УДК 539.3

СМЕШАННЫЕ ПОСТАНОВКИ ЗАДАЧ ИЗГИБА ОДНОРОДНЫХ УПРУГИХ ПЛАСТИН И БАЛОК

А. Д. Матвеев

Институт вычислительного моделирования СО РАН, 660036 Красноярск

Предлагаются смешанные постановки задач изгиба однородных пластин (балок), суть которых состоит в том, что для описания деформирования пластины (балки) в окрестности границы, по которой она закреплена, используются уравнения трехмерной задачи упругости, а в остальной области — уравнения задачи изгиба пластины (балки). На общей границе этих областей решения данных двух задач склеиваются. В смешанной постановке описывается трехмерное напряженное состояние в окрестности границ закрепления пластин (балок), что дает возможность учитывать сложный характер их крепления. При этом реализация метода конечных элементов для смешанных постановок задач изгиба пластин (балок) эффективнее, чем для известных трехмерных постановок.

Ключевые слова: однородные пластины и балки, трехмерная задача упругости, теории Кирхгофа и Рейсснера.

Введение. Как известно [1–5], постановки задач изгиба однородных пластин и балок основаны на гипотезах, которые накладывают определенные ограничения на поля перемещений, деформаций и напряжений, что порождает неустранимую погрешность в решениях. Кроме того, существующие теории изгиба пластин (балок) не учитывают сложный характер их крепления, например, в случае частично защемленной по торцу пластины (балки). В настоящее время активно обсуждаются достоинства и недостатки различных постановок задач изгиба пластин [3–7]. Трехмерные дискретные базовые модели пластин (балок), учитывающие любое крепление и обеспечивающие заданную погрешность решения, имеют большую размерность.

В данной работе предлагаются смешанные постановки задач изгиба упругих однородных пластин и балок [8], суть которых состоит в следующем. В окрестности границы крепления пластина (балка) рассматривается как трехмерное упругое тело, и для описания деформирования в этой окрестности используются уравнения трехмерной задачи теории упругости, а в остальной области — уравнения изгиба пластины типа Рейсснера [5] (балки Кирхгофа), на общей границе этих областей решения данных двух задач склеиваются.

Достоинства смешанных постановок задач изгиба состоят в следующем. Во-первых, они описывают трехмерное напряженное состояние в окрестности границ крепления пластин (балок), что позволяет учитывать сложный характер крепления. Во-вторых, путем варьирования некоторых геометрических параметров, которые содержатся в смешанных постановках, можно построить смешанную дискретную модель пластины (балки), согласно которой напряжения в окрестности крепления отличаются от напряжений, соответствующих базовой модели, на малую заданную величину. В-третьих, реализация метода конечных элементов (МКЭ) [9, 10] для смешанных дискретных моделей пластин (балок) требует существенно меньшего времени счета и объема памяти ЭВМ, чем реализация МКЭ для базовых моделей.

Рис. 1

1. Смешанные постановки задач изгиба пластин и балок. 1.1. Рассмотрим изотропную однородную линейно-упругую пластину постоянной толщины, которая в декартовой системе координат xyz занимает область V. Срединная плоскость пластины совпадает с плоскостью xOy. Пластина нагружена поверхностными силами q_z и закреплена на границе S_r . Обозначим через V_r окрестность границы S_r . Область V_r можно рассматривать как совокупность шаров радиуса $R_r \ge C_r$, центры которых являются точками границы S_r . Расчеты показывают, что целесообразно использовать значения $C_r \ge 3h_0$ (h_0 — толщина пластины). При этом выбирается такая форма области V_r , которая удобна для расчетов. Введем обозначения: u^r , v^r , w^r и u^0 , v^0 , w^0 — функции перемещений данной пластины в областях V_r и V_0 соответственно; S_H — общая граница областей V_r и V_0 ($V_0 = V - V_r$). С целью упрощения смешанную постановку задачи приведем для прямоугольной пластины размерами $a \times b$ (т. е. $V = a \times b \times h_0$), частично защемленной при x = 0. На рис. 1 крепление пластины показано штриховкой, $n_1 = 81$, $n_2 = 51$, $n_3 = 11$, a = 80h, b = 50h, $h_0 = 10h$. В этом случае граница S_H есть сечение пластины плоскостью x = H. Как известно, при равновесии пластины V на границе S_H при x = H выполняются следующие равенства:

$$u^r = u^0, \qquad v^r = v^0, \qquad w^r = w^0;$$
 (1)

$$\sigma_x^r = \sigma_x^0, \qquad \tau_{xy}^r = \tau_{xy}^0; \tag{2}$$

$$\tau_{xz}^r = \tau_{xz}^0,\tag{3}$$

где $\sigma_x^r, \tau_{xz}^r, \tau_{xy}^r$ и $\sigma_x^0, \tau_{xz}^0, \tau_{xy}^0$ — напряжения в областях V_r и V_0 , действующие на границе S_H . Для области V_r сформулируем трехмерную задачу упругости

$$A(\boldsymbol{u}_r) = \boldsymbol{p} \qquad \text{B} \quad V_r; \tag{4}$$

$$B(\boldsymbol{u}_r) = \boldsymbol{q}_r \quad \text{ha} \quad S_q^r, \qquad u^r = v^r = w^r = 0 \quad \text{ha} \quad S_r, \tag{5}$$

где A — оператор уравнений равновесия; B — оператор статических граничных условий; $u_r = \{u^r, v^r, w^r\}^{\mathrm{T}}; p = \{0, 0, 0\}^{\mathrm{T}}$ — вектор объемных сил в области $V_r; q_r = \{0, 0, q_z\}^{\mathrm{T}}$ вектор поверхностных сил в области $V_r; S_q^r$ — граница области V_r , на которой задано нагружение; $S^r = S_H + S_r + S_q^r$ — граница области V_r . Условия на границе S_H приведены ниже. 1.2. Область V_0 будем рассматривать как тонкую пластину S^0 (на рис. 1 граница срединной плоскости пластины S^0 показана жирной линией). В области V_0 сформулируем задачу изгиба пластины по теории Рейсснера [5]

$$\Delta\Delta\varphi = q_z^0/D, \qquad \Delta\psi - k^2\psi = 0; \tag{6}$$

$$y = 0, b$$
: $M_y = M_{xy} = Q_y = 0,$ $x = a$: $M_x = M_{xy} = Q_x = 0,$ (7)

где $\varphi(x, y), \psi(x, y)$ — искомые функции; $D = Eh_0^3/(12(1 - \nu^2)); E$ — модуль Юнга; ν — коэффициент Пуассона; $q_z^0 = q_z(x, y, h_0/2)$ — поверхностная нагрузка; Δ — оператор Лапласа; $k^2 = 2C/[D(1 - \nu)]; C = Gh_0; G$ — модуль сдвига; M_x, M_y и M_{xy} — изгибающие и крутящий моменты; Q_x, Q_y — перерезывающие силы, которые выражаются через φ и ψ .

Углы $\theta_x(x,y)$, $\theta_y(x,y)$ поворота нормали к срединной плоскости пластины S^0 и ее прогиб $w_0(x,y)$ записываются через φ, ψ :

$$\theta_x = -\frac{\partial\varphi}{\partial x} + \frac{\partial\psi}{\partial y}, \qquad \theta_y = -\frac{\partial\varphi}{\partial y} - \frac{\partial\psi}{\partial x}, \qquad w_0 = \varphi - \frac{D}{C}\Delta\varphi.$$
(8)

Согласно теории Рейсснера перемещения u^0 , v^0 , w^0 во всей области V_0 и на границе S_H аппроксимируются соотношениями [2]

$$u^{0} = z\theta_{x}(x,y), \qquad v^{0} = z\theta_{y}(x,y), \qquad w^{0} = w_{0}(x,y) \qquad \forall x, y, z \in S_{H}.$$
(9)

Подставляя (9) в (1), получаем

$$u^r = z\theta_x(x,y), \qquad v^r = z\theta_y(x,y), \qquad w^r = w_0(x,y) \qquad \forall x, y, z \in S_H.$$
(10)

Отметим, что из выполнения условий (10) на границе S_H не следует, что функции u^r , v^r , w^r удовлетворяют условиям (10) во всей области V_r . В силу (10) функции u^r , v^r , w^r на границе S_H при x = H представим в виде

$$u^{r} = z \frac{2u^{r}(H, y, h_{0}/2)}{h_{0}}, \quad v^{r} = z \frac{2v^{r}(H, y, h_{0}/2)}{h_{0}}, \quad w^{r} = w^{r}(H, y, 0) \quad \forall y, z \in S_{H}.$$
 (11)

Подставляя (11) в (10), имеем

$$u^{r}(H, y, h_{0}/2) = \frac{h_{0}}{2} \theta_{x}(H, y), \quad v^{r}(H, y, h_{0}/2) = \frac{h_{0}}{2} \theta_{y}(H, y),$$

$$w^{r}(H, y, 0) = w_{0}(H, y) \quad \forall y \in S_{H}.$$
(12)

С учетом (8) из (12) получаем

$$u^{r}\left(H, y, \frac{h_{0}}{2}\right) = \frac{h_{0}}{2}\left(-\frac{\partial\varphi}{\partial x} + \frac{\partial\psi}{\partial y}\right)\Big|_{x,y\in S_{H}}, \quad v^{r}\left(H, y, \frac{h_{0}}{2}\right) = \frac{h_{0}}{2}\left(-\frac{\partial\varphi}{\partial y} - \frac{\partial\psi}{\partial x}\right)\Big|_{x,y\in S_{H}},$$
$$w^{r}(H, y, 0) = \varphi(x, y) - (D/C)\Delta\varphi\Big|_{x,y\in S_{H}} \quad \forall y \in S_{H}.$$
(13)

В данном случае условия (2), (3) при x = H переходят в следующие:

$$M_x^r = M_x^0, \qquad M_{xy}^r = M_{xy}^0;$$
 (14)

$$Q_x^r = Q_x^0. (15)$$

Здесь M_x^0 , M_{xy}^0 и Q_x^0 — изгибающий и крутящий моменты и поперечное усилие пластины Рейсснера S^0 , представленные через функции ψ , φ [5]; M_x^r , M_{xy}^r и Q_x^r выражаются через u^r , v^r , w^r и вычисляются по формулам

$$M_x^r = \int_{-h_0/2}^{h_0/2} z \, \sigma_x^r \, dz, \qquad M_{xy}^r = \int_{-h_0/2}^{h_0/2} z \, \tau_{xy}^r \, dz, \qquad Q_x^r = \int_{-h_0/2}^{h_0/2} \tau_{xz}^r \, dz$$

Рис. 2

Действительно, в силу (9), (10) функции перемещений u^r , v^r , w^r , u^0 , v^0 , w^0 в областях V_r , V_0 на границе S_H соответствуют аппроксимациям перемещений теории Рейсснера [2, 5]. Следовательно, и поля напряжений σ_x^r , τ_{xz}^r , τ_{xy}^r , σ_x^0 , τ_{xz}^0 , τ_{xy}^0 на границе S_H вычисляются в соответствии с этой теорией:

$$\sigma_x^r = z \frac{12}{h_0^3} M_x^r, \quad \tau_{xy}^r = z \frac{12}{h_0^3} M_{xy}^r, \quad \sigma_x^0 = z \frac{12}{h_0^3} M_x^0, \quad \tau_{xy}^0 = z \frac{12}{h_0^3} M_{xy}^0. \tag{16}$$

Из выполнения условий (14) с учетом (16) следует выполнение условий (2). Условие (15) получено интегрированием по z равенства (3). Таким образом, условие (3) выполняется в интегральном смысле: по теории Рейсснера граничные условия для касательных напряжений τ_{xz} выражаются только через поперечные усилия. Отметим, что условия (3) и (15) статически эквивалентны [5].

Показано, что смешанная постановка задачи изгиба пластины сводится к уравнениям (4), (6) с граничными условиями (5), (7), условиями для перемещений (11) и условиями склейки на границе S_H решений u^r , v^r , w^r и ψ , φ , т. е. условиями (13)–(15).

1.3. Рассмотрим изгиб изотропной однородной линейно-упругой балки, которая в декартовой системе координат xyz занимает область V. Ось балки совпадает с осью Ox, плоскости xOy и xOz являются горизонтальной и вертикальной плоскостями геометрической симметрии балки. Балка нагружена силами q_z , причем $q_z(x, y, z) = q_z(x, -y, z)$, т. е. изгиб балки происходит в вертикальной плоскости zOx. Изложение смешанной постановки задачи изгиба проведем для призматической балки $V = L \times b \times h_0$ (рис. 2). Балка на границе S_r имеет сложный характер крепления: при x = 0 она частично защемлена по торцу и на горизонтальной опоре. На рис. 2 крепление балки показано штриховкой, $n_1 = 145$, $n_2 = 13$, $n_3 = 19$, L = 144h, b = 12h, $h_0 = 18h$, $z_0 = 4h$. Обозначим через V_r окрестность границы S_r . Аналогично подп. 1.1 для областей V_r и V_0 ($V_0 = V - V_r$) потребуем выполнения равенств (1)–(3). Для области V_r получим трехмерную задачу теории упругости в виде (4), (5). Области V_r и V_0 разделяются плоскостью x = H. Расчеты показывают, что целесообразно использовать значения $C_r \ge 2,5h_0$ (h_0 — характерный размер сечения балки) и добавить к уравнениям (4), (5) для перемещений v^r , w^r в области V_r условия

$$v^r(x, y, z) = 0,$$
 $w^r(x, y, z) = w^r(x, 0, 0)$ $\forall y, z \in V_r, x_1 \le x \le H,$ (17)
rge $H \ge 2.5h_0 + z_0; x_1 \ge H - 0.5h_0.$

Область V_0 будем рассматривать как балку Кирхгофа L^0 (на рис. 2 ось балки L^0 показана жирной линией). В этой области сформулируем задачу изгиба балки [11]

$$\frac{\partial^4 w_0(x)}{\partial x^4} = \frac{q_z^0(x)}{EI_y};\tag{18}$$

$$x = L; \qquad M = Q = 0, \tag{19}$$

где $w_0(x)$ — прогиб балки; I_y — момент инерции сечения балки относительно оси Oy; $q_z^0(x) = \int q_z(x, y, h_0/2) \, dy$ — нагружение балки; M — изгибающий момент; Q — перерезывающая сила.

Перемещения трехмерной балки L^0 представляются соотношениями

$$u^{0}(x,y,z) = -z \frac{\partial w_{0}}{\partial x}, \qquad v^{0}(x,y,z) = 0, \qquad w^{0}(x,y,z) = w_{0}(x).$$
 (20)

Отметим, что общая граница S_H областей V_r и V_0 для балки L^0 вырождается в точку x = H. Подставляя в (1) соотношения (20) при x = H, на S_H получаем

$$u^{r} = -z \left. \frac{\partial w_{0}(x)}{\partial x} \right|_{x=H}, \qquad v^{r} \Big|_{x=H} = 0, \qquad w^{r} = w_{0}(H).$$
 (21)

Следует отметить, что условие $v^r|_{x=H} = 0$ выполнено в силу (17). Поскольку u^r не зависит от y, для перемещения u^r введем следующее условие:

$$u^{r}(H, y, z) = u^{r}(H, 0, z) \qquad \forall y, z \in S_{H}.$$
(22)

Согласно (21), (22) функции u^r , w^r на S_H представим в виде

$$u^r = 2zu^r(H, 0, h_0/2)/h_0, \qquad w^r = w^r(H, 0, 0) \qquad \forall y, z \in S_H.$$
 (23)

С учетом (23) из (21) получаем

$$u^{r}(H,0,h_{0}/2) = -\frac{h_{0}}{2} \left. \frac{\partial w_{0}}{\partial x} \right|_{x=H}, \qquad w^{r}(H,0,0) = w_{0}(H) \qquad \text{при} \quad x = H.$$
(24)

Используя условия (17), (22), (23), аналогично подп. 1.2 условия (2), (3) заменяем на условия

$$M_x^r = M_x^0, \qquad Q_x^r = Q_x^0, \qquad \tau_{xy}^r = 0 \qquad \text{при} \quad x = H.$$
 (25)

Здесь M_x^0, Q_x^0 — изгибающий момент и поперечное усилие балки L^0 , представленные через ее прогиб w_0 [11]; M_x^r, Q_x^r и τ_{xy}^r выражаются через перемещения u^r, v^r, w^r области V_r и при x = H вычисляются по формулам

$$M_x^r = \int\limits_S z \, \sigma_x^r \, dS, \qquad Q_x^r = \int\limits_S \tau_{xz}^r \, dS$$

(S - сечение балки).

Показано, что смешанная постановка задачи изгиба балки (см. рис. 2) сводится к уравнениям (4), (18) с граничными условиями (5), (19), условиями для перемещений (17), (22), (23) и условиями склейки на границе S_H решений u^r , v^r , w^r и w_0 , т. е. условиями (24), (25). Отметим, что условие $v^r|_{x=H} = 0$ выполнено в силу (17).

Поскольку в смешанных постановках задач содержатся дифференциальные операторы трехмерной задачи упругости и задачи изгиба пластин или балок (как известно, эти операторы являются положительно-определенными), при решении таких задач изгиба пластин (балок) можно использовать МКЭ (в форме метода Ритца). Заметим, что в МКЭ достаточно выполнить только кинематические граничные условия, а выполнение условий для перемещений (условий (11), (12) для пластины и (17), (22)–(24) — для балки) в дискретных смешанных моделях пластин (балок) не вызывает затруднений.

Замечание 1. Смешанные постановки задач изгиба содержат геометрические параметры, т. е. размеры области V_r (в данном случае H), с помощью которых можно регулировать погрешность решений (см. подп. 2.1). Замечание 2. Как известно [5], теории Рейсснера и Кирхгофа почти одинаково описывают изгиб тонких пластин вдали от границы крепления (см. рис. 1, $x \ge H$). В связи с этим в целях упрощения расчетов в дискретной модели пластины S^0 целесообразно использовать конечный элемент Клафа [9], имеющий в каждом узле следующие параметры MKЭ: w_0 , θ_x , θ_y ($\theta_x = \partial w_0 / \partial x$; $\theta_y = \partial w_0 / \partial y$; w_0 — прогиб пластины).

Отметим некоторые особенности конечных элементов (КЭ) Клафа. С одной стороны, аппроксимирующие функции и выражение потенциальной энергии конечного элемента Клафа строим, используя теорию Кирхгофа [9, 10]. С другой стороны, систему уравнений МКЭ для конечного элемента Клафа определяем, варьируя независимо узловые параметры МКЭ θ_x , θ_y и w_0 . Следовательно, в узлах конечных элементов Клафа выполняется положение теории Рейсснера, которое заключается в том, что функции θ_x , θ_y не связаны с функцией прогиба w_0 [2]. При построении глобальной системы уравнений МКЭ для всех узлов дискретной модели пластины также потребуем выполнения данного положения теории Рейсснера. Таким образом, при построении КЭ Клафа и дискретной модели пластины используются соотношения теорий изгиба пластин Кирхгофа и Рейсснера. Заметим, что используя конечные элементы Клафа, можно удовлетворить условиям (12) в дискретной форме.

ЗАМЕЧАНИЕ 3. В дискретной модели балки L^0 следует использовать эрмитовый конечный элемент третьего порядка [10], имеющий узловые неизвестные w_0 и dw_0/dx (w_0 прогиб балки), с помощью которых можно удовлетворить условиям (24) в дискретной форме.

2. Результаты численных экспериментов. 2.1. Рассмотрим изгиб изотропной однородной линейно-упругой пластины, занимающей в системе координат xyz область $V = 80h \times 50h \times 10h$ (см. рис. 1). На границе $S_r: \{x = 0, 0 \leq y \leq 50h, -3h \leq z \leq 3h\}$ выполнены условия u = v = w = 0, т. е. при x = 0 пластина частично защемлена. Трехмерная дискретная (базовая) модель пластины состоит из конечных элементов V_e^h первого порядка, имеющих форму куба со стороной h, и порождает сетку размерности $81 \times 51 \times 11$, для узлов которой введена целочисленная система координат ijk. Смешанная (дискретная) модель пластины построена при H = 30h (т. е. $H = 3h_0$, где h_0 — толщина пластины). Разбиение области V_r состоит из конечных элементов V_e^h . Область V_0 рассматриваем как тонкую пластину S^0 (на рис. 1 граница ее срединной плоскости показана жирной линией). Разбиение пластины S^0 состоит из квадратных со стороной h конечных элементов Кла-фа [9] и порождает квадратную сетку S_h^0 , узлы которой в системе координат ijk имеют координаты (i, j, 6) (i = 31, ..., 81; j = 1, ..., 51). В узлах (i, j, 6) сетки S_h^0 действуют силы $q_z = 0,0324$ (i = 55, 60, 65, 70, 75; j = 30, 35, 40, 45). Модуль Юнга пластины E = 1, коэффициент Пуассона $\nu = 0,3, h = 0,5$. Расчеты выполнены для $H = h_0$ и $H = 3h_0$. Перемещения w_h (прогиб пластины) смешанной модели при $H = 3h_0$ отличаются от перемещений w_0 базовой модели не более чем на 2,5 %. В табл. 1 приведены значения w_0 , w_h (j = 51; k = 6). В табл. 2 (y = 49,5h, H = 10h и H = 30h) представлены эквивалентные напряжения σ_h (по смешанной модели) и σ_0 (по базовой модели), вычисленные в центре тяжести конечных элементов V_e^h согласно четвертой теории прочности. Максимальное значение напряжений σ_h отличается от σ_0 на 0,06 %. Для $H = h_0$ максимальное значение w_h отличается от w_0 на 6,3 %, а максимальное значение σ_h отличается от σ_0 на 0,4%, т. е. с увеличением *H* погрешность решения уменьшается.

Базовая модель пластины имеет 135 252 узловых неизвестных, ширина ленты системы уравнений (СУ) МКЭ равна 1722. Смешанная модель (при $H = 3h_0$) содержит 57 630 неизвестных, ширина ленты СУ МКЭ равна 1749 и занимает объем памяти ЭВМ в 2,3 раза меньший, чем лента СУ МКЭ базовой модели. Время счета задачи для смешанной дискретной модели пластины в 2,5 раза меньше, чем для базовой.

]

i		w_h				
ι	w_0	H = 30h	H = 10h			
11	$34,\!456$	34,532	$35,\!589$			
21	106,933	107,225	116,344			
31	$208,\!807$	211,083	$225,\!604$			
41	$332,\!318$	$337,\!959$	$356,\!186$			
51	470,066	479,006	500,962			
61	$614,\!304$	627,025	652,748			
71	$758,\!523$	776,164	$805,\!678$			
81	900,366	$923,\!976$	$957,\!289$			

Таблица 2

	z = -	-0,5h	z = -	-2,5h	z = -3,5h		z = -4,5h		
x	<i>T</i>	<i>T</i> -	E.	σ.	σ.	σ_h		T	σ.
	00	O_h	00	O_h	00	H = 30h	H = 10h	00	O_h
0,5h	$2,\!4673$	$2,\!4752$	12,6614	12,6810	14,3000	14,3191	14,2407	1,2533	1,2549
2,5h	$3,\!4659$	$3,\!4756$	8,5684	$8,\!5828$	9,1465	9,1612	9,1099	7,0381	7,0499
4,5h	1,7131	1,7187	$5,\!6871$	$5,\!6981$	6,9251	6,9387	6,8854	8,0713	8,0878
$6{,}5h$	1,0908	1,0948	$4,\!6617$	$4,\!6730$	6,3581	$6,\!3735$	6,0640	8,2004	8,2203
8,5h	1,0488	$1,\!0535$	$4,\!3828$	$4,\!3960$	$6,\!1437$	6,1619	$4,\!4740$	8,0058	8,0294

2.2. Численно исследуем изгиб изотропной однородной линейно-упругой балки, занимающей в системе координат xyz область $V = 144h \times 12h \times 18h$ (см. рис. 2). На границе S_r : $\{x = 0, -6h \leq y \leq 6h, 0 \leq z \leq 9h\} \cup \{0 \leq x \leq 4h, -6h \leq y \leq 6h, z = -h_0/2\}$ выполняются условия u = v = w = 0, т. е. балка защемлена на горизонтальной опоре и частично по торцу. Трехмерная дискретная (базовая) модель балки состоит из конечных элементов V_e^h (см. подп. 2.1) и порождает сетку размерности $145 \times 13 \times 19$, для узлов которой введена целочисленная система координат *ijk*. Смешанная (дискретная) модель балки построена при H = 49h $(H = 2,5h_0 + 4h), x_1 = 36h$ $(x_1 = 2h_0), C_r = 2,5h_0$. Разбиение области V_r состоит из конечных элементов V_e^h . Область V_0 рассматриваем как балку L^0 (на рис. 2 ось балки L^0 показана жирной линией). Балку L^0 представляем эрмитовыми длиной hконечными элементами третьего порядка [10]. Узлы сетки данного разбиения в системе координат ijk имеют координаты (i, 7, 10) $(i = 50, 51, \dots, 145)$. В узлах с координатами (i, 7, 10) на балку действуют силы $q_z = 0,0324$ $(i = 49 + 12(k - 1); k = 1, \dots, 7)$. Модуль Юнга балки E = 1, коэффициент Пуассона $\nu = 0,3, h = 0,111$. Максимальное значение перемещений w_h смешанной модели отличается от перемещений w_0 базовой модели балки на 3,2 %. В табл. 3 приведены значения перемещений w_0 , w_h (j = 7; k = 10). В табл. 4 (y=-5,5h) представлены эквивалентные напряжения σ_h (по смешанной модели) и σ_0 (по базовой модели), вычисленные в центре тяжести конечных элементов V_e^h согласно четвертой теории прочности. В окрестности защемления балки напряжения σ_h отличаются от σ_0 не более чем на 1,5 %.

Базовая модель балки содержит 106 899 неизвестных, ширина ленты СУ МКЭ равна 786. Смешанная модель балки имеет 28 679 неизвестных, ширина ленты СУ МКЭ равна 866 и занимает объем памяти ЭВМ в 3,4 раза меньший, чем лента СУ МКЭ базовой модели. Время счета задачи для смешанной дискретной модели балки в 4 раза меньше, чем для базовой.

']	Ľ	\mathbf{a}	б	Л	И	Ц	\mathbf{a}	3	
----	---	--------------	---	---	---	---	--------------	---	--

i	w_0	w_h	i	w_0	w_h
13	2,053	2,051	109	102,772	$105,\!585$
37	$16,\!898$	16,909	133	$134,\!449$	139,009
61	$41,\!581$	41,932	145	150,373	155,729
85	$71,\!172$	72,649			

Таблица 4

~	z =	8,5h	z =	6,5h	z = -	-1,5h	z = -	-6,5h	z = -	-8,5h
J.	σ_0	σ_h								
0,5h	2,1425	2,1713	1,4028	1,4253	1,2698	$1,\!2331$	0,6316	0,6251	1,8986	1,8636
$2,\!5h$	1,9560	1,9778	1,4809	1,5035	$0,\!6754$	$0,\!6509$	0,7513	0,7364	3,4151	3,3622
$4,\!5h$	1,9402	1,9610	1,4779	1,5006	0,3619	0,3481	1,1586	$1,\!1394$	3,3805	3,3363
$6{,}5h$	1,9532	1,9744	1,4782	1,5008	0,1418	$0,\!1397$	1,4765	$1,\!4548$	2,3911	2,3626
$9{,}5h$	1,9458	1,9675	1,4765	1,4989	$0,\!1570$	$0,\!1577$	1,5207	1,4986	2,0392	2,0161
15,5h	1,8358	1,8578	1,4021	1,4243	$0,\!2514$	0,2435	1,4087	1,3865	1,8241	1,8022

ЛИТЕРАТУРА

- 1. Самуль В. И. Основы теории упругости и пластичности. М.: Высш. шк., 1970.
- 2. Васильев В. В. Классическая теория пластин история и современный анализ // Изв. РАН. Механика твердого тела. 1998. № 3. С. 46–58.
- 3. Гольденвейзер А. Л. О приближенных методах расчета тонких упругих оболочек и пластин // Изв. РАН. Механика твердого тела. 1997. № 3. С. 134–149.
- 4. Васильев В. В. К дискуссии по классической теории пластин // Изв. РАН. Механика твердого тела. 1995. № 4. С. 140–150.
- Басильев В. В. О теории тонких пластин // Изв. РАН. Механика твердого тела. 1992. № 3. С. 26–47.
- 6. Жилин П. А. О теориях пластин Пуассона и Кирхгофа с позиций современной теории пластин // Там же. С. 134–150.
- 7. **Алфутов Н. А.** О некоторых парадоксах теории тонких упругих пластин // Там же. С. 65–72.
- 8. Матвеев А. Д. Новые трехмерные дискретные постановки прикладных задач теории упругости / Краснояр. гос. ун-т. Красноярск, 2001. Деп. в ВИНИТИ 28.09.01, № 2060-В2001.
- 9. Варвак П. М., Бузун И. М., Городецкий А. С. и др. Метод конечных элементов. Киев: Вища шк., 1981.
- 10. Постнов В. А. Численные методы расчета судовых конструкций. Л.: Судостроение, 1977.
- 11. Беляев Н. М. Сопротивление материалов. М.: Наука, 1976.

Поступила в редакцию 4/XII 2002 г., в окончательном варианте — 1/IX 2003 г.