УДК 534.222

ТЕПЛОТА СГОРАНИЯ ПОРОШКА АІ/В И ЭФФЕКТИВНОСТЬ ЕГО ПРИМЕНЕНИЯ В МЕТАЛЛИЗИРОВАННЫХ ВЗРЫВЧАТЫХ ВЕЩЕСТВАХ ПРИ ПОДВОДНОМ ВЗРЫВЕ

С. Сюй¹, Ю. Чень¹, С. Чень², Д. Ву¹, Д.-Б. Лю¹

¹Нанкинский научно-технологический университет, 210094 Нанкин, Китай, xusen2015@163.com ²Шанхайское управление по инспекции въезда-выезда и карантину, 200135 Шанхай, Китай

Методом подводного взрыва исследовали детонационные свойства металлизированных взрывчатых веществ, содержащих порошкообразные алюминий и бор. Теплоту сгорания определяли в кислородной калориметрической бомбе (калориметр Parr 6200, Parr Instrument Company, CША). Установлено, что при увеличении содержания порошка бора в смеси теплота сгорания смеси возрастает, а эффективность сгорания бора уменьшается. Наибольшая теплота сгорания иля 38.2 МДж/кг получена при содержании бора 40 %. Все исследованные металлизированные взрывчатые составы RDX/Al/B/AP имеют более высокую энергию детонации в воде (в том числе более высокую энергию ударной волны и пузыря), чем заряд тротила. Наибольшее значение полной полезной энергии составило 6.82 МДж/кг при содержании бора в смеси 10 %. Это на 3.4 % выше, чем полная энергия состава RDX/Al/AP, и в 2.1 раза превышает энергию, выделяемую при взрыве тротила той же массы.

Ключевые слова: порошки алюминия, порошки бора, теплота сгорания, подводный взрыв, тротиловый эквивалент.

DOI 10.15372/FGV20160314

ВВЕДЕНИЕ

Металлические порошки с большой теплотой сгорания вызывают интерес как материалы с высокой плотностью энергии. Их добавляют к метательным взрывчатым веществам (BB) и к порохам в качестве горючего. С начала XX в. одной из широко распространенных добавок является алюминий. Он повышает метательное действие BB и увеличивает энергию пузыря в подводных взрывах [1–3].

Многочисленные работы [4–9] последних лет по исследованию влияния размера частиц и содержания алюминия на эксплуатационные качества и чувствительность различных BB показали, что с уменьшением размера частиц порошка алюминия скорость детонации уменьшается, а теплота взрыва возрастает.

Периодическая таблица химических элементов предсказывает существование элементов [10–13], которые потенциально могут обеспечить более высокую теплоту сгорания по

сравнению с алюминием. К ним относится, например, бор. Теплота его сгорания примерно в два раза выше, чем у алюминия. За последние 30 лет возрос интерес к исследованию горения бора [14]. Несмотря на исключительные характеристики бора как топлива, он редко достигает своего потенциала в ракетных двигателях, в которых требуется полное сгорание. В работах [15–17] описан двухстадийный процесс горения порошков бора. Первый этап авторы связывают с горением его частиц, покрытых изначально существовавшим слоем оксида бора. Температуры плавления и горения оксида бора равны 450 и 2065 °С [18], а самого бора — соответственно 2076 и 3864 °C. При нагреве частицы бора выше температуры плавления оксида бора слой оксида удаляется. Удаление жидких оксидных слоев играет наиболее важную роль в сжигании бора. Второй этап процесса обусловлен полноценным сгоранием открытых порошков бора.

Исследования [15] показали, что при одних и тех же размерах частиц и в аналогичных средах порошки бора горят до четырех раз дольше, чем порошки алюминия. Это означает, что для увеличения периода пульсаций и энергии пузыря при подводном взрыве бор можно счи-

[©] Xu Sen¹, Chen Yuan¹, Chen Xiang², Wu Dejun¹, Liu Dabin¹, 2016.

¹School of Chemical Engineering, Nanjing University of Science and Technology, 210094 Nanjing, P. R. China. ²Shanghai Enter-Exit Inspection and Quarantine Bureau, 200135 Shanghai, P. R. China.

тать хорошей добавкой в металлизированные BB. B работах [19, 20] показано, что порошок бора увеличивает теплоту взрыва BB, зависимость имеет линейный характер (в диапазоне $8 \div 20$ %). B работе [21] исследовалась смесь RDX/Al/B/HTPB состава 45/10/20/25. Авторы обнаружили, что квазистатическое давление в закрытой камере, создаваемое этим составом, в 1.3 раза выше, чем давление, создаваемое составом на основе чистого алюминия (RDX/Al/HTPB, 45/38/17).

В настоящей работе проанализированы взрывчатые составы RDX/Al/AP и RDX/Al/B/AP с различным содержанием порошков бора и алюминия и исследованы их характеристики при подводном взрыве.

1. ЭКСПЕРИМЕНТ

1.1. Теплота сгорания

Перед сжиганием образца в кислородной калориметрической бомбе необходимо определить теплоемкость системы. Калориметрическая бомба была откалибрована при сгорании бензойной кислоты, для которой известны масса и теплота сгорания. Остаток бензойной кислоты титровали стандартным раствором гидроксида натрия (NaOH) и фенолфталеина:

$$C_6H_5COOH + NaOH \rightarrow C_6H_5COONa + H_2O.$$

Протестировано десять образцов бензойной кислоты массой ≈ 1.0 г. Калибровочный коэффициент C для кислородной калориметрической бомбы рассчитывали по формуле

$$C = \frac{Q_m m + Q_1 m_1}{\Delta T},\tag{1}$$

где Q_m — теплота сгорания бензойной кислоты, 26.453 МДж/кг; m — масса бензойной кислоты, г; Q_1 — теплота сгорания воспламеняющей смеси, Дж/г; m_1 — масса сгоревшей смеси, г; ΔT — повышение температуры воды в ванне.

Для определения теплоты сгорания металлических смесей применялась кислородная калориметрическая бомба Parr 6200 (Parr Instrument Company, USA). Стационарный полуавтоматический калориметр Parr 6200 с разрешением по температуре 0.0001 К заправлялся кислородом до достижения давления

200 атм, энергия сгорания определялась до значения 33 кДж (8 ккал). Образец металлического порошка массой ≈ 0.7 г помещали в стеклянную капсулу диаметром 2.5 см и высотой 1 см. Капсула была снабжена воспламеняющей проволочкой, присоединенной к двум электродам. Бомба герметизировалась, и в течение 1 мин в ней создавалось давление чистого кислорода. Затем герметичную бомбу помещали в водяную баню массой 1820 г, которая находилась внутри адиабатического контейнера. После достижения теплового равновесия системы с окружающей средой образец воспламенялся и сгорал при давлении кислорода 3.0 МПа. Теплоту сгорания образца Q_s при комнатной температуре определяли стандартным методом ASTM D240 [22] по выражению

$$Q_s = \frac{C\Delta T - Q_1 m_1}{m_s},\tag{2}$$

где m_s — масса образца, г.

Теоретическое значение теплоты сгорания Q_t , выделяемой при полном сгорании вещества в кислороде, вычисляли как разность между теплотами образования продуктов и реагентов. Теплота сгорания элемента Q_p эквивалентна теплоте образования продуктов, потому что теплоты образования как элемента, так и кислорода равны нулю. Используемые формулы имеют вид

$$Q_p = \Delta H, \tag{3}$$

$$Q_t = \sum_{i=1}^n m_i Q_{p,i},\tag{4}$$

где ΔH — разница энтальпий продуктов и реагентов, кДж/кг; m_i — масса каждого элемента.

1.2. Подводный взрыв

В 1970-х годах для измерения энергии ВВ был применен подводный взрыв. В последние годы этот метод стал эффективным средством оценки мощности ВВ [23, 24]. При детонации заряда ВВ в воде твердый взрывчатый материал переходит в газообразные продукты реакции с чрезвычайно высоким давлением. Давление передается в окружающую воду и распространяется в виде ударной волны во всех направлениях. Вслед за ударной волной возникают и распространяются другие импульсы давления [25, 26]. В настоящей работе ВВ предполагаются гомогенными. Дополнительно предполагается, что имеет место стационарная детонация и что та часть заряда, через которую проходит детонационная волна, полностью переходит в газообразные продукты.

Полная энергия E_u определяется суммой энергии ударной волны E_s , энергии пузыря E_b и диссипированной в воде энергии E_d :

$$E_u = E_s + E_b + E_d. \tag{5}$$

Диссипирование части энергии ударной волны в воде происходит тем быстрее, чем выше давление. Диссипированная энергия не повреждает структуру, а оставшаяся часть энергии называется эффективной энергией ударной волны.

Все полученные в экспериментах профили давления имеют одинаковый характер: в начале сигнала наблюдается острый пик избыточного давления, вслед за которым давление быстро уменьшается — наблюдается экспоненциальный спад до гидростатического давления, описываемый выражением [27]

$$p(t) = p_m \exp(-t/\theta), \tag{6}$$

где p(t) — зависимость избыточного давления (свыше гидростатического давления) от времени; p_m — пиковое давление ударной волны; θ постоянная времени.

Без учета диссипированной энергии энергия ударной волны может быть задана выражением [27]

$$E_s = \frac{4\pi R^2}{w\rho_0 c_0} \int_{0}^{6.7\theta} p^2(t)dt,$$
 (7)

где R — расстояние от заряда до датчика; w — масса заряда; ρ_0 — плотность воды, обычно принимается равной 1 000 кг/м³; c_0 — скорость звука в воде, как правило, $c_0 = 1525$ м/с.

Энергия пузыря является функцией как первого периода пульсаций пузыря τ , так и массы BB и может быть описана [23, 27, 28] выражением

$$E_b = \frac{0.675 p_0^{5/2}}{w \rho_0^{3/2}} \tau.$$
(8)

Заряд и пьезорезистивный датчик (PCB Piezotronics, Inc., диапазон — до 68 950 кПа,

Рис. 1. Схема подводного взрыва

чувствительность 0.073 мВ/кПа (± 15 %)) помещались на глубине 4 м на расстоянии 3 м друг от друга. Датчик регистрировал сигналы избыточного давления и первый период пульсаций пузыря. Эксперименты проводили в бассейне диаметром 8 м и глубиной 8 м. Схема подводного взрыва показана на рис. 1.

1.3. Материалы

Исследовались порошки алюминия со сферическими частицами диаметром 2 мкм и аморфного бора с частицами размером 0.1 мкм. Фотографии порошков, полученные сканирующим электронным микроскопом, представлены на рис. 2.

Было подготовлено 7 композиций порошков. Их обозначения и составы даны в табл. 1.

Взрывчатая смесь состояла из гексогена (36 % RDX), перхлората аммония (20 % AP), металлических порошков (35 %), воска $(CH_2)_n$ и других добавок (9 %), включая связующее вещество HTPB. Использовался коммерческий сорт гексогена. Средний размер частиц гексогена и перхлората аммония составлял 30 мкм.

Изготавливались прессованные цилиндрические заряды ВВ массой 400 г, диаметром 76 мм, высотой 47÷59 мм, плотность зарядов приведена в табл. 2. Для инициирования заряда ВВ применялся стандартный детонатор и бустерный заряд массой 10 г, изготовленный из флегматизированного гексогена. Энергия, выделяемая бустерным зарядом, передавалась образцу в виде инициирующей ударной волны,

a δ 30kV 5 MKM 12 28 SEI 30kV 5 MKM 12 30 SEI

Рис. 2. Фотографии порошков алюминия (*a*) и бора (*б*), полученные сканирующим электронным микроскопом

Массовое содержание, %		
Al	В	
100	0	
90	10	
80	20	
70	30	
60	40	
50	50	
0	100	
	Массовое со, Al 100 90 80 70 60 50 0	

Таблица 1 Состав металлических порошков

Т	аблиц	a	2
Плотность	зарядов	B	3

Образец	ρ , г/см ³
M-1	1.85
M-2	1.81
M-3	1.80
M-4	1.79
M-5	1.76
M-6	1.71
TNT	1.50

амплитуда которой соответствовала теплоте взрыва этого заряда.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

2.1. Теплота сгорания

В табл. З приведены экспериментальные (Q_e) и теоретические (Q_t) значения теплоты сгорания металлических порошков, а также эффективность сгорания (*CR*). Предполагалось, что эффективность сгорания алюминия — величина постоянная и может быть рассчитана по формуле

$$(CR)_{\rm Al} = \frac{Q_{e,\rm Al}}{Q_{t,\rm Al}}.$$
(9)

В этом случае эффективность сгорания бора в металлических смесях можно определить по соотношению

 ${\rm T}\, a \, б \, \pi \, u \, {\rm I} \, a \, \, 3$ Теплота сгорания металлических порошков

Образец $Q_e,$ МПж/и	$Q_e,$ M $\Pi_W/_{VP}$	<i>Q</i> _t [18], МДж/кг	Эффективность сгорания	
	МДЖ/КГ		Al	В
M-1	30.3 ± 0.2	31.1	97.7	_
M-2	33.0 ± 0.2	33.8	97.7	97.0
M-3	35.0 ± 0.2	36.6	97.7	91.0
M-4	36.3 ± 0.2	39.4	97.7	85.6
M-5	38.2 ± 0.3	42.2	97.7	85.0
M-6	37.4 ± 0.6	45.0	97.7	75.5
M-7	15.6 ± 0.2	58.9		26.5

Рис. 3. Зависимости величи
н Q_e и $(CR)_{\rm B}$ от содержания бора

$$(CR)_{\rm B} = \frac{Q_e - CR_{\rm Al}Q_{t,\rm Al}wt_{\rm Al}}{Q_{t,\rm B}wt_{\rm B}},\qquad(10)$$

где wt — массовая концентрация вещества.

Из приведенных результатов можно сделать общий вывод о влиянии состава на теплоту сгорания. При увеличении содержания порошка бора теплота сгорания металлических смесей увеличивается. Наибольшее ее значение 38.2 МДж/кг получено при содержании бора 40 %, при дальнейшем его повышении теплота сгорания уменьшается.

Приведенная в табл. 3 теплота сгорания чистого бора составляет всего лишь 15.6 МДж/кг, а эффективность сгорания равна 26.5 %. Это означает, что порошок бора ведет себя как инертное вещество в этом процессе горения. Даже в кислородосодержащей среде теплота и эффективность сгорания бора остаются низкими. Зависимость теплоты и эффективности сгорания бора от его содержания показана на рис. 3. При добавлении в смесь алюминиевого порошка эффективность сгорания бора возрастает. С увеличением содержания бора в смеси эффективность его сгорания уменьшается. В смеси состава 10 % бора и 90 % алюминия эффективность сгорания бора достигает 97.0 % значение, почти равное коэффициенту полного сгорания бора.

2.2. Энергия ударной волны

На рис. 4 приведены типичные зависимости избыточного давления от времени для различных взрывчатых составов. Профили удар-

Рис. 4. Зависимость избыточного давления от времени для различных взрывчатых составов

Таблица 4	1
Избыточное давление и энергия ударной волнь	J
в различных составах ВВ	

Образец	p_m , MПа	$E_s, \mathrm{M} \ensuremath{\mathrm{J}} \ensuremath{\mathrm{k}} \ensuremath{\mathrm{\Gamma}}$
M-1	10.42 ± 0.20	1.05 ± 0.01
M-2	10.16 ± 0.04	1.01 ± 0.02
M-3	10.31 ± 0.16	0.98 ± 0.03
M-4	9.76 ± 0.05	1.00 ± 0.02
M-5	9.85 ± 0.25	0.96 ± 0.03
M-6	9.92 ± 0.14	0.80 ± 0.01
TNT	9.41 ± 0.31	0.88 ± 0.02

ных волн показывают, что чем больше содержание бора в смеси, тем быстрее спадает избыточное давление. Энергия ударной волны рассчитывалась по уравнению (8), результаты представлены в табл. 4. Видно, что избыточное давление металлизированных ВВ выше, чем давление от взрыва заряда тротила той же массы и на том же расстоянии. При содержании бора менее 20 % значения избыточного давления различных составов ВВ в основном равны. При содержании бора выше 20 % избыточное давление относительно низкое. Энергии ударных волн во всех металлизированных ВВ примерно равны: $\approx 1.000 \text{ МДж/кг}$, за исключением состава М-6. Похоже, что с увеличением массовой доли бора энергия ударной волны постепенно уменьшается (рис. 5).

Таблица 5

Рис. 5. Зависимость энергии ударной волны от содержания бора

2.3. Энергия пузыря

Типичные профили избыточного давления в первом периоде пульсаций пузыря при взрыве различных составов ВВ показаны на рис. 6. Приведенные в табл. 5 данные свидетельствуют о зависимости между первым периодом пульсаций пузыря (энергией пузыря) и концентрацией бора. При содержании порошка бора во взрывчатой смеси до 10 % (в этой точке эффективность сгорания бора достигает максимума) наблюдаются максимальная длительность периода пульсации пузыря и наибольшая энергия пузыря (рис. 7). Это означает, что уме-

Рис. 6. Профили избыточного давления в первом периоде пульсации пузыря при взрыве различных составов ВВ в воде на расстоянии 3 м от заряда

Образец	<i>t</i> , мс	$E_b, M Д ж / \kappa \Gamma$
M-1	242.8 ± 1.3	5.65 ± 0.090
M-2	245.0 ± 0.3	5.81 ± 0.02
M-3	240.2 ± 0.5	5.47 ± 0.03
M-4	236.2 ± 0.2	5.21 ± 0.01
M-5	219.1 ± 2.4	4.15 ± 0.14
M-6	217.6 ± 0.2	4.07 ± 0.01
TNT	180.9 ± 0.3	2.34 ± 0.01

Длительность первого периода пульсаций

и энергия пузыря для различных составов ВВ

Рис. 7. Зависимость энергии и длительности первого периода пульсации пузыря от содержания бора

ренный прирост содержания бора в алюминизированном ВВ может увеличить энергию пузыря.

Из-за медленной скорости окисления бора в металлических смесях эта реакция требует высокой температуры окружающей среды, которая может возникнуть в результате реакции окисления алюминия. При взрыве заряда ВВ в воде происходит выброс непрореагировавших металлов. Ударная волна распространяется вне пульсирующего пузыря. В отличие от быстрой детонации гексогена, металлы реагируют гораздо медленнее. При расширении пульсирующего пузыря непрореагировавшие металлы продолжают участвовать в реакции. Более высокая энергия пузыря при взрыве состава M-2 означает, что у этого состава коэффициент утилизации на единицу массы выше, чем у алюминия в металлизированных ВВ.

2.4. Полная энергия

Если пренебречь диссипированной энергией E_d , то полную энергию E_u , называемую также полезной полной энергией [25], можно рассчитать по формуле

$$E_u = E_s + E_b. \tag{5'}$$

Результаты расчета, приведенные в табл. 6, показывают, что полная энергия металлизированных ВВ вначале возрастает, а затем уменьшается с увеличением содержания бора (рис. 8). Состав М-2 с концентрацией бора 10 % дает самую высокую полную энергию (6.82 МДж/кг) при подводном взрыве. Это примерно на 3.4 % больше, чем у состава М-1 (чистый алюминий), и на 40 % больше, чем у состава М-6 (50 % алюминия и 50 % бора). Это означает, что полезная энергия состава М-2 выше энергии, выделяемой при взрыве тротила той же массы, в 2.1 раза.

Таблица 6 Полная энергия различных составов ВВ

Образец	$E_u, \mathrm{M} \ensuremath{\mathrm{J}} \ensuremath{\mathrm{K}} \ensuremath{\mathrm{\Gamma}}$
M-1	6.60 ± 0.03
M-2	6.82 ± 0.04
M-3	6.46 ± 0.06
M-4	6.20 ± 0.07
M-5	5.11 ± 0.09
M-6	4.87 ± 0.02
TNT	3.21 ± 0.06

Рис. 8. Зависимость полной энергии от содержания бора

Увеличение полезной энергии состава М-2 связано с более высокой теплотой сгорания порошка бора по сравнению с алюминиевым порошком. Однако бор имеет более высокие температуры плавления и воспламенения, и его энтальпию окисления трудно извлечь полностью. При взрыве первым реагирует гексоген, затем вступает в реакцию алюминий и наконец бор. Полная энергия увеличивается за счет окисления бора.

ЗАКЛЮЧЕНИЕ

Результаты подводных взрывов взрывчатых композиций, в состав которых входили разработанные металлические смеси (порошки бора и алюминия), показали следующее.

Теплота сгорания всех исследованных металлических смесей оказалась выше, чем теплота сгорания алюминизированного BB (состав M-1). С увеличением добавки бора в смесях теплота сгорания растет и достигает максимума при содержании бора 40 % (состав M-5), а при дальнейшем повышении его содержания снова падает. Эффективность сгорания бора в смесях с алюминием выше, чем у состава, содержащего только порошок бора (состав M-7); причем чем ниже содержание бора, тем выше эффективность сгорания.

Для всех металлизированных ВВ энергия взрыва в воде (включая энергию ударной волны и пузыря) выше энергии взрыва тротила. Содержание бора в металлических смесях слабо влияет на избыточное давление и на энергию ударной волны. Увеличение полной энергии в подводном взрыве происходит главным образом за счет энергии пузыря, на которую оказывает влияние эффективность сгорания металлических смесей. Среди исследованных выделяется состав М-2, имеющий наибольшую энергию пузыря и самую высокую полную полезную энергию. Последняя превышает энергию, выделяемую при взрыве тротила той же массы, в 2.1 раза.

ЛИТЕРАТУРА

- Wildegger-Gaissmaier A. E. Aspects of thermobaric weaponry // Mili. Tech. 2004. V. 28, N 6. — P. 125–126.
- Yen N. H., Wang L. Y. Reactive metals in explosives // Propell., Explos., Pyrotech. 2012. V. 37, N 2. P. 143–155.

- Cook M. A., Filler A. S., Keyes R. T. Aluminized explosives // J. Phys. Chem. 1957. V. 61, N 2. — P. 189–196.
- Brousseau P., Dorsett H. E., Cliff M. D., et al. Detonation properties of explosives containing nanometric aluminum powder // 12th Intern. Detonation Symp., 2002.
- Lefrancois A., Baudin G., Gallic C. L. Coudoing, nanometric aluminum powder influence on the detonation efficiency of explosives // 12th Intern. Detonation Symp., 2002.
- Gogulya M. F., Dolgoborodov A. Y., Makhov M. N., et al. Detonation performance of aluminized compositions based on BTNEN // 12th Intern. Detonation Symp., 2002.
- 7. Brousseau P., Cliff M. The effect of ultrafine aluminium powder on the detonation properties of various explosives // 32th Intern. Annu. Conf. of ICT, Karlsruhe, 2001.
- Trzciński W. A., Cudziło S., Szymańczyk L. Studies of detonation characteristics of aluminum enriched RDX compositions // Propell., Explos., Pyrotech. — 2007. — V. 32, N 5. — P. 392–400.
- Trzciński W. A., Cudziło S., Paszula J. Studies of free field and confined explosions of aluminium enriched RDX compositions // Propell., Explos., Pyrotech. — 2007. — V. 32, N 5. — P. 502– 508.
- Schaefer R., Nicolich S. M. Development and evaluation of new high blast explosives // 36th Intern. Annu. Conf. of ICT, Karlsruhe, 2005.
- Fischer S. H., Grubelich M. C. The Use of Combustible Metals in Explosive Incendiary Devices. — Sandia National Lab., 1996.
- Fischer S. H., Grubelich M. C. Explosive dispersal and ignition of combustible metals and thermite formulations // 46th Annu. Bomb & Warhead Tech. Symp., 1996.
- Anderson P. E., Cook P., Davis A., et al. Silicon fuel in high performance explosives // Propell., Explos., Pyrotech. — 2014. — V. 39, N 1. — P. 74–78.
- 14. Kuo K. K. Editors, Pein R. Combustion of Boron-based Solid Propellants and Solid Fuels. — Begell House, 1993.

- Maček A., Semple J. M. Combustion of boron particles at elevated pressure // 13th Symp. (Intern.) Combust.: Proc. — 1971. — P. 859–868.
- Maček A., Semple J. M. Combustion of boron particles atatmospheric pressure // Combust. Sci. Technol. — 1969. — V. 1, N 3. — P. 181–191.
- Maček A. Combustion of boron particles: experiment and theory // Symp. Combust. Proc. 1973. — P. 1401–1411.
- Speight J. G. Lange's Handbook of Chemistry. — N. Y.: McGraw-Hill, 2005.
- Koch E. C., Klapötke T. M. Boron-based high explosives // Propell., Explos., Pyrotech. — 2012. — V. 37, N 3. — P. 335–344.
- Makhov M. Explosion heat of boron-containing explosive composition // 35th Intern. Annu. Conf. of ICT, Karlsruhe, 2004.
- Lee K., Lee K., Kim J. Relationship between combustion heat and blast performance of aluminized explosives // 36th Intern. Annu. Conf. of ICT, Karlsruhe, 2005.
- ASTM D240-02. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. — 2007.
- Katsume T. Precisely measure explosive energy using explosive underwater method // Kogyo Kayaku. 1981. V. 4, N 4. P. 239–245.
- 24. Bjarnholt G., Holmberg R. Explosive expansion works in underwater detonations // Proc. 6th Symp. on Detonation, 1976.
- Arons A. B., Yennie D. R. Energy partition in underwater explosion phenomena // Rev. Mod. Phys. — 1948. — V. 20, N 3. — P. 519–535.
- Swisdak M. M., Jr. Explosion Effects and Properties. Pt II: Explosion Effects in Water. — DTIC Document, 1978.
- Cole R. H. Underwater Explosions. Princeton, N. J.: Princeton Univ. Press, 1948.
- John M. B. Numerical modelling of shock wave and pressure pulse generation by underwater explosions // Tech. Rep. DSTO-TR-0677. — Australian, 1998.

Поступила в редакцию 10/III 2015 г., в окончательном варианте — 7/V 2015 г.