2013

УДК 622.778

КВАНТОВО-МЕХАНИЧЕСКИЕ ПРЕДСТАВЛЕНИЯ ФЛОТАЦИИ ПИРИТА

П. М. Соложенкин¹, С. А. Кондратьев², Е. И. Ангелова³

¹Институт проблем комплексного освоения недр РАН, Крюковский тупик, 4, 111020, г. Москва, Россия ²Институт горного дела им. Н. А. Чинакала СО РАН, Красный проспект, 54, 630091, г. Новосибирск, Россия ³Магнитогорский государственный технический университет им. Г. И. Носова, пр. Ленина, 38, 455000, г. Магнитогорск, Россия

Проведено молекулярное моделирование кластеров пирита простой и циклической структуры. Предложен индекс прогноза оценки активности собирателя (ПОАС) для анализа активности связывания собирателя с атомом кластера. Показано, что бутиловый диксантогенид более активно связывается с атомами кластера, чем тионокарбаматы типа Z 200 и ИТК. Исследован перенос заряда при взаимодействии кластера пирита с указанными собирателями. При монодентатном связывании наблюдается перенос заряда с минерала на атомы серы собирателя, при бидентатном — классический перенос заряда с донора собирателя на акцептор минерала. Высказано предположение, что при разложении ксантогенатов железа в кислой среде образуются диксантогениды, которые и определяют флотацию пирита. Окисление пирита с образованием элементной серы также способствует флотации пирита и приводит к усложнению депрессии пирита в щелочной среде.

Минералы, сульфгидрильные собиратели, флотация, атомные заряды, активность коллектора, молекулярное моделирование

В последние годы интенсивно развивается молекулярное моделирование. Значительные исследования по компьютерному моделированию оксгидрильных реагентов проведены в Индии [1-2]. Детально изучены тионокарбаматы с использованием теории функционала плотности (ТФП) в КНР [3-5]. Молекулярное моделирование сульфгидрильных реагентов осуществлено в Турции и Финляндии [6-9].

Хемосорбцию реагентов, содержащих в своем составе электронно-донорные атомы S, O, N, можно рассматривать как процесс образования поверхностных соединений с координационной связью, которая образуется по донорно-акцепторному механизму путем передачи электронной пары от донора флотореагента к акцептору-минералу. Однако экспериментального подтверждения данной гипотезы пока нет.

Для глубокого понимания вопросов взаимосвязи пространственного строения молекул не только с физическими и химическими свойствами веществ, но и с проявляемой ими химической активностью, очень продуктивной формой процесса исследования является использование компьютерных технологий и химических программ [10–13].

<u>№</u> 5

В ряде работ изучены прототипы сурьмяных и медных сульфидных минералов — антимонит, гудмундит, халькопирит, а также окисленных минералов, прототипов медных минералов, таких как халькопирит простой и циклической формы, ковеллин, борнит и прототипы минералов платиновой группы [14–17].

В то же время в литературе практически нет публикаций по молекулярному моделированию сульфидов железа, в частности пирита. Поэтому авторы акцентировали внимание на пирите, как наиболее распространенном минерале в перерабатываемых рудах. Молекулярное моделирование (MM) использовали для определения оптимальной молекулярной структуры и расчета значений атомных зарядов, энергии ВЗМО (англ. НОМО) и НСМО (англ. LUMO) кластеров и коллекторов флотации в вакууме. На основании этих теоретических расчетов анализируются электронно-донорные характеристики, которые имеют прямое отношение к активности взаимодействия собирателя с катионом кластера. Установленная теоретическая методология и полученные результаты позволяют понять механизм образования и взаимодействия между собирателем и атомом кластера минерала на атомном уровне.

МЕТОДОЛОГИЯ ЭКСПЕРИМЕНТОВ

Современные способы построения объемных моделей минералов и реагентов реализованы в программе ChemBio 3D специализированного комплекса ChemOffice Combridge Soft, а также модуля MOPAC 2012 в вакууме. Данные получены после молекулярной минимизации MM 2 с использованием расчетов по PM 7.

В настоящее время созданы (сконструированы) модели различных минералов элементов платиновой группы (ЭПГ), подгруппы мышьяка менделеевской таблицы, названные нами кластерами (прототипами) минералов (реагентов), так как их строение соответствует химической формуле, а расстояние между отдельными атомами соответствует известным табличным данным, а также сульфгидрильные собиратели флотации. Известно, что природа хемосорбции определяется в первую очередь поверхностной линейной плотностью состояний, а не объемной плотностью состояний.

Разработана методика создания флотационных комплексов, включающая кластер минерала и связанного с атомом (атомами) минерала различных сульфгидрильных собирателей (композитов). Связывание собирателя (композита) с кластером минерала пирита осуществляли по монодентатной, бидентатной и мостиковой схемам. Эти реакции впервые позволили создать комплекс, практически подобный соединению при закреплении собирателя на поверхности минерала в процессе реальной флотации.

КЛАСТЕРЫ ПИРИТА

Модели химических соединений кластеров минерала пирита — тетрасульфид железа (II) и дисульфид моножелеза (II) — изучали компьютерным моделированием. На рис. 1 показаны модели сульфида железа.

Детально изучены кластеры пирита. Установлено, что молекулярное расстояние в пирите (дисульфид моножелеза (II)) характеризуется данными:

Атом	Атом	Расстояние, Å
S(3)	S(2)	2.03245
S(2)	Fe(1)	1.74062

Рис. 1. Молекулярные модели сульфида железа: *а* — дисульфид моножелеза (II) — простая структура; *б* — тетрасульфид железа (II) — циклическая структура

Заряды атомов в пирите: Fe 0.3680 e; S -0.1826 e; S -0.1854 e (e — элементарный заряд электрона).

Определены молекулярные орбитали пирита и по известным уравнениям рассчитаны абсолютная жесткость реагентов и ксантогенатов железа, электроотрицательность и степень переноса заряда [18]. Проанализированы процессы окисления пирита [19].

Известна способность серы окисляться до элементного состояния, с чем связана природная гидрофобность некоторых сульфидных минералов. Во многих исследованиях констатировали наличие серы на поверхности пирита и предпринимались попытки определить ее влияние на флотацию минерала.

Окисление пирита можно представить следующими реакциями:

$$FeS_{2} + 7 \cdot 1/2O_{2} + H_{2}O = FeSO_{4} + H_{2}SO_{4},$$

$$2FeSO_{4} + 1/2O_{2} + H_{2}SO_{4} = Fe_{2}(SO_{4})_{3} + H_{2}O,$$

$$FeS_{2} + Fe_{2}(SO_{4})_{3} = 3FeSO_{4} + 2S^{o},$$

$$S + H_{2}O + 3 \cdot 1/2O_{2} = H_{2}SO_{4}.$$

Элементная сера может покрыть минеральную поверхность и препятствовать выщелачиванию минерала кислотами. У серы незначительный заряд – 0.0116 е. Она не будет взаимодействовать с водой и придаст минералу гидрофобность.

Известно, что в различных сульфидных минералах степень окисления серы неодинакова. Например, в пирите $\operatorname{Fe}^{2+}S_2^{1-}$ она составляет S^{1-} , в халькопирите $\operatorname{Cu}^{1+}\operatorname{Fe}^{3+}S_2^{2+} - S^{2+}$, в хизлевудите $\operatorname{Ni}_3^{2+}S_2^{3-} - S^{3-}$, в пирротине $\operatorname{Fe}^{2+}\operatorname{Fe}^{3+}S^{5-} - S^{5-}$, в арсенопирите $\operatorname{Fe}^{3+}\operatorname{As}^{3+}S^{6-}$ степень окисления серы S^{6-} .

ВЗАИМОДЕЙСТВИЕ КАТИОНОВ ЖЕЛЕЗА С БУТИЛОВЫМ КСАНТОГЕНАТОМ И УСТОЙЧИВОСТЬ КОМПЛЕКСОВ

Рассмотрим возможные реакции продуктов окисления пирита — железосодержащих соединений — с основным флотационным реагентом — бутиловым ксантогенатом (Кх). Катионы Fe^{2+} , Fe^{3+} могут образовывать бидентатные и хелатные комплексы с бутиловым ксантогенатом.

По данным Дж. Лея, ксантогенат железа (III) образуется только в кислой среде (при pH < 3.5) и, как только pH достигнет 5–6, одна или больше групп ксантогената начинают осаждаться с разложением, образуя Fe(OH)Kx₂ [20].

Взаимодействие ксантогената с гидроксидом железа (II) Fe(OH)₂ приведет к образованию основного ксантогената железа, схема которого представлена ниже:

Взаимодействие ксантогената с гидроксидом железа (III) Fe(OH)₃ можно представить в виде схемы:

Взаимодействие ксантогената с железом (II) и разложения ксантогената FeKx₂ описываются следующими реакциями:

$$2ROC(S)SK + FeSO_4 = Fe(ROC(S)S)_2 + K_2 SO_4,$$

$$Fe(ROC(S)S)_2 + 2FeSO_4 + 6H_2O = [(ROC(S)S)]_2 + 3Fe(OH)_2 + 2H_2SO_4 + 2H_2^+)$$

$$\operatorname{Fe}(\operatorname{ROC}(S)S)_2 + \operatorname{Fe}_2(\operatorname{SO}_4)_3 + \operatorname{H}_2\operatorname{SO}_4 = [(\operatorname{ROC}(S)S)]_2 + 3\operatorname{Fe}\operatorname{SO}_4 + 2\operatorname{H}^+$$

 $\operatorname{Fe}(\operatorname{ROC}(S)S)_2 + \operatorname{H}_2 \operatorname{SO}_4 = [(\operatorname{ROC}(S)S)]_2 + \operatorname{Fe} \operatorname{SO}_4 + 2\operatorname{H}^+.$

При связывании двух молекул ксантогената с атомом железа формируется соединение, при разложении которого образуется диксантогенид.

В опубликованной литературе считают, что пирит с диксантогенидом не реагирует. Дисульфид адсорбируется на пирите физически, гидрофобизирует ее и способствует флотации минерала.

 $Fe_{2}(SO_{4})_{2} + 6ROC(S)SK = 2Fe(ROC(S)S)_{2} + 3K_{2}SO_{4}$

Взаимодействие ксантогената с железом (III) протекает по реакциям:

$$2Fe(ROC(S)S)_{3} + 2FeSO_{4} + 8H_{2}O = 3[(ROC(S)S)]_{2} + 4Fe(OH)_{2} + 2H_{2}SO_{4} + 4H^{+},$$

$$Fe_{2}(SO_{4})_{3} + 2ROC(S)SK = [(ROC(S)S)]_{2} + 2FeSO_{4} + K_{2}SO_{4},$$

$$2Fe(ROC(S)S)_{3} + 2H_{2}SO_{4} = 3[(ROC(S)S)]_{2} + 2FeSO_{4} + 4H^{+},$$

$$2Fe(ROC(S)S)_{3} + Fe_{2}(SO_{4})_{3} + H_{2}SO_{4} = 3[(ROC(S)S)]_{2} + 4FeSO_{4} + 2H^{+}.$$

При разложении Fe (ROC(S)S)₃ образуется диксантогенид. Ниже представлена схема комплекса ксантогената с железом (III):

Для полученного соединения рассчитаны компьютерные параметры.

ВЗАИМОДЕЙСТВИЕ ПИРИТА С БУТИЛОВЫМ КСАНТОГЕНАТОМ

Рассмотрим молекулярные модели комплекса ксантогената с кластером пирита (рис. 2) с образованием монодентатной (*a*) и бидентатной (*б*) схем связи.

Рис. 2. Модель комплексов пирита с бутиловым ксантогенатом: *а* — монодентатная; *б* — бидентатная

Данные модели демонстрируют возможность изменения величины зарядов атомов серы собирателя за счет делокализации электронов.

ВЗАИМОДЕЙСТВИЕ КАТИОНОВ ЖЕЛЕЗА КЛАСТЕРА ПИРИТА С БУТИЛОВЫМ ДИКСАНТОГЕНИДОМ И УСТОЙЧИВОСТЬ КОМПЛЕКСОВ

Основные методы изучения дисульфидов сульфгидрильных собирателей и соответствующие компьютерные параметры изложены в [21].

Бутиловый диксантогенид имеет различные конформации, в том числе когда атом тионной серы находится в прямо противоположном направлении.

Ниже приведены монодентатная (*a*) и бидентатная (*б*) схемы связывания дисульфида с атомом железа кластера пирита:

В табл. 1 представлены данные, полученные с использованием программы Морас 2012.

Показатель	Пирит	Пирит	(Kx) ₂	Fe(бутил Kx) ₂	Fe(бутил Kx) ₃
Эмпирическая формула	Fe ₂ S ₄	Fe S ₂	$C_{10}H_{18}O_2S_4$	$\mathrm{C_{10}H_{18}}\mathrm{O_2FeS_4}$	$\mathrm{C}_{15}\mathrm{H}_{27}\mathrm{O}_{3}\mathrm{FeS}_{6}$
Теплота образова- ния, кДж/моль	1516.47048	853.23837	-326.34291	245.01727	- 187.95199
Общая энергия, эВ	-1545.05512	-771.54292	-2750.52626	-3175.74585	-4593.80524
Электронная энер- гия, эВ	-4394.29900	-1535.76519	-16641.02785	-17857.25640	-35226.09707
Диполь, Д	0.30767	1.80312	2.87406	0.48369	7.16947
(SZ)	—				0.500000
(S**2)	—				3.551064
Потенциал иони- зации	7.187637	8.198077	8.268856	9.054142	7.603839
НОМО	-7.188	-8.198	-8.269	-9.054	
LUMO	-1.272	-0.294	-1.561	-1.888	
Молекулярный вес	239.934	119.967	298.491	354.338	503.584
Соѕто площадь, \check{A}^2	178.88	109.64	325.08	375.41	491.94
Cosmo объем, Å ³	193.40	101.18	337.04	378.97	551.33

ТАБЛИЦА 1. Обобщенные данные о пирите, диксантогениде и ксантогенатах железа (II), железа (III), полученные при использовании программы МОРАС 2012

Бутиловый диксантогенид имеет минимальную теплоту образования (– 326.34291 кДж/моль). Возможность образование ксантогената железа (II) осложнена (теплота образования 245.01727 кДж/моль). Уровень молекулярных орбиталей бутилового диксантогенида соответствует уровню молекулярных орбиталей пирита (Fe S₂).

ПРОГНОЗ ОЦЕНКИ АКТИВНОСТИ СОБИРАТЕЛЯ (ПОАС)

Предложен прогноз оценки активности собирателя — взаимодействия собирателя с кластером минерала — в виде разницы общей энергии комплекса и суммы энергии кластера и энергии собирателя, определяемый по выражению [2, 6, 7]:

 $\Delta E = E$ комплекса – (*E* кластера + *E* собирателя), эВ.

Ниже представлены варианты связывания бутилового дисульфида по бидентатной и бутилового ксантогената по монодентатной схемам атомом железа кластера пирита:

Рассмотрим связывание бутилового дисульфида и бутилового ксантогената по бидентатной схеме с атомом железа кластера пирита:

В табл. 2 показаны исходные данные для расчета ПОАС.

При связывании бутилового диксантогенида и бутилового ксантогената с атомом железа кластера пирита наблюдается самый маленький ПОАС: от – 17596.638 до – 16923.993 эВ при монодентатном и бидентатном закреплении ксантогената соответственно. Наличие бутилового диксантогенида и бутилового ксантогената на поверхности кластера пирита способствует оптимальной флотации минерала.

Энергия, эВ (1)	Комплекс (2)	Минерал (3)	Собиратель (4)	Сумма ∑ (3+4) (5)	ПОАС Разница ∆Е (2) – (3+4)
	FeS ₂ -	+ Бутил Кх (монод	ентатный компле	кс)	
Общая энергия	-2136.14342	-748.06866	-1397.73270	-2145.8013	+ 9.6579
Электронная энергия	-9996.61542	-1469.37472	-6231.04922	-7700.4279	-2296.1875
	FeS	2 + Бутил Кх (биден	нтатный комплек	c)	
Общая энергия	-2136.61119	-748.06866	-1397.73270	-2145.8013	+ 9.1902
Электронная энергия	-9947.80896	- 1469.37472	-6231.04922	-7700.4279	-2247.381
	FeS	5 ₂ + (Kx) ₂ (моноден ⁻	гатный комплекс)	
Общая энергия	-3518.45143	-748.06866	-2768.10227	-3516.1708	-2.2806
Электронная энергия	-22410.97683	- 1469.37472	-16307.11827	- 17776.492	-4634,484
	F	eS ₂ + (Kx) ₂ (бидента	атный комплекс)		
Общая энергия	-3519.77430	-748.06866	-2768.10227	-3516.1708	-3.6035
Электронная энергия	-24027.10840	-1469.37472	-16307.11827	-17776.492	-6250.616
	FeS ₂ + (Kx) ₂ (бидентатный) + Бутил Кх (монодентатный) комплекс				
Общая энергия	-4898.14279	- 748.06866	-2768.10227 -1397.73270 -4165.8349	4913.9035	+ 15.7607
Электронная энергия	-41604.17962	- 1469.37472	16307.11827 -6231.04922 22538.167	24007,541	-17596.638
	FeS ₂ + (Kx) ₂ (би	дентатный) + Бути	іл Кх (бидентатнь	ый) комплекс	
Общая энергия	-4906.59834	- 748.06866	-2768.10227 -1397.73270 -4165.8349	4913,9035	+ 7.3052
Электронная энергия	-40931.53465	- 1469.37472	16307.11827 -6231.04922 22538.167	24007.541	- 16923.993

ТАБЛИЦА 2. Исходные данные для расчета ПОАС

ИССЛЕДОВАНИЕ ПЕРЕНОСА ЗАРЯДА ПРИ СВЯЗЫВАНИИ (БУТИЛ Кх)₂ С АТОМАМИ КЛАСТЕРА

При монодендатной схеме связывания собирателя атомы донора кластера передают электроны на серу (Бутил Кх)₂. Наблюдается увеличение отрицательного заряда на сере собирателя (композита) и увеличение заряда на атоме железа.

При бидентатной схеме связывания собирателя атомы донора кластера также передают электроны на серу (Бутил Kx)₂. Происходит уменьшение отрицательного заряд на кластере и увеличение положительного заряда на атоме железа. Этот факт — первое экспериментальное подтверждение передачи зарядов атомов кластера. Авторы работы [19] объясняют его тем, что d-электроны кластера передаются LUMO коллектора с образованием ковалентной связи, если у LUMO есть π -орбиталь и наблюдаются электронно-акцепторные свойства.

В табл. 3 показаны результаты определения зарядов атомов кластеров минералов пирита (FeS₂), (Бутил Kx)₂ и комплексов при монодентатной и бидентатной схемах связывания (Бутил Kx)₂.

Кластер FeS ₂	Монодентатная FeS ₂ (=S) – (Бутил Kx) ₂	Бидентатная FeS ₂ (=S)(=S) (Бутил Kx) ₂	(Бутил Кх) ₂
Fe 0.3680	Fe 0.4767	Fe 0.8371	
S = 0.1826	S = 0.3060	S = 0.3215	
S = 0.1854	S = 0.2/11	S 0.2046	
$-\Sigma = -0.3680$	$-\Sigma = -0.5771$	$-\Sigma = -0.1169$	
	O -0.3100 C 0.2148 S 0.1291 S -0.2687 S 0.1284	O -0.2274 C 0.1809 S -0.2422 S 0.2153	O -0.3163 C 0.2458 S 0.0868 S 0.0868
	$\begin{array}{c} O & -0.2670 \\ C & -0.0465 \\ C & -0.3016 \\ C & -0.2392 \\ C & -0.4384 \\ S & -0.4211 \\ H & 0.1456 \end{array}$	$\begin{array}{c} O & -0.1850 \\ C & -0.0629 \\ C & -0.3078 \\ C & -0.2416 \\ C & -0.4375 \\ S & -0.4548 \\ S & -0.7340 \end{array}$	$\begin{array}{c} O & -0.316 \\ C & -0.0327 \\ C & -0.3004 \\ C & -0.2439 \\ C & -0.4367 \\ S & -0.3236 \\ S & -0.3237 \end{array}$
		Н 0.1429	Н 0.1438

ТАБЛИЦА 3. Заряды на кластере пирита (FeS2), его комплексах и (Бутил Кх)₂

ВЗАИМОДЕЙСТВИЕ КАТИОНОВ ЖЕЛЕЗА КЛАСТЕРА ПИРИТА С ТИОНОКАРБАМАТАМИ

В практике флотации широко используются тионокарбаматы. Эти реагенты по сравнению с ксантогенатами проявляют высокую селективность действия при отделении пирита от сульфидных минералов и в ряде других случаях [20, 21]. Наиболее эффективно применение их в процессе селекции или в качестве дополнительных собирателей совместно с ксантогенатами. Если О-пропил-N-метилтионокарбамат(ИТК) селективен по отношению к цинковой обманке, то О-бутил-N-фенилтионокарбамат флотирует сульфиды цинка [20, 22].

В настоящее время отсутствуют систематические представления о механизме их действия и критерии подбора.

О-ИЗОПРОПИЛ-N-ЭТИЛ ТИОКАРБАМАТ (Z 200)

Ниже представлены схемы связывания атома азота Z 200 по монодентатной схеме с атомом железа кластера пирита:

Рассмотрим модель связывания атома азота, атома серы Z 200 по бидентатной схеме с атомом железа кластера пирита (рис. 3).

Рис. 3. Молекулярная модель связывания тионокарбамата с железом кластера пирита

При связывании был замещен протон тионокарбамата с образованием валентной связи. В табл. 4 показаны заряды на кластере пирита (FeS₂), его комплексах с Z 200 и Z 200.

Кластер FeS ₂	Монодентатная FeS ₂ (-N)- Z 200	Бидентатная FeS ₂ (=S)(=N) Z 200	Z 200
Fe 0.3680	Fe 0.9235	Fe 0.7571	
S -0.1826	S -0.3320	S -0.3407	
S -0.1854	S -0.2664	S -0.2711	
$-\Sigma = -0.3680$	$-\Sigma = -0.5984$	$-\Sigma = -0.6118$	
	O -0.5062	O -0.3113	O -0.3428
	C 0.5031	C 0.4425	C 0.4931
	S -0.3216	S -0.2122	S - 0.4650
	N -0.7355	N - 0.6807	N-0.5539
	$-\Sigma = -0.10571$	$-\Sigma = -0.8929$	$-\Sigma = -0.10189$
	C -0.0145	C -0.0414	C -0.0330
	Н 0.1795	Н 0.1693	Н 0.1653

ТАБЛИЦА 4. Заряды на кластере пирита (FeS₂), его комплексах с Z 200 и Z 200

При монодентатной схеме связывания собирателя с атомом N атомы донора кластера передают электроны на серу Z 200. Наблюдается увеличение отрицательного заряда на кластере и увеличение заряда на атоме железа.

При бидентатной схеме связывания собирателя с атомами N и S атомы донора кластера принимают электроны с серы Z 200. Наблюдается уменьшение отрицательного заряд на кластере и положительного заряда на атоме железа. Этот факт также подтверждает передачу зарядов атомов донора собирателя на акцептор-кластер минерала.

О-ПРОПИЛ-N-МЕТИЛТИОНОКАРБАМАТ (ИТК)

Выполнен анализ схемы и молекулярной модели связывания атома азота и атома серы ИТК по бидентатной схеме с атомом железа кластера пирита (рис. 4).

Рис. 4. Схема и молекулярная модель связывания атомов азота и серы ИТК с атомом железа кластера пирита

В табл. 5 показаны заряды на кластере пирита (FeS₂), его комплексах с ИТК и ИТК.

Кластер FeS ₂	Монодентатная FeS ₂ (-N)-ИТК	Бидентатная FeS ₂ (=S)(=N) ИТК	ИТК
Fe 0.3680	Fe 0.8749	Fe 0.7963	
S = 0.1826	S -0.2733	S -0.2618	
S -0.1854	S -0.3073	S -0.3247	
$-\Sigma = -03680$	$-\Sigma = -0.5806$	$-\Sigma = -0.5865$	
	O -0.3039	O -0.2813	O -0.3134
	C 0.4893	C 0.3831	C 0.4840
	S -0.3248	S -0.3214	S -0.4530
	N -0.7548	N-0.5485	N - 0.5258
	$-\Sigma = -0.10796$	$-\Sigma = -0.8799$	$-\Sigma = -0.9788$
	C -0.2172 C -0.0670 H 0.1650	C - 0.2301 C - 0.0524 H 0.1682	C -0.2272 C -0.0769 H 0.1640

ТАБЛИЦА 5. Заряды на кластере пирита (FeS₂), его комплексах с ИТК и ИТК

При монодентатной схеме связывания собирателя к атому N атомы донора кластера передают электроны на серу ИТК. Наблюдается увеличение отрицательного заряда на кластере и увеличение заряда на атоме железа.

При бидентатной схеме связывания собирателя к атому N и S атомы донора кластера принимают электроны с серы ИТК Отмечается уменьшение отрицательного заряд на кластере и незначительное уменьшение положительного заряда на атоме железа. Этот факт — также экспериментальные подтверждение передачи зарядов атомов донора собирателя на акцепторкластер минерала.

В табл. 6 показаны исходные данные для расчета ПОАС.

Энергия, эВ (1)	Комплекс (2)	Минерал (3)	Собиратель (4)	Сумма ∑ (3+4) (5)	ПОАС Разница 5 <i>ΔЕ</i> (2) – (3+4)
	$FeS_2 +$	Z 200 (бидентатн	ый) комплекс		
Общая энергия	-2310.06872	-748.06866	-1571.08289	-2319.1514	+ 9.0827
Электронная энергия	-12573.89340	-1469.37472	-7966.31959	-9435.6942	-3138.199
	$FeS_2 +$	ИТК (бидентатн	ый) комплекс		
Общая энергия	-2159.68228	-748.06866	-1420.83231	-2168.9009	+9,2187
Электронная энергия	-10765.29772	-1469.37472	-6584.98073	-8054.3554	-2710.942
	FeS ₂	+ Z 200 (моноден ⁻	татный) + N		
Общая энергия	-2309.43446	-748.06866	-1571.08289	-2319.1514	+9.717
Электронная энергия	-12871.24796	-1469.37472	-7966.31959	-9435.6942	-3435.553
FeS ₂ + ИТК + N (монодентатный) комплекс					
Общая энергия	-2158.93274	-748.06866	-1420.83231	-2168.9009	+ 9.9682
Электронная энергия	-10948.36769	-1469.37472	-6584.98073	-8054.3554	-2894.012
	$Fe_2S_4 + (Kx)$	₂ (мостиковый) +	Кх (бидентатный	i)	
Ofwag overprug	5650 40901		-2768.10227		
оощая энергия	- 3039.40801		-1397.73270		
Anertholinad Shepping	-51230 07852		-16307.11827		
электронная энергия	- 51259.97052		-6231.04922		

ТАБЛИЦА 6. Данные для расчета ПОАС

На основании представленных данных можно считать, что неоногенные собиратели типа Z 200 и ИТК хорошо взаимодействуют с атомом железа пирита, но хуже, чем с бутиловым диксантогенидом. При этом Z 200 взаимодействует с кластером более эффективно, чем ИТК. На практике селективность этих реагентов повышают регулированием рН пульпы. ПОАС для изученных собирателей приведены в табл. 7.

ТАБЛИЦА 7. Сводные данные по ПОАС для исследованных собирателей

FeS_2 + (Kx) ₂ (бидентатный)	FeS ₂ + Z 200 (бидентатный)	FeS_2 + ИТК (бидентатный)
ПОАС (общая энергия) – 3.6035	ПОАС (общая энергия) + 9.0827	ПОАС (общая энергия) + 9.2187
ПОАС (электронная энергия)	ПОАС (электронная энергия)	ПОАС (электронная энергия)
-6250.616	-3138.199	-2710.942
Теплота образования	Теплота образования	Теплота образования
–90.34813 кДж/моль	– 144.97463 кДж/моль	– 80.06848 кДж/моль
Энергия HOMO LUMO, эВ	Альфа SOMO LUMO ,эВ	Альфа SOMO LUMO, эВ
-8.508 - 2.130	-8.100 -1.517	-8.468 -1.771
	Бета SOMO LUMO (эВ)	Бета SOMO LUMO, эВ
	-8.222 -1.159	-8.601 -1.368
Диполь 1.88975 Д	Диполь 11.22369 Д	Диполь 8.21141 Д
$F_0S_1 + (K_X)_1$ (MOHOHOHTOTHI IŬ)	FeS ₂ + Z 200 + N (монодентат-	FeS ₂ + ИТК + N (монодентат-
FeS ₂ + (Kx) ₂ (монодентатный)	FeS ₂ + Z 200 + N (монодентат- ный)	FeS ₂ + ИТК + N (монодентат- ный)
FeS ₂ + (Kx) ₂ (монодентатный) -2.2806	FeS ₂ + Z 200 + N (монодентат- ный) + 9.717	FeS ₂ + ИТК + N (монодентат- ный) + 9.9682
FeS ₂ + (Kx) ₂ (монодентатный) <u>-2.2806</u> <u>-4634.484</u>	FeS ₂ + Z 200 + N (монодентат- ный) + 9.717 - 3435.553	FeS ₂ + ИТК + N (монодентат- ный) + 9.9682 - 2894.012
FeS2 + (Kx)2 (монодентатный) -2.2806 -4634.484 Теплота образования	FeS ₂ + Z 200 + N (монодентат- ный) + 9.717 - 3435.553 Теплота образования	FeS ₂ + ИТК + N (монодентат- ный) + 9.9682 - 2894.012 Теплота образования
FeS2 + (Kx)2 (монодентатный) -2.2806 -4634.484 Теплота образования 45.80536 кДж/моль	FeS ₂ + Z 200 + N (монодентат- ный) + 9.717 - 3435.553 Теплота образования - 83.37933 кДж/моль	FeS2 + ИТК + N (монодентатный) + 9.9682 - 2894.012 Теплота образования - 8.31944 кДж/моль
FeS2 + (Kx)2 (монодентатный) -2.2806 -4634.484 Теплота образования 45.80536 кДж/моль Энергия НОМО LUMO ,3В	FeS ₂ + Z 200 + N (монодентат- ный) + 9.717 - 3435.553 Теплота образования - 83.37933 кДж/моль Альфа SOMO LUMO, эВ	FeS ₂ + ИТК + N (монодентат- ный) + 9.9682 - 2894.012 Теплота образования - 8.31944 кДж/моль Альфа SOMO LUMO , эВ
FeS2 + (Kx)2 (монодентатный) -2.2806 -4634.484 Теплота образования 45.80536 кДж/моль Энергия НОМО LUMO ,3В -8.280 -2.420	FeS2 + Z 200 + N (монодентат- ный) + 9.717 - 3435.553 Теплота образования - 83.37933 кДж/моль Альфа SOMO LUMO, эВ - 8.733 - 1.683	FeS ₂ + ИТК + N (монодентат- ный) + 9.9682 - 2894.012 Теплота образования - 8.31944 кДж/моль Альфа SOMO LUMO , эВ - 9.058 - 1.976
FeS2 + (Kx)2 (монодентатный) -2.2806 -4634.484 Теплота образования 45.80536 кДж/моль Энергия НОМО LUMO ,3B -8.280 -2.420	FeS2 + Z 200 + N (монодентат- ный) + 9.717 - 3435.553 Теплота образования - 83.37933 кДж/моль Альфа SOMO LUMO, эВ - 8.733 -1.683 Бета SOMO LUMO, эВ	FeS ₂ + ИТК + N (монодентат- ный) + 9.9682 - 2894.012 Теплота образования - 8.31944 кДж/моль Альфа SOMO LUMO , эВ - 9.058 - 1.976 Бета SOMO LUMO, эВ
FeS2 + (Kx)2 (монодентатный) -2.2806 -4634.484 Теплота образования 45.80536 кДж/моль Энергия НОМО LUMO ,3В -8.280 -2.420	FeS2 + Z 200 + N (монодентат- ный) + 9.717 - 3435.553 Теплота образования - 83.37933 кДж/моль Альфа SOMO LUMO, эВ - 8.733 - 1.683 Бета SOMO LUMO, эВ - 8.646 - 1.766	FeS2 + ИТК + N (монодентат- ный) + 9.9682 – 2894.012 Теплота образования – 8.31944 кДж/моль Альфа SOMO LUMO , эВ – 9.058 – 1.976 Бета SOMO LUMO , эВ – 8.967 – 2.029

Диксантогенид более активно связывается, чем Z 200 и ИТК, так как величины ПОАС незначительны. Связывание диксантогенида по монодентатной схеме затруднено.

выводы

Построены шаростержневые модели пирита простой и циклической формы, проведено молекулярное моделирование и определено расстояние между двумя атомами S (2.03245 Å) и между атомом Fe и атомом S (1.74 Å), что практически совпадает с литературными данными.

Определены уровни верхней занятой молекулярной орбитали (ВЗМО) и низшей свободной молекулярной орбитали (НСМО), вычислены абсолютная жесткость, электроотрицательность и коэффициент переноса заряда.

Проанализированы процессы окисления пирита с образованием сульфатов Fe (II) и Fe (III).

Изучены реакции взаимодействия бутилового ксантогената с катионами Fe(II) и Fe(III) с образованием Fe (Бутил Kx)₂, Fe (Бутил Kx)₃ и рассмотрено образование Fe(OH) (Бутил Kx). Определены коэффициенты для ввода базисов в молекулярную орбиталь и заряды отдельных атомов кластера Fe (Бутил Kx)₂, Fe (Бутил Kx)₃.

Построены комплексы бутилового ксантогената с кластерами пирита по различным схемам связывания собирателя по моно- и бидентатной схемам. Предложен индекс ПОАС для прогноза оценки активности собирателя при связывании собирателя с атомом кластера. Показано, что при монодентатном связывании собирателя наблюдается перенос с минерала на атомы серы собирателя, при бидентатном — классический перенос заряда с донора собирателя на акцептор минерала. Этот факт является первым экспериментальным подтверждением передачи зарядов атомов донора собирателя на акцептор-кластер минерала.

Изучен ряд тионокарбаматов типа Z-200 и ИТК молекулярным моделированием и вычислены основные их компьютерные параметры.

Построена модель связывания дисульфида ксантогената с пиритом по моно- и бидентатной схемам. Данные комплексы охарактеризованы основными физико-химическими параметрами. Так, теплота образования для циклического пирита составила 1511, а для простого – 853, т. е. показано преимущественное образование Fe (Бутил Кх)₃.

Высказано предположение, что при разложении ксантогенатов железа в кислой среде образуются в основном диксантогениды, которые и определяют флотацию пирита. Процессы окисления пирита с образованием элементной серы также способствуют флотации пирита и приводят к усложнению депрессии пирита в щелочной среде.

СПИСОК ЛИТЕРАТУРЫ

- 1. Shailaja Pradip, Beena Rai. Molecular modeling and rational design of flotation reagents, Int. J. Miner. Process, 2003, Vol. 72.
- 2. Molecular modeling for the design of novel performance chemicals and materials, (ed.) Beena Rai, Publication Date: March, 2012.
- **3.** Guangyi Liu, Hong Zhong, Tagen Dai, Liuyin Xia. Investigation of the effect of N-substituents on performance of thionocarbamates as selective collectors for copper sulfides by ab initio calculations, Mineral Engineering, 2008, Vol. 21.
- 4. Wang D., Lin Q., Jiang Y. Molecular design of reagents for mineral and metallurgical processing, first ed. Central South University of Technology, Changsha, 1996.
- **5.** Guangyi Liu, Hong Zhong, Tagen Dai, Liuyin Xia. Books of abstracts. XXVI International Mineral Processing Congress IMPC-2012, New Delhi, India, September 24-28, 2012, Vol. 2.

- 6. Yekeler M., Yekeler H. Reactivities of some thiol collectors and their interactions with Ag+ ion by molecular modeling, Appl. Surf. Sci., 2004, Vol. 236.
- Yekeler M., Yekeler H. A density functional study on the efficiencies of 2-mercaptobenzoxazole and its derivatives as chelating agents in flotation processes, Colloids Surf. A: Physicochem. Eng. Aspects, 2006, Vol. 286.
- **8.** Porento M., Hirva P. Theoretical studies on the interaction of anionic collectors with Cu+, Cu2+, Zn2+ and Pb2+ ions. Theor. Chem. Acc. 2002, Vol. 107.
- **9.** Porento M., Hirva P. A theoretical study on the interaction of sulfhydryl surfactants with a covellite (001) surface. Surf. Sci., 2004, Vol. 555.
- 10. Соловьев М. Е., Соловьев М. М. Компьютерная химия. М.: СОЛОН-Пресс, 2005.
- **11.** Цирельсон В. Г. Квантовая химия. Молекулы, молекулярные системы и твердые тела: учеб. пособие для вузов. М.: БИНОМ. Лаб. знаний, 2010.
- **12.** Бутырская Е. В. Компьютерная химия: основы теории и работа с программами Gaussian и Gauss View. М.: СОЛОН-Пресс, 2011. (Сер. "Библиотека студентов").
- Solozhenkin P. M., Solozhenkin O. I. and Sanda Krausz. Prediction of efficiency of flotation collectors based on quatum chemical computations. Books of abstracts. XXVI International Mineral Processing Congress — IMPC-2012, New Delhi, India, September 24 – 28, 2012, Vol. 2.
- 14. Соложенкин П. М. Создание и прогнозирование свойств эффективных, малотоксичных флотационных реагентов на основе квантово-механических представлений с целью комплексного извлечения цветных и благородных металлов. Научные и технические аспекты охраны окружающей среды. Обзорная информация / ВИНИТИ. Вып. № 1. — М., 2013.
- 15. Соложенкин П. М. Создание прототитов сульфидных минералов и взаимодействие их с реагентами в процессе флотации и выщелачивания руд квантово-механическим методом / Тр. Междунар. науч. симп. "Неделя горняка 2013": сб. статей. — М.: Горная книга, 2013. — № OB1-648.
- Solozhenkin P. M. Research of interaction of prototypes of minerals with solutions of reagents quantumchemical method, Proceeding 16-th Conference on Environment and Mineral Processing, 7 – 9 June, 2012. Ostrava, Czech Republic, Part II.
- Solozhenkin P. M., Karlusova K. M. Cluster of minerals Sb, Bi, As and their research with of collectors quantum-mechanics method, Proceeding 17-th Conference on Environment and Mineral Processing, 7 – 9 June, 2012. Ostrava, Czech Republic, Part II.
- **18.** Реутов О. А., Курц А. Л, Бутин К. П. Органическая химия: в 4 ч. Ч. 1. 2-е изд. М.: БИНОМ. Лаб. знаний, 2005.
- 19. Воган Д., Крейг Дж. Химия сульфидных минералов. М.: Мир, 1978.
- **20.** Хан Г. А., Габриелова Л. И., Власова Н. С. Флотационные реагенты и их применение. М.: Недра, 1986.
- 21. Соложенкин П. М, Соложенкин О. И. Компьютерное моделирование дисульфидов дитиофосфорных кислот и сульфгидрильных собирателей // ФТПРПИ. — 2011. — № 3.
- 22. Соложенкин П. М., Соложенкин О. И. Компьютерный дизайн флотационных реагентов с тиоамидой группировкой // Цв. металлы. — 2011. — № 7.

Поступила в редакцию 8/VII 2013