2012. Том 53, № 5

Сентябрь – октябрь

C. 896 – 903

УДК 544.171.6:544.18:547.1'128

ИССЛЕДОВАНИЕ ЭЛЕКТРОННОГО СТРОЕНИЯ ФЕНИЛСИЛАНОВ МЕТОДАМИ РЕНТГЕНОВСКОЙ ЭМИССИОННОЙ СПЕКТРОСКОПИИ И КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ

Т.Н. Даниленко, М.М. Татевосян, В.Г. Власенко

Научно-исследовательский институт физики Южного Федерального университета, Ростов-на-Дону, e-mail: danilenko@sfedu.ru

Статья поступила 23 ноября 2011 г.

С доработки — 8 февраля 2012 г.

Проведено исследование электронного строения ряда фенилсиланов $Ph_{4-n}SiH_n$ (n = 0—3) методами рентгеновской эмиссионной спектроскопии и квантово-химических расчетов в приближении теории функционала плотности. На основе расчетов построены теоретические рентгеновские эмиссионные $SiK\beta_1$ -спектры фенилсиланов $Ph_{4-n}SiH_n$ (n = 0—4), энергетическая структура и форма которых оказались в хорошем согласии с экспериментом. Также построены распределения плотностей электронных состояний различной симметрии атомов Si, C, H. Анализ полученных рентгеновских флуоресцентных $SiK\beta_1$ -спектров и распределения плотностей электронных состояний в соединениях Ph_4Si и Ph_3SiH показал, что их энергетическая структура в основном определяется системой энергетических уровней фенильных лигандов, слабо возмущенных взаимодействиями с валентными AO кремния. В энергетической структуре MO соединения PhSiH₃ пре-имущественным образом представлены орбитали энергетически связанные с t_2 - и a_1 -уровнями тетраэдрического SiH₄.

Ключевые слова: электронное строение, фенилсиланы, рентгеновская эмиссионная спектроскопия, теория функционала плотности.

введение

Известно [1—11], что силаны применяют в различных реакциях органического синтеза (получение ценных кремнийорганических полимеров и др.), а также как источник чистого кремния для микроэлектронной промышленности. Так, например, силан широко используется в микроэлектронике и получает все большее применение при изготовлении кристаллических и тонкопленочных фотопреобразователей на основе кремния, ЖК экранов, подложек и технологических слоев интегральных схем. В последнее время появилось значительное количество работ по исследованию фенилсиланов и их производных в качестве перспективных материалов для создания кремнийорганических светодиодов (OLED), которые обладают высокой эффективностью, яркостью и могут излучать в широком интервале длин волн в зависимости от различных подобранных заместителей.

Так как спектральные характеристики и свойства таких материалов существенным образом связаны с их электронным строением, то исследование последнего имеет важнейшее значение. Одним из хорошо апробированных методов исследования электронной структуры соединений является метод рентгеновской эмиссионной спектроскопии [12, 13], который, благодаря анализу различных серий рентгеновских линий, позволяет исследовать систему молекулярных уровней соединения, оценить степень участия определенных атомов и атомных орбиталей в образовании химических связей в молекулах и кристаллах. В частности SiKβ₁-спектры, которые об-

[©] Даниленко Т.Н., Татевосян М.М., Власенко В.Г., 2012

разуются в результате электронных переходов с 3p-уровней кремния на вакансию в Si 1s-уровне, отображают вклады 3p-AO кремния в MO валентной полосы исследуемых кремнийорганических соединений. Интенсивности компонентов SiK β_1 -спектра в приближении MO ЛКАО пропорциональны квадратам коэффициентов C_{ij}^2 линейной комбинации атомных волновых

функций, о чем подробнее изложено ниже в разделе о квантово-химических расчетах.

В свою очередь, метод фотоэлектронной спектроскопии (ФЭС) позволяет с высоким разрешением (~ 10^{-3} эВ) измерять потенциалы ионизации (ПИ) валентных электронов, выбитых из образца ультрафиолетовым излучением [14]. Совокупность методов рентгеновской эмиссионной спектроскопии и ФЭС позволяет более точно определить энергетическую структуру валентной полосы исследуемых соединений.

Рентгеноспектральное исследование фенилсиланов было проведено ранее [15—17], однако эти исследования или не были сопоставлены с теоретическими расчетами, или расчеты того времени не могли дать достаточную точность для описания деталей рентгеновских эмиссионных спектров [16]. В последнее время были проведены современные квантово-химические расчеты ряда фенилсиланов, но они касались только структурных характеристик молекул и их конформационных свойств [18, 19].

Применение в исследованиях электронного строения молекулярных объектов современных программ квантово-химических расчетов дает возможность всесторонне разобраться в деталях электронного строения, установить закономерности формирования молекулярных орбиталей (МО) с участием электронных волновых функций атомов и фрагментов. Совместное экспериментально-теоретическое исследование электронного строения сложных молекулярных объектов делает результаты максимально достоверными, наглядными и понятными.

Основной целью настоящей работы является выяснение закономерностей формирования электронной структуры ряда фенилсиланов $Ph_{4-n}SiH_n$ (n = 0—3) путем совместного анализа расчетных и рентгеноспектральных данных.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Рентгеновские флуоресцентные Si $K\beta_1$ -спектры всех соединений получены на спектрографе ДРС-2М [20] с фокусировкой по методу Иоганна. Использовался кварцевый кристаллоанализатор (1010) с радиусом изгиба 500 мм. Разрешающая сила спектрографа, измеренная по дублету Co $K_{\alpha_{1,2}}$, составляла 15 000, что соответствует аппаратурному искажению в области исследуемой линии 0,15 эВ. Для регистрации спектров использовался фотометод, время экспозиции Si $K\beta_1$ -спектров составляло 30—50 ч при режиме рентгеновской трубки БХВ-9Pd (U = 22 кВ и I = 90 мА). Жидкие образцы фенилсилана для съемок помещали в криостат и охлаждали до температуры жидкого азота.

КВАНТОВО-ХИМИЧЕСКИЕ РАСЧЕТЫ

Квантово-химические расчеты проводили методом теории функционала плотности (ТФП) с использованием программного комплекса Gaussian-03 [21]. Использовался гибридный функционал B3LYP с корреляционной частью в форме Ли—Янга—Парра [22] и обменной частью Бекке [23]. Был взят стандартный расширенный валентно-расщепленный базис 6-311G** [24, 25] для всех атомов исследуемых соединений. Такая схемы расчета была успешно использована для квантово-химических расчетов большего количества кремнийорганических соединений [26—29].

Энергии рентгеновских переходов E_{ij} вычислялись как разности между энергиями валентных ε_i и внутренних уровней ε_j , найденных в приближении "замороженных" орбиталей (вертикальные потенциалы ионизации по теореме Купманса):

$$E_{ii} = \varepsilon_i - \varepsilon_i. \tag{1}$$

Интенсивности рентгеновских переходов с занятых молекулярных орбиталей на остовную атомную орбиталь *j* атома А вычислялись по формуле [30]:

$$I_{ij} \propto |\int \varphi_i^{\mathcal{A}}(r)(er)\varphi_j(r)d\tau|^2 = N |\sum_{\mathcal{A}} \varphi_{\mathcal{I}s}^{\mathcal{A}}(r)(er)\sum_{\mathcal{A}} C_{jp} \sum_{\mathcal{A}} \varphi^{\mathcal{A}}(r)d\tau|^2,$$
(2)

$$I_{ij}^{\mathrm{A}} \sim N \sum_{i} |C_{ij}^{\mathrm{A}}|, \qquad (3)$$

где C_{ij}^{A} — коэффициенты ЛКАО, с которыми в избранные МО входят АО *i* и *j*; *N* — нормировочный множитель. Для получения эмиссионного SiK β_1 -спектра найденные из квантово-химического расчета коэффициенты C_{ij}^2 (*j* = 3*p*) суммировались по формуле (3) для атомов кремния. При построении рентгеновских эмиссионных спектров дискретные линии, возникающие за счет переходов с определенных МО, уширялись на лоренцову функцию с шириной 0,5 эВ.

Необходимые для расчетов координаты атомов в молекулах фенилсиланов были взяты из рентгеноструктурных данных этих соединений [31-36]. В большинстве случаев оптимизацию структуры молекул не проводили. Однако для соединения Ph₃SiH, для которого не обнаружено рентгеноструктурных данных, оптимизация была проведена.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Электронное строение ряда фенилсиланов $Ph_{4-n}SiH_n$ (n = 0—3) было исследовано путем совместного рассмотрения тонкой структуры рентгеновских эмиссионных $SiK\beta_1$ -спектров, фото-

Рис. 1. Экспериментальный (сплошная жирная линия) и теоретический (сплошная тонкая линия Si(*p*)) рентгеновские эмиссионные SiK β_1 -спектры (4), распределение плотности электронных состояний различной симметрии (2, 3), фотоэлектронные спектры Ph₄Si (1), SiH₄ (1), C₆H₆ (5) и диаграммы орбитальных энергий C₆H₆ (5), Ph₄Si (4), PhSiH₃ (4) для Ph₄Si (левая панель) и PhSiH₃ (правая панель)

В табл. 1 и 2 приведены данные расчетов орбитальных энергий Ph_4Si , $PhSiH_3$ и C_6H_6 , дополненные значениями энергий компонентов $SiK\beta_1$ -спектров и ПИ Ph_4Si . Показаны состав МО и преимущественный характер химической связи в Ph_4Si и $PhSiH_3$. Корреляционная диаграмма валентных энергетических уровней, дополненная видом МО для SiH_4 , C_6H_6 и Ph_4Si , показана на рис. 2.

Сопоставление ФЭС бензола с ФЭС Ph_4Si демонстрирует явное сходство этих спектров, за исключением некоторых деталей. Это указывает, что замещение атома водорода в молекулах бензола на атом кремния приводит к малому возмущению их МО структуры. Особенно это хорошо видно для пиков ФЭС с высокими энергиями ПИ 24—13 эВ. Детальное описание электронного строения Ph_4Si проведем на основе совместного рассмотрения экспериментальных данных с квантово-химическими расчетами исследуемых молекул. Результаты расчета Ph_4Si приведены в табл. 1.

Как видно из рис. 1 и данных табл. 1, совокупность MO Ph₄Si можно разбить на ряд групп, бо́льшая часть из которых представляет собой наборы уровней, возникающих в результате расщепления уровней бензола при взаимодействии его с атомом кремния. Основные вклады

Таблица 1

I _{MO} , ΦЭС, эВ	E Si $K\beta_1$, эВ	ε _{<i>i</i>} MO, эВ	C^2 Si, %	C^2 Ph, %	Химическая связь
-9,0	1837,0 (π ₁)	-6,702÷-7,177	2(<i>p</i>)	98÷100	p_{π} Si—C(Ph)
-10,2	1835,3 (A)	-8,339÷-8,386	16(p)+4(d)	80	$d_{\pi} + p_{\sigma} \operatorname{Si-C(Ph)}$
		-9,424	1(s)	99	s_{σ} Si—C(Ph)
		-9,472	0	100	$p_{\sigma} C(Ph)$
-11,6		-9,505	1(<i>p</i>)	99	p_{σ} Si—C(Ph)
		-9,915	13(<i>s</i>)	87	s_{σ} Si—C(Ph)
	(π_{2})	$-10,019 \div -10,059$	0	100	$p_{\pi} \operatorname{C}(\operatorname{Ph})$
		-10,212	6(<i>s</i>)	94	s_{σ} Si—C(Ph)
-12,9	1833,0 (<i>B</i>)	-11,047÷-11,165	5(<i>p</i>)	95	p_{σ} Si—C(Ph)
		-11,626÷-11,667	0	100	$p_{\sigma} C(Ph)$
		-12,189÷-12,406	$2(s) \div 13(s)$	87÷98	s_{σ} Si—C(Ph)
-14,2	1831,5 (<i>C</i>)	$-13,00 \div -13,05$	1(p)	99	p_{σ} Si—C(Ph)
		-13,682	21(<i>s</i>)	79	s_{σ} Si—C(Ph)
-16,3	1829,7 (D)	-14,644÷-14,691	1(p)	99	p_{σ} Si—C(Ph)
		-15,154	17(s)	83	s_{σ} Si—C(Ph)
-18,4	1827,7 (E)	-16,448÷-16,834	1(p)+4(s)	96÷99	p_{σ} Si—C(Ph)
					s_{σ} Si—C(Ph)
-18,7		-16,973÷-17,098	0	100	$s_{\sigma} C(Ph)$
		-17,236	17(s)	83	s_{σ} Si—C(Ph)
-21,9	1824,0 (F)	$-20,42 \div -20,645$	0÷1(<i>p</i>)	99÷100	$s_{\sigma} C(Ph)$
		-20,92	9(<i>s</i>)	91	s_{σ} Si—C(Ph)
		-23,423÷-23,527	$0 \div 2(s)$	98÷100	$s_{\sigma} C(Ph)$

ПИ I_{MO} [33] и энергии компонентов E Si $K\beta_1$ -спектра Ph₄Si, орбитальные энергии ε_i , состав MO C^2 кремния и фенила (%) и соответствующие им химические связи

АО для этих МО близки между собой и мало отличаются от соответствующих значений одной из соответствующих МО бензола. Число уровней в этих группах равно произведению кратности вырождения соответствующего уровня бензола на число фенильных лигандов в кремнийорганической молекуле.

Построенные на основе расчетов распределения электронной плотности дают информацию о вкладах соответствующих АО в МО валентной полосы Ph_4Si . Отметим, что распределение Si *3p*-электронной плотности атома кремния по валентной полосе фактически представляет собой теоретический Si $K\beta_1$ -спектр.

Сравнение экспериментального и теоретического SiK β_1 -спектров показывает, что проведенный нами расчет хорошо передает как энергетическую структуру SiK β_1 -спектра Ph₄Si, так и его форму (см. рис. 1, левая панель). Положение компонентов (*A*, *B*, *C*, *D*, *G*, *F*, *E*) экспериментального и расчетного спектров совпадает с точностью до 0,3 эВ. Распределение интенсивностей компонентов по спектру также идентично для обеих кривых. Такое хорошее согласие позволяет нам использовать приведенные на этом рисунке графики плотности электронных состояний Si(*s*), Si(*d*), C(*s*) и C(*p*) для описания особенностей химической связи кремний—фенил (Si—Ph) в Ph₄Si.

Наиболее интенсивные максимумы Si $K\beta_1$ -спектра (A, B, C) соответствуют в основном проявлению p_{σ} Si—Ph взаимодействия атомов кремния с атомами углерода бензольного кольца,

Таблица 2

						i
<i>Е</i> , эВ Si <i>K</i> β ₁	ε _i MO, эB PhSiH ₃	ε _i MO, эВ С ₆ Н ₆	C^2 Si, %	<i>C</i> ² H, %	C^2 Ph, %	Химическая связь
$1825.0(\pi)$	7.067	6 006	1(n)	3	06	n Si C(Dh)
$1055,9(n_1)$	-7,007	-0,990	I(p)	5	90	p_{π} SI—C(FII),
	-7,099	$1e_{1g}$	I(p)	2	97	$(s,p)_{\sigma}$ S1—H
1835,5 (A)	-8,560		2(s)+24(p)+1(d)	4	69	p_{σ} , d_{π} Si—C(Ph),
	-9,551	-9,466	32(p)+2(d)	32	34	$(s,p)_{\sigma}$ Si—H
	-9,687	$3e_{2g}$	19(p)+1(d)	17	63	
1834,5 (<i>A'</i>)	-9,891		26(p)+1(d)	21	52	
$1833,7(\pi_2)$	-10,432	-10,122	19(p)+1(d)	13	67	
, , , _,		$1a_{2u}$				
1832,2 (<i>B</i>)	-11,077	-11,597	1(s) + 7(p)	3	89	p_{σ} Si—C(Ph),
		$3e_{1u}$				$(sp)_{\sigma}$ Si—H
	-11,966		0	0	100	$p_{\sigma} C(Ph)$
1831.4 (<i>C</i>)	-12,430	-12.287	1(p)	1	98	$(sn)_{-}$ Si—H
	,	$1b_{2u}$	¥ /			(07)001 11
	-13,091	-12,633	1(s)+2(p)	1	96	
	,	$2b_{1y}$				
1829,7 (D)	-14,276	-14,425	25(s)+2(p)	8	65	s _a Si—H
	,	$3a_{1g}$				
1827,1 (<i>E</i>)	-15,396	-0	43(s)	9	48	s_{σ} Si—H, C(Ph)
	-16,884	-16,511	10(s)	1	89	<i>•,</i> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	-17,087	$2e_{2\sigma}$	0	0	100	$s_{\sigma} C(Ph)$
1823.3(F)	-20,582	-20,415	2(s)+1(p)	0	97	s_{π} Si—C(Ph)
, , , ,	-20,765	$2e_{1y}$	0	0	100	$s_{-}C(Ph)$
	-23.484	-23.397	ů 0	0	100	50 0(11)
	23,104	23,357	v	Ŭ	100	
	I	Δu_{1g}	l		l	I

Энергии компонентов SiK β_1 -спектра, орбитальные энергии ε_i MO C₆H₆ и PhSiH₃, их состав и характер химических связей

тогла как длинноволновые компоненты спектра (G, F, E) определяются *s*_о Si—C(Ph) взаимодействием. Исходя из нашего расчета определенный вклад в формирование основного максимума A Si $K\beta_1$ спектра вносит $(p-d)_{\pi}$ Si-C(Ph) взаимодействие *d*-орбиталей кремния с *p*-орбиталями углерода, которое можно связать с известным эффектом $(p-d)_{\pi}$ обратного донирования [40]. Наиболее коротковолновый компонент Si $K\beta_1(\pi_1)$ отражает взаимодействие π-системы бензольного кольца с *р*_о-орбиталями кремния, которое известно как эффект сверхсопряжения в кремнийорганических соединениях [41].

Проведем анализ данных для молекулы PhSiH₃ на основе рассмотрения электронного строения двух составляющих фрагментов: C₆H₅ и SiH₃. В рамках подхода трансферабельности химических связей можно предположить, что они в значительной степени со-

храняют особенности своих исходных электронных структур C_6H_6 и SiH₄. Действительно, сопоставление диаграмм орбитальных энергий бензола, силана и монофенилсилана (см. рис. 1, правая панель) и данные табл. 2 показывают, что к сохранившим свое положение уровням бензола $3a_{1g}$, $2b_{2u}$, $1b_{2u}$, $3e_{1u}$, $1a_{2u}$, $3e_{2g}$ и $1e_{1g}$ добавились уровни, генетически связанные с t_2 и a_1 МО тетраэдрического SiH₄. Подтверждение этому выводу дает SiK β_1 -спектр и Si(p)-распределение (см. рис. 1, правая панель), в которых появляются уровни, соответствующие МО PhSiH₃, образованным с участием *s*-, *p*- и *d*-орбиталей кремния, а также отчетливо видно на кривых распределения плотности электронных состояний атомов Si, C и H_(силана).

Основные максимумы SiK β_1 -спектра A и A' отражают σ -взаимодействия Si—Ph и SiH₃ соответственно. Кроме того, π -взаимодействие с участием p- и d-состояний кремния и π -MO бензола проявляются в виде небольших по интенсивности π_1 и π_2 компонентах SiK β_1 -спектра монофенилсилана PhSiH₃.

Слабоинтенсивные длинноволновые компоненты SiK β_1 -спектра (*B*, *C*, *D*, *E*, *F*) отражают σ -взаимодействие *s*- и *p*-электронов атома кремния с атомами углерода бензольного кольца. Кроме того, MO PhSiH₃, которым соответствуют компоненты (*D*, *E*), содержат значительный вклад *s*-состояний H_(силана) и генетически связаны с *a*₁-MO тетраэдрического SiH₄.

На рис. 2 представлены энергетическая корреляционная диаграмма и вид верхних занятых MO для SiH₄, C₆H₆, PhSiH₃, которые демонстрируют основные типы взаимодействия в молекуле монофенилсилана. Основная химическая связь в молекуле PhSiH₃ реализуется за счет гибридизации групповых орбиталей $3e_{2g}$ C₆H₆ и t_2 SiH₄ (компоненты A и A' SiK β_1 -спектра соответст-

Рис. 3. Экспериментальные (сплошная жирная линия) и теоретические (сплошная тонкая линия Si(*p*)) рентгеновские эмиссионные Si*K*β₁-спектры PhSiH₃, Ph₂SiH₂, Ph₃SiH, Ph₄Si

венно). Нижележащие МО являются слабомодифицироваными орбиталями фрагментов, указывая на незначительное перекрывание образующих их АО Si, C и H_(силана), что также подтверждается небольшими значениями заселенностей, приведенными в табл. 2.

На рис. 3 рентгеновские эмиссионные Si $K\beta_1$ -спектры ряда исследованных фенилсиланов $Ph_{4-n}SiH_n$ (*n* = = 0-3) совмещены с рассчитанными распределениями р-электронной плотности кремния. Теоретические расчеты хорошо воспроизводят тонкую структуру экспериментальных спектров. Сопоставление спектров показывает, что при переходе от монофенилсилана к тетрафенилсилану интенсивности компонентов (A, B, C, D, E, E)F), отвечающих взаимодействию атома кремния с атомами углерода фенильных групп, возрастают с увеличением их количества. В то же время интенсивность компоненты А', отвечающей взаимодействию АО кремния и водорода, уменьшается в зависимости от количества водородных лигандов. Основной максимум (А и А') рентгеновских эмиссионных SiK β_1 -спектров, кроме того, отражает участие *d*-состояний кремния в химической связи в фенилсиланах. Согласно данным квантовохимических расчетов, заселенности d-AO кремния в ряду фенилсиланов увеличиваются практически линейно: 0,087 (PhSiH₃), 0,092 (Ph₂SiH₂), 0,105 (Ph₃SiH), 0,111 (Ph₄Si) за счет эффекта сверхсопряжения, т.е. происходит понижение электронной плотности на бензольном кольце вследствие взаимодействия л-системы с d_{π} -орбиталями кремния.

Коротковолновый компонент π_1 SiK β_1 -спектров фенилсиланов систематически увеличивается по интегральной интенсивности в зависимости от количества фенильных групп. Этот эффект обусловлен увеличени-

ем п-взаимодействия атомов кремния с п-системой фенильных колец лигандов.

В целом можно отметить закономерный характер изменений электронного строения фенилсиланов в ряду $Ph_{4-n}SiH_n$ (n = 0—3) в зависимости от соотношения различных лигандов Ph и H, а также слабую корреляцию энергетической структуры $SiK\beta_1$ -спектров от симметрии молекул.

ЗАКЛЮЧЕНИЕ

Электронное строение ряда фенилсиланов $Ph_{4-n}SiH_n$ (n = 0—3) исследовано методами рентгеновской эмиссионной спектроскопии и квантово-химических расчетов. Построенные на основе расчетов теоретические $SiK\beta_1$ -спектры исследованных фенилсиланов оказались в хорошем согласии с экспериментом. Анализ полученых рентгеновских флуоресцентных $SiK\beta_1$ -спектров и плотностей электронных состояний в соединениях Ph_4Si и Ph_3SiH показал, что их энергетическая структура в основном определяется системой энергетических уровней фенильных лигандов, слабо возмущенных взаимодействиями с валентными АО кремния. Электронная структура PhSiH₃ близка к таковой для тетраэдрического SiH₄, для нее характерно образование

МО, генетически связанных с *t*₂- и *a*₁-уровнями силана. Показано увеличение заселенности *d*-АО кремния в ряду фенилсиланов с увеличением числа фенильных фрагментов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Jong-Uk Kim, Hyo-Ban Lee, Ji-Soo Shin et al. // Synthetic Metals. 2005. 150. P. 27.
- 2. *Kido J., Nagai K., Okamoto Y., Skotheim T. //* Chem. Lett. 1991. **20**, N 7. P. 1267.
- 3. Cimrova V., Neher D., Remmers M., Kminek I. // Adv. Mater. 1998. 10, N 9. P. 676.
- 4. Tamao K., Uchida M., Izumizawa T., Furukawa K., Yamaguchi S. // J. Amer. Chem. Soc. 1996. 118. P. 11974.
- 5. Luo J., Xie Z., Lam J.W.Y. et al. // Chem. Commun. 2001. 47, N 18. P. 1740.
- 6. Gao Z., Lee C.S., Bello I. et al. // Appl. Phys. Lett. 1999. 74. P. 865.
- 7. Wu C.-C., Chen C.-W., Lin Y.-T. et al. // Appl. Phys. Lett. 2001. 79. P. 3023.
- 8. Kim Y.-H., Shin D.-C., Kim S.-H. et al. // Adv. Mater. 2001. 13. P. 1690.
- 9. Pschirer N.G., Miteva T., Evans U. et al. // Chem. Mater. 2001. 13. P. 2691.
- 10. Shih H.T., Lin C.H., Shih H.H., Cheng C.-H. // Adv. Mater. 2002. 14. P. 1409.
- 11. Liu S.-F., Wu Q., Schimider H.L. et al. // J. Amer. Chem. Soc. 2000. 122. P. 3671.
- 12. Майзель А., Леонхардт Г., Сарган Р. Рентгеновские спектры и химическая связь. Киев: Наукова думка, 1980.
- 13. *Мазалов Л.Н., Юматов В.Д., Мурахтанов В.В. и др.* Рентгеновские спектры молекул. Новосибирск: Наука, 1977.
- 14. *Ellis M., Timothy M.F., Wright G.* Electronic and Photoelectron Spectroscopy. Cambridge University Press, 2005. P. 286.
- 15. Татевосян М.М., Шуваев А.Т., Землянов А.П. и др. // Журн. структур. химии. 1977. 18, № 4. С. 684.
- Шуваев А.Т., Татевосян М.М., Копылов В.М., Харабаев Н.Н. // Теор. и эксперим. химия. 1984. 20, № 3. – С. 369.
- 17. Dyachkov P.N., Ioslovich N.V., Levin A.A. // Theoret. Chim. Acta (Bed.). 1975. 40. P. 237.
- 18. *Campanelli A.R., Ramondo F., Domenicano A.* // J. Phys. Chem. A. 2001. **105**. P. 5933.
- 19. Campanelli A.R., Domenicano A., Ramondo F., Hargittai I. // Struct. Chem. 2011. 22, N 2. P. 361.
- 20. Блохин М.А. Методы рентгеноспектральных исследований. М.: Физматгиз, 1959.
- 21. Frisch M.J., Trucks G.W., Schlegel H.B. et al. // Gaussian 03, Revision A.1, Gaussian, Inc., Pittsburgh PA, 2003.
- 22. Lee C., Yang W., Parr R.G. // Phys. Rev. B. 1988. 37. P. 785.
- 23. Becke A.D. // J. Chem. Phys. 1993. 98. P. 5648.
- 24. McLean A.D., Chandler G.S. // J. Chem. Phys. 1980. 72. P. 5639.
- 25. Raghavachari K., Binkley J.S., Seeger R., Pople J.A. // J. Chem. Phys. 1980. 72. P. 650.
- 26. Nag M., Gaspar P.P. // Chem. Eur. J. 2009. 15. P. 8526.
- 27. Yun-qiao Ding, Qing-an Qiao, Peng Wang. et al. // Chem. Phys. 2010. 367. P. 167.
- 28. Pavel I., Strohfeldt K., Strohmann C., Kiefer W. // Inorg. Chim. Acta. 2004. 357. P. 1920.
- 29. Alcolea Palafox M., Go'mez P.C., Pacios L.F. // J. Mol. Struct. (Theochem). 2000. 528. P. 269.
- 30. Мазалов Л.Н. Рентгеновские спектры. Новосибирск: ИНХ СО РАН, 2003.
- 31. Glidewell C., Sheldric G.M. // J. Chem. Soc. A. 1971. P. 3127.
- 32. Parkanyi L., Sasvari K. // Period. Polytech. Chem. Eng. 1973. 17. P. 271.
- Gruhnert V., Kirfel A., Will G. et al. // Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 1983. 163. S. 53.
- 34. Allemand J., Gerdil R. // Cryst. Struct. Commun. 1979. 8. P. 927.
- 35. Rofouei M.K., Lawless G.A., Morsali A. // X-Ray Struct. Anal. Online. 2005. 21. P. 103.
- 36. Mitzel N.W., Brain P.T., Hofmann M.A. // Z. Naturforsch., B: Chem. Sci. 2002. 57. S. 202.
- 37. Novak I., Potts A.W. // J. Organometal. Chem. 1984. 262. P. 17.
- 38. Bock H., Ensslin W., Feher F., Freund R. // J. Amer. Chem. Soc. 1976. 98, N 3. P.668.
- 39. Мазалов Л.Н. // Журн. структур. химии. 2003. 44, № 1. С. 7.
- 40. Thames S.F., Panjnani K.G. // J. Inorg. Organometal. Polymers. 1996. 6, N 2. P. 59.
- 41. Дьюар М. // Сверхсопряжение. М.: Мир, 1965.