mu \varkappa_x + \varkappa_y) \frac{l\beta_1 \lambda_1}{\pi(1 - \mu^2)}, \qquad M_E = \frac{E}{\rho V_\infty^2}, \qquad M_p = \frac{p_\infty}{\rho V_\infty^2}, \qquad \lambda_1 = \frac{a}{h}, \qquad \beta_1 = \frac{h}{R},$$

$$D_{klnmir} = \frac{ni^2}{1 - \mu^2} \Delta_{1klnmir} + \frac{nr^2 \lambda^2}{2(1 + \mu)} \Delta_{1klnmir} - \frac{imr\lambda^2}{2(1 - \mu)} \Delta_{2klnmir}, \qquad M_\lambda = \frac{\chi\lambda_1}{\lambda} M_p,$$

$$E_{klnmir} = \frac{mr^2 \lambda^2}{1 - \mu^2} \Delta_{3klnmir} + \frac{mi^2}{2(1 + \mu)} \Delta_{3klnmir} - \frac{nir}{2(1 - \mu)} \Delta_{4klnmir}, \qquad M^* = \frac{V}{V_\infty},$$

$$s_1 = (\mu \varkappa_x + \varkappa_y)l\pi\lambda^2\beta_1, \quad p_{klnmir} = (\varkappa_x + \mu \varkappa_y)\beta_1n^2\Delta_{5klnmir}/2 + (\varkappa_y + \mu \varkappa_x)\beta_1\lambda m^2\Delta_{6klnmir}/2,$$

$$A_{klnmir} = (\pi/\lambda_1)[(n^2i/\lambda + m^2i\lambda\mu)\Delta_{7klnmir} + 2(1 - \mu)nmr\lambda\Delta_{8klnmir} - -ni(i^2/\lambda + r^2\lambda)\Delta_{5klnmir} - (1 - \mu)mir\lambda\Delta_{6klnmir}],$$

$$B_{klnmir} = (\pi/\lambda_1)[(n^2r\mu + m^2r\lambda)\Delta_{7klnmir} + 2(1 - \mu)nmi\Delta_{8klnmir} - -nir(1 + \mu)\Delta_{5klnmir} - m(i^2 + \lambda^2r^2)\Delta_{6klnmir}],$$

$$C_{klnmir} = (n\beta_1/\lambda)(\varkappa_x + \mu \varkappa_y)(n\Delta_{7klnmir} - i\Delta_{5klnmir}) + m\lambda\beta_1(\varkappa_x \mu + \varkappa_y)(m\Delta_{7klnmir} - r\Delta_{6klnmir}),$$

$$\Gamma_{klnmir} = ni(\gamma_{k+n+i} - \gamma_{n-k+i} - \gamma_{n-k-i} + \gamma_{k+n-i})(\gamma_{m-r+l} - \gamma_{m-r-l} - \gamma_{m-r+l} + \gamma_{m+r-l}),$$

$$\Delta_{1klnmir} = \gamma_{1kni}\gamma_{3lmr}, \quad \Delta_{2klnmir} = \gamma_{2kni}\gamma_{3lmr}, \quad \Delta_{3klnmir} = \gamma_{3kni}\gamma_{1lmr},$$

$$\Delta_{4klnmir} = \gamma_{4kni}\gamma_{2lmr}, \quad \Delta_{5klnmir} = \gamma_{4kni}\gamma_{3lmr}, \quad \Delta_{6klnmir} = \gamma_{4kni}\gamma_{4lmr},$$

$$\gamma_{1kni} = \gamma_{k+n+i} - \gamma_{k+n-i} - \gamma_{k-n-i} + \gamma_{k-n-i}, \quad \gamma_{2kni} = \gamma_{k+n+i} - \gamma_{k-n-i} - \gamma_{k-n-i} + \gamma_{k+n-i},$$

$$\begin{split} \gamma_{3kni} &= \gamma_{k-n+i} + \gamma_{k+n-i} - \gamma_{k-n-i} - \gamma_{k+n+i}, \quad \gamma_{4kni} = \gamma_{k-n-i} + \gamma_{k+n+i} + \gamma_{k-n+i} + \gamma_{k+n-i}, \\ \gamma_s &= \left\{ \begin{array}{ll} 0, & s = 0 \text{ или } s = 2, 4, 6, \dots, \\ 1/s, & s = 1, 3, 5, \dots, \end{array} \right. \end{split}$$

величины k_g, k_a — параметры геометрической и аэродинамической нелинейности.

2. Результаты численного решения. Для решения задачи о нелинейных колебаниях вязкоупругих пластин и непологих оболочек, описываемой системой уравнений (3), используем численный метод [6], основанный на применении квадратурных формул.

Систему (3) можно записать в интегральной форме, дважды проинтегрировав ее по t. Затем, полагая $t=t_i,\ t_i=i\Delta t,\ i=1,2,\dots$ ($\Delta t={\rm const}$) и заменяя интегралы квадратурными формулами трапеций для вычисления $u_{ikl}=u_{kl}(t_i),\ v_{ikl}=v_{kl}(t_i)$ и $w_{ikl}=w_{kl}(t_i),$ можно получить рекуррентные формулы, которые из-за громоздкости в данной работе не приводятся. Вычисления проводились для ядра Колтунова — Ржаницына $R(t)=A\exp{(-\beta t)}t^{\alpha-1},\ 0<\alpha<1$.

На основе разработанного алгоритма создан пакет прикладных программ на языке Delphi.

Результаты вычислений представлены в таблице и на рис. 1–3.

Критическую скорость потока V_{cr} определим как скорость, при которой происходит незатухающее гармоническое колебание с возрастающей амплитудой. При $V > V_{cr}$ происходит колебательное движение с быстровозрастающими амплитудами, что может привести к разрушению конструкции. В случае $V < V_{cr}$ скорость потока меньше критической и амплитуда колебаний вязкоупругой пластины затухает.

Исследовалось влияние вязкоупругих свойств материала пластины на критическую скорость потока. Результаты вычислений, представленные в таблице и на рис. 1–3, показывают, что решения упругих (A=0) и вязкоупругих (A>0) задач существенно различаются. Например, при увеличении значения параметра A от нуля до 0,1 критическая скорость потока уменьшается на 44,7~%.

На рис. 1 показано изменение во времени перемещений $w,\,u,\,v$ цилиндрической панели при различных значениях параметра A. Видно, что с увеличением параметра A амплитуда и частота колебаний уменьшаются.

Зависимость критической скорости потока от физико-механических и геометрических параметров пластины

A	α	β	a/h	λ	V_{cr}
0 0,005 0,01 0,10	0,25	0,05	200	1,0	750 602 523 415
0,01	0,10 0,40 0,60	0,05	200	1,0	412 528 563
0,01	0,25	0,10 0,01	200	1,0	520 525
0,01	0,25	0,05	150 180 220	1,0	830 616 410
0,01	0,25	0,05	200	1,8 2,2 2,5	552 605 653

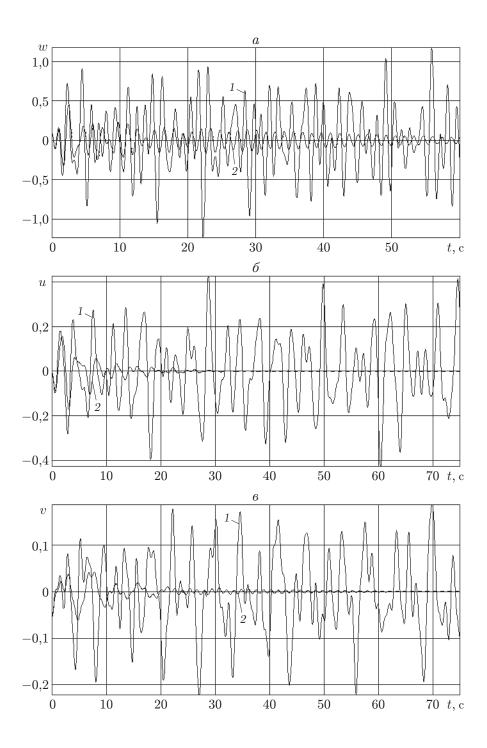


Рис. 1. Зависимость перемещений w,~u,~v цилиндрической панели от времени при различных значениях параметра вязкости ($\alpha=0.25;~\beta=0.05;~\beta_1=0.05;~\lambda=1.5;~\lambda_1=75;~\varkappa_x=0;~\varkappa_y=1;~V=527$ м/с): 1-A=0;~2-A=0.1

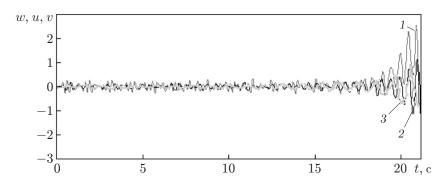


Рис. 2. Зависимость перемещений w (кривая 1), u (кривая 2), v (кривая 3) вязкоупругой пластины ($A=0{,}001$) от времени при скоростях, превышающих критическую

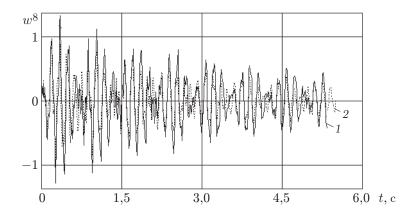


Рис. 3. Зависимость прогиба цилиндрической панели от времени без учета (кривая 1) и с учетом (кривая 2) геометрической и аэродинамической нелинейностей ($A=0,1;~\alpha=0,7;~\beta=0,05;~\beta_1=0,05;~\lambda=6;~\lambda_1=30;~N=3;~\varkappa_x=0;~\varkappa_y=1;~V=450~\mathrm{m/c}$): $1-k_g=0,~k_a=0;~2-k_g=1,~k_a=1$

Ниже приведены результаты исследования влияния параметра сингулярности α на критическую скорость потока. С увеличением α эта скорость возрастает. Например, различие значений критической скорости при $\alpha = 0.1$ и $\alpha = 0.6$ составляет 36.7 %.

На рис. 2 представлены зависимости перемещений $w,\,u,\,v$ вязкоупругой пластины от времени при скоростях, превышающих критическую. С течением времени амплитуда колебаний быстро возрастает и движение пластины становится флаттерным.

Из таблицы следует, что влияние параметра затухания β ядра наследственности на скорость потока незначительно по сравнению с влиянием параметров вязкости A и сингулярности α . Это подтверждает известные выводы о том, что с помощью экспоненциального ядра релаксации невозможно описать наследственные свойства материала конструкций.

Была вычислена критическая скорость V_{cr} потока при значениях относительной толщины пластины $\lambda_1 = 150, 180, 220$. Из полученных результатов следует, что с уменьшением толщины пластины (ростом параметра λ_1) критическая скорость потока при обтекании вязкоупругой пластины уменьшается.

Исследовалось влияние параметра удлинения пластины $\lambda = a/b$ на критическую скорость потока. С увеличением λ критическая скорость повышается. Это объясняется тем, что с ростом λ (при постоянном значении λ_1) уменьшается размер пластины в направле-

нии, перпендикулярном направлению течения, и, следовательно, повышается относительная жесткость системы.

На рис. З показано изменение прогиба цилиндрической панели с учетом и без учета геометрической и аэродинамической нелинейностей. Видно, что учет геометрической и аэродинамической нелинейностей оказывает значительное влияние на амплитуду и частоту колебаний цилиндрической панели, причем в начале движения результаты, полученные с использованием линейной и нелинейной теорий, практически совпадают, но со временем амплитуда нелинейных колебаний уменьшается быстрее, чем амплитуда линейных колебаний.

ЛИТЕРАТУРА

- 1. **Власов В. З.** Общая теория оболочек и ее приложения к технике. М.: Гостехтеоретиздат, 1949.
- 2. **Галимов К. З.** К общей теории пластин и оболочек при конечных перемещениях и деформациях // Прикл. математика и механика. 1951. Т. 15, вып. 6. С. 723–742.
- 3. **Григолюк Э. И.** Нелинейное деформирование тонкостенных конструкций / Э. И. Григолюк, В. И. Мамай. М.: Наука. Физматлит, 1997.
- 4. Karman Th. Collected works. London, 1956. V. 1.
- 5. **Ильюшин А. А.** Закон плоских сечений в аэродинамике больших сверхзвуковых скоростей // Прикл. математика и механика. 1956. Т. 20, вып. 6. С. 733–755.
- 6. **Бадалов Ф. Б.** Методы решения интегральных и интегродифференциальных уравнений наследственной теории вязкоупругости. Ташкент: Мехнат, 1987.

Поступила в редакцию 15/XI~2004~г., в окончательном варианте — 2/V~2006~г.