2015. Том 56, № 4 Июль C. 689 – 697

УДК 548.33:538.911:546.02

# СТРУКТУРНЫЕ ОСОБЕННОСТИ ФЕРРИТ-ХРОМИТОВ МЕДИ

# Л.М. Плясова $^1$ , В.И. Зайковский $^{1,2}$ , Г.Н. Кустова $^1$ , Т.П. Минюкова $^1$ , И.Ю. Молина $^1$ , Н.В. Штерцер $^{1,2}$ , Т.М. Юрьева $^1$

<sup>1</sup>Институт катализа им. Г.К. Борескова СО РАН, Новосибирск, Россия E-mail: pls@catalysis.ru

Статья поступила 27 июня 2014 г.

Комплексом физико-химических методов проведено исследование структурных особенностей и распределения катионов в кристаллографических позициях хромита, феррита меди и совместных хромит-ферритов со структурой шпинели, полученных терморазложением при 600 и 900 °C совместных гидроксосоединений меди, железа и хрома состава  $\mathrm{Cu}^{2+}/(\mathrm{Fe}^{3+}+\mathrm{Cr}^{3+})=1/2$  и различным соотношением  $\mathrm{Fe}^{3+}/\mathrm{Cr}^{3+}$ . Показано, что образующиеся фазы шпинельной структуры существуют в двух модификациях — кубической и тетрагональной в зависимости от соотношения  $\mathrm{Fe}^{3+}/\mathrm{Cr}^3$ . Проанализирована кристаллографическая связь между кубической и тетрагонально-искаженной фазами шпинели. Распределение катионов по кристаллографическим позициям, характер и степень тетрагонального искажения шпинели  $\mathrm{Cu}-\mathrm{Fe}-\mathrm{Cr}$  зависит от отношения  $\mathrm{Fe}^{3+}/\mathrm{Cr}^{3+}$ : при соотношении  $\mathrm{Fe}^{3+}/\mathrm{Cr}^{3+} > 1$  отношение параметров элементарной ячейки  $c^*/a^* > 1$ , при  $\mathrm{Fe}^{3+}/\mathrm{Cr}^{3+} < 1$  отношение  $c^*/a^* < 1$ , при  $\mathrm{Fe}^{3+}/\mathrm{Cr}^{3+} = 1$  шпинель является кубической независимо от температуры термообработки. Координация ионов меди кислородом в структуре шпинели существенно влияет на каталитические свойства образцов в реакции низкотемпературной паровой конверсии  $\mathrm{CO}$ .

DOI: 10.15372/JSC20150405

**Ключевые слова:** Си—Fe—Cr шпинель, распределение катионов в структуре шпинели, структурный переход в шпинели, паровая конверсия CO.

# **ВВЕДЕНИЕ**

Совместные оксиды Cu—Fe—Cr привлекают внимание не только своими магнитными свойствами, но также разнообразными окислительно-восстановительными, в том числе каталитическими свойствами [1]. Разнообразие свойств оксидов является следствием сочетания в пределах одной структуры (шпинели) ионов  $Cu^{2+}$ ,  $Fe^{3+}$  и  $Cr^{3+}$ , проявляющих явно выраженные конкурирующие предпочтения к различным конфигурациям ближайшего окружения ионами кислорода.

Известно, что хромит меди является нормальной шпинелью, для которой характерно размещение ионов меди в тетраэдрических кристаллографических позициях шпинели независимо от полиморфной модификации [ 2, 3 ]. Полиморфный переход тетрагональной структуры шпинели (пр. гр.  $I4_1/amd$ , a = 6,0336 Å, c = 7,782 Å [ 4 ]) в кубическую (пр. гр. Fd3m, a = 8,344 Å [ 5 ]) происходит при ~560 °C вследствие разориентации тетраэдров [CuO<sub>4</sub>] за счет теплового движения [ 6 ]. В работе [ 7 ] дифрактограмма хромита меди проиндицирована в рамках тетрагонально-

<sup>&</sup>lt;sup>2</sup>Новосибирский национальный исследовательский государственный университет, Россия

 $<sup>\ \ \, \</sup>mathbb{C}\ \,$  Плясова Л.М., Зайковский В.И., Кустова Г.Н., Минюкова Т.П., Молина И.Ю., Штерцер Н.В., Юрьева Т.М., 2015

искаженной кубической структуры шпинели с параметрами ячейки  $a^* = 8,537$  Å,  $c^* = 7,782$  Å. Феррит меди также существует в двух модификациях — кубической [ 8 ] и тетрагонально-искаженной [ 9 ] структуры шпинели. Температура полиморфного перехода по литературным данным составляет  $\sim 460$  [ 10 ] и 480 °C [ 11 ]. Для феррита меди методом прецизионной нейтронографии [ 10 ] показано, что  $CuFe_2O_4$  — обращенная шпинель независимо от полиморфной модификации.

В литературе отсутствуют данные о влиянии соотношения  $Fe^{3+}/Cr^{3+}$  на степень обращенности феррит-хромитов меди со структурой шпинели и характер искажения структуры.

В настоящей работе исследуются структурные особенности оксидов Cu—Fe—Cr шпинельной структуры с различным отношением  $Fe^{3+}/Cr^{3+}$ , полученных терморазложением совместных гидроксосоединений. Продемонстрирована зависимость каталитических свойств в отношении реакции паровой конверсии монооксида углерода от структурных параметров. Результаты исследования каталитических свойств более детально изложены в отдельной статье.

#### ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы получали термообработкой совместных гидроксосоединений, приготовленных методом соосаждения компонентов из 10%-х водных растворов азотнокислых солей при постоянных значениях рН и температуры. В случае хромита меди для обеспечения полноты взаимодействия ионов меди с ионами хрома содержание хрома увеличено на ~5 %. Термообработку проводили на воздухе при 600—650 °C и при 900 °C в течение 4 ч. Охлаждение до комнатной температуры проходило со скоростью 2—3 град./мин. Химический анализ состава полученных образцов выполнен методом атомно-эмиссионной спектроскопии (АЭС). В табл. 1 приведены шифры и химический состав образцов. Прокаленные образцы представляли собой нанодисперсные порошки.

Дифференциальный термический анализ (ДТА) дегидратации образцов проводили на установке термического анализа Netzsch STA-409 в токе аргона при скорости повышения температуры 10 К/мин.

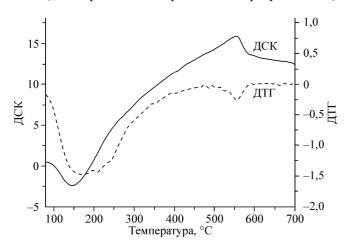
Рентгенодифракционные исследования выполнены на дифрактометре D-8 (Bruker) в  $CuK_{\alpha}$ -излучении (графитовый монохроматор на отраженном пучке). Съемки проведены методом сканирования по точкам, с шагом 0,02—0,05° 2θ и временем накопления 5 с в точке. Точность измерения углов  $\Delta\theta = 0,01$ —0,02°, межплоскостных расстояний –  $\Delta d \sim 10^{-3}$  Å.

Электронно-микроскопическое исследование высокого разрешения (ЭМВР) образцов проводили на просвечивающем электронном микроскопе JEM-2010 (JEOL) (разрешение 0,14 нм, ускоряющее напряжение 200 кВ). Для определения концентрации соответствующих элементов и их соотношения использовали локальный энерго-дисперсионный рентгеновский микроанализ (ЕDX-анализ). Образцы для исследований были нанесены на Al сетку.

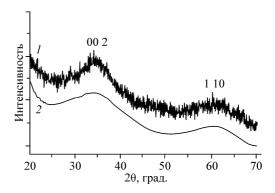
**Инфракрасные спектры поглощения** записаны на Фурье-спектрометре Bomem MB-102 в области 250— $4000~{\rm cm}^{-1}$ , на спектрометре Bruker — в области 100— $300~{\rm cm}^{-1}$ . Образцы для съемки готовили методом прессования в CsI и полиэтилене соответственно.

 $\begin{tabular}{ll} $T$ аблица & $1$ \\ $\hbox{\it Шифры, xumuчecku\'u cocmas oбразцов u noложенus эффектов no данным $\upmu TA$ } \end{tabular}$ 

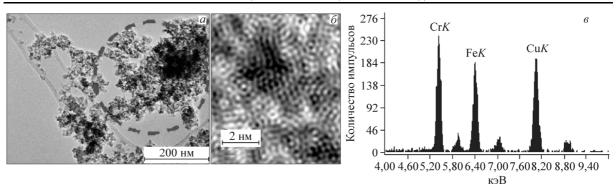
| Образец                 | Химический состав, ат.%  Си Fe Cr |    | т.% | Область<br>эндотермического<br>эффекта, °С | Область<br>экзотермического<br>эффекта, °С |
|-------------------------|-----------------------------------|----|-----|--------------------------------------------|--------------------------------------------|
| CuCr <sub>2</sub>       | 30                                | 0  | 70  | 95—300                                     | 600—660                                    |
| -                       |                                   | Ů  |     |                                            |                                            |
| $Cu Fe_{0,25}Cr_{1,75}$ | 34                                | 8  | 58  | 95—430                                     | 540—670                                    |
| $CuFe_{1,0}Cr_{1,0}$    | 34                                | 33 | 33  | 100—400                                    | 500—590                                    |
| $CuFe_{1,75}Cr_{0,25}$  | 34                                | 58 | 8   | 95—330                                     | 480—540                                    |
| CuFe <sub>2</sub>       | 33                                | 67 | 0   | 100—300                                    | 420—480                                    |


**Каталитические свойства** в отношении реакции паровой конверсии СО исследовали на катализаторах CuFeCr, прокаленных при  $T=600\,^{\circ}$ C, в проточной лабораторной установке с газохроматографическим анализом реагентов. Реакцию проводили при давлении 1 атм, используя исходную рабочую смесь состава CO: $H_2O:H_2=8:42:50$ . Константы скорости реакции определяли для катализаторов, достигших стационарной активности (после 25 ч непрерывной работы). Значения кажущейся энергии активации реакции получены в области температур  $150-210\,^{\circ}$ C.

# РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ


Исследование гидроксосоединений. Типичный вид термических кривых дифференциальной термогравиметрии (ДТГ) и дифференциальной сканирующей калориметрии (ДСК) представлен на рис. 1 для сухого образца CuFe<sub>1,0</sub>Cr<sub>1,0</sub>. В табл. 1 приведены области температур, в которых происходят превращения гидроксосоединений. В области 95—430 °C на кривых ДСК наблюдаются эндотермические эффекты, характеризующие удаление слабосвязанной и адсорбированной воды, потеря массы по кривым ДТГ составляет 15—25 %. В области 420—670 °C на кривых ДСК наблюдаются слабые экзотермические эффекты, сопровождающиеся потерей массы 1—5 мас.%. Положения эффектов ДСК и данные РФА дают основание полагать, что разложение гидроксосоединений сопровождается кристаллизацией оксидов шпинельной структуры.

Все сухие образцы независимо от соотношения компонентов имеют схожие дифракционные картины. Для примера на рис. 2 приведены дифрактограмма (I), на рис. 3 — микрография образца  $CuFe_{1,0}Cr_{1,0}$ . На дифрактограмме сухих образцов имеется два гало с максимумами в области  $\sim 35,0$ —35,2 и 62,1—62,3° 20, которые, согласно [ 12, 13 ], можно отнести к двум рефлексам — 002 ( $d_{cp}=2,540$  Å) и 110 ( $d_{cp}=1,483$  Å), характеризующим двухслойную гексагональную плотнейшую упаковку анионов ( $\Gamma\Pi Y$ ), в которой катионы распределены в октаэдрических и тетраэдрических междоузлиях случайным образом. Определенные из этих рефлексов параметры гексагональной ячейки составляют a=3,006 и c=5,08 Å Отношение c/a=1,69, что существенно отличается от такового для идеальной  $\Gamma\Pi Y$  (c/a=1,63 [ 14 ]). Это может быть следствием разупорядочения плотнейшей упаковки за счет наличия разных анионов ( $O^{2-}$ ,  $OH^-$ ,  $CO_3^{2-}$ ,  $NO_3^-$ ). На рис. 2 (2) приведена теоретически рассчитанная [ 15 ] модельная дифрактограмма. Как видно, экспериментальная дифрактограмма хорошо совпадает с расчетной.


Методом ЭМВР для сухих образцов наблюдаются частицы размером 10—20 нм (см. рис. 3, a), состоящие из разупорядоченных наноразмерных слоистых блоков (размером <2 нм), которые видны при высоком разрешении (см. рис. 3,  $\delta$ ). В межблочные границы могут



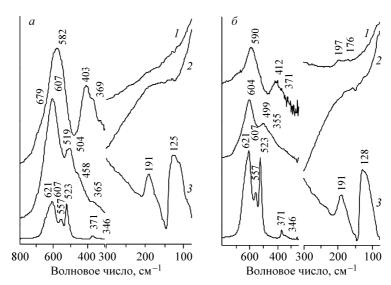
 $Puc.\ 1.$  Термические кривые сухого образца  $CuFe_{1,0}Cr_{1,0}.$  Съемка в аргоне, скорость подъема температуры  $10^{\circ}$ /мин



Puc.~2. Дифрактограмма образца  $CuFe_{1,0}Cr_{1,0}O_4$  сухого (I) и результат моделирования (пр. гр. № 194,  $P6_3/mmc$ , a=3,00 Å, c=5,10 Å) (2)



Puc.~3.~ Микрографии образца  $CuFe_{1.0}Cr_{1.0}O_4$  сухого  $(a, \delta)$  и результаты EDX-анализа (a)


входить  $H_2O$  и группы  $CO_3^{2-}$  и  $OH^-$ . Средний элементный состав, по данным EDX (см. рис. 3,  $\epsilon$ ), соответствует заложенному катионному составу.

Из полученных данных следует, что сухие образцы представляют собой совместные гидроксосоединения, имеющие двухслойную гексагональную упаковку анионов со случайным распределением катионов. Разложение гидроксосоединений с образованием совместных оксидов происходит при температуре 400—630 °C и сопровождается кристаллизаций фазы шпинели.

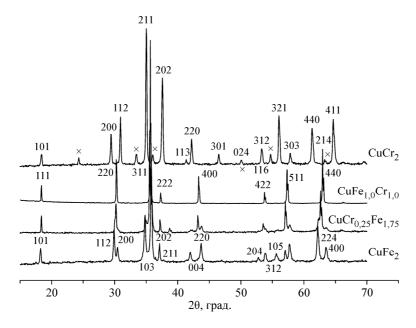
Исследование оксидных фаз со структурой шпинели. Методом ИК спектроскопии исследовали образцы, прокаленные на воздухе при температурах 600 и 900 °С (выше температуры кристаллизации шпинельной фазы). На рис. 4 приведены спектры образцов  $CuFe_2$  (I), CuFeCr (I) и  $CuCr_2$  (I), прокаленных при 600 °С (I) и 900 °С (I). Согласно данным [ 16, 17 ], полученные ИК спектры соответствуют соединениям со структурой шпинели.

ИК спектр образца  $CuCr_2$ , прокаленного при 600 °C, соответствует тетрагонально-искаженной медно-хромовой шпинели [ 18 ]. Полосы поглощения (п.п.) 621, 607, 557, 523 см<sup>-1</sup> относятся к колебаниям октаэдрической группы  $CrO_6$ ; п.п. 371 см<sup>-1</sup> связана со смешанными колебаниями октаэдрической  $CrO_6$  и тетраэдрической  $CuO_4$  групп. Полосы поглощения 191, 125 см<sup>-1</sup> характеризуют колебания тетраэдрической группы  $CuO_4$  [ 19 ].

Для образца CuFe<sub>2</sub>, прокаленного при 600 °C (см. рис. 4, a, l) и 900 °C (см. рис. 4, b, b), согласно [ 17 ], п.п. в области 582 см $^{-1}$  в спектре образцов CuFe<sub>2</sub> относится к валентным модам октаэдрических и тетраэдрических положений катионов; п.п. в области 400 см $^{-1}$  — к валентным



*Puc. 4.* ИК спектры образцов, прогретых при 600 °C (*a*) и 900 °C (*б*):  $CuFe_2(I)$ ,  $CuFe_{1,0}Cr_{1,0}(2)$ ,  $CuCr_2(3)$ 


модам октаэдрических положений. Полоса поглощения октаэдра расщеплена: 403, 369 см<sup>-1</sup> (см. рис. 4, *a*, *I* и 4, *б*, *I*), следовательно, в этой позиции находятся катионы разных сортов [ 20 ] — в нашем случае катионы меди и железа. В области 200 см<sup>-1</sup>, где должно наблюдаться поглощение, связанное с колебаниями тетраэдрической группы, полосы поглощения отсутствуют. В ИК спектре образца CuFe<sub>2</sub>, прокаленного при 900° (см. рис. 4, *б*, *I*), наблюдается: п.п. 590 см<sup>-1</sup>, относящаяся, как отмечалось выше, к колебаниям октаэдрической и тетраэдрической групп, расщепленная п.п. октаэдрической группы 412 см<sup>-1</sup> свидетельствует о присутствии разных катионов в октаэдрической позиции, и п.п. 197, 178 см<sup>-1</sup>, связанные с колебаниями тетраэдрической группы. Следовательно, образец CuFe<sub>2</sub>, прогретый при 600 °C и 900 °C представляет собой феррит меди со структурой обращенной шпинели. Проявление после 900 °C полос, связанных с колебаниями катионов в тетраэдрических позициях, свидетельствует о том, что повышение температуры термообработки обеспечивает более высокую организованность структуры.

ИК спектры образца  $CuFe_{1,0}Cr_{1,0}$  (см. рис. 4, 2) характеризуют совместную шпинель, в октаэдрической позиции которой находятся разные катионы, поскольку п.п. октаэдра расщеплена (519, 504, 458 см<sup>-1</sup>). В спектре в области 100—200 см<sup>-1</sup> присутствуют широкие п.п. 191, 125 см<sup>-1</sup>, характеризующие колебания тетраэдрической группы  $CuO_4$ , которые были явно выражены в спектре  $CuCr_2O_4$  (см. рис. 4, 3). Уширение этих полос в спектре образца  $CuFe_{1,0}Cr_{1,0}$  может указывать на понижение содержания тетраэдрических групп  $CuO_4$ , т.е. на размещение части ионов меди в октаэдрических позициях. В ИК спектрах  $CuFe_{1,0}Cr_{1,0}$  (см. рис. 4, 2) расщепленная п.п. октаэдрической группы 412 см<sup>-1</sup> свидетельствует о присутствии разных катионов в октаэдрических позициях.

Таким образом, по данным ИКС исследованные образцы после прогрева при 900 °С и охлаждения до комнатной температуры имеют следующие структуры:  $CuCr_2O_4$  — нормальная тетрагонально-искаженная шпинель;  $CuFe_2O_4$  — обращенная тетрагонально-искаженная шпинель;  $CuFe_1O_4$  — частично обращенная шпинель.

**Рентгенодифракционные исследования** проводили для образцов, прокаленных при 600 и 900 °C. Результаты представлены на рис. 5 и в табл. 2.

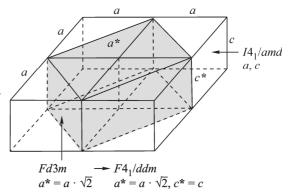
Из рис. 5 и табл. 2 видны структурные изменения, которые происходят в образцах по мере изменения соотношения  $Fe^{3+}/Cr^{3+}$ . При соотношении  $Fe^{3+}/Cr^{3+} = 1$  образуется кубическая шпинель с параметром  $a^* = 8,342$  Å, а при отклонении соотношения  $Fe^{3+}/Cr^{3+}$  от 1 шпинель становится тетрагонально-искаженной. Можно ожидать, что в образцах, в которых  $Fe^{3+}/Cr^{3+} \neq 1$ , про-



Puc. 5. Дифрактограммы образцов, прокаленных при 900 °C, × — α-Cr<sub>2</sub>O<sub>3</sub>

Таблица 2 Фазовый состав, пространственная группа (пр. гр.), параметры решетки шпинели (а и с, Å), дисперсность образиов (D, Å), прокаленных при 600 и 900 °C

| Образец                                 | 600 °C                                           | 900 °C                                              |  |
|-----------------------------------------|--------------------------------------------------|-----------------------------------------------------|--|
| CuCr <sub>2</sub>                       | $CuCr_2O_4$ (тетр.) + $Cr_2O_3$ (~5 %)           | $CuCr_2O_4$ (TeTp.) + $Cr_2O_3$ (~5 %)              |  |
|                                         | $F4_1/ddm$                                       | $F4_1/ddm$                                          |  |
|                                         | $a^* = 8,532, c^* = 7,786, c^*/a^* = 0,913$      | $a^* = 8,452, c^* = 7,787, c^*/a^* = 0,921$         |  |
|                                         | D > 1000                                         | D > 1000                                            |  |
| CuCr <sub>1,75</sub> Fe <sub>0,25</sub> | Шпинель (тетр.)                                  | Шпинель (тетр.)                                     |  |
|                                         | $F4_1/ddm$                                       | $F4_1/ddm$                                          |  |
|                                         | $a^* = 8,516, c^* = 7,884, c^*/a^* = 0,926$      | $a^* = 8,501, c^* = 7,884, c^*/a^* = 0,927$         |  |
|                                         | D ~ 550                                          | D > 1000                                            |  |
| CuCr <sub>1</sub> Fe <sub>1</sub>       | Шпинель (куб.)                                   | Шпинель (куб.)                                      |  |
|                                         | Fd3m (227)                                       | Fd3m (227)                                          |  |
|                                         | $a^* = 8,340, c^*/a^* = 1$                       | $a^* = 8,342, c^*/a^* = 1$                          |  |
|                                         | D ~ 290                                          | D > 1000                                            |  |
| $CuCr_{0,25}Fe_{1,75}$                  | Шпинель (куб.) + сл. CuO                         | Шпинель (куб.) (80,0 %)                             |  |
|                                         | Fd3m (227)                                       | Fd3m (227),                                         |  |
|                                         | $a^* = 8,397, c^*/a^* = 1$                       | $a*(\kappa y \delta.) = 8,394,$                     |  |
|                                         | D ~ 180                                          | D (куб.) > 1000 Å                                   |  |
|                                         |                                                  | + Шпинель (тетр.) (20 %) + сл. CuO                  |  |
|                                         |                                                  | $F4_1/ddm$                                          |  |
|                                         |                                                  | a*(тетр.) = 8,289, c*(тетр.) = 8,610, c*/a* = 1,039 |  |
|                                         |                                                  | D(тетр.) ∼ 580                                      |  |
| CuFe <sub>2</sub>                       | CuFe <sub>2</sub> O <sub>4</sub> (куб.) + сл.CuO | CuFe <sub>2</sub> O <sub>4</sub> (тетр.)            |  |
|                                         | Fd3m (227)                                       | $F4_1/ddm$                                          |  |
|                                         | a* = 8,384                                       | a* = 8,280, c* = 8,610, c*/a* = 1,04                |  |
|                                         | D ~ 90                                           | D ~ 900                                             |  |


каленных при 600 °C и охлажденных до комнатной температуры, методом РФА будут наблюдаться шпинели тетрагонально-искаженные с  $c^*/a^* \neq 1$ . Однако, как видно из табл. 2, тетрагонально искажены структуры только шпинелей с  $Fe^{3+}/Cr^{3+} < 1$ , а шпинели с  $Fe^{3+}/Cr^{3+} > 1$  имеют кубическую структуру, т.е. находятся в метастабильном состоянии. Отметим, что эти шпинели, охлажденные после прогревания при 900 °C, тетрагонально искажены.

Необычный результат получен для образца состава  $CuCr_{0,25}Fe_{1,75}O_4$  (см. табл. 2), прогретого при 900 °C: наблюдаются шпинели в двух модификациях — в кубической с  $a^*=8,394$  Å и тетрагонально-искаженной с  $c^*/a^*=1,039$ . Результаты повторного приготовления и исследования образцов состава  $CuFe_{1,0}Cr_{1,0}O_4$  и  $CuFe_{1,75}Cr_{0,25}O_4$ , прогретых при 600 °C, подтвердили данные, представленные в табл. 2. Полученные результаты свидетельствуют о влиянии режима охлаждения на наблюдаемую модификацию шпинели: охлаждение в настоящей работе в выбранном режиме обеспечивает структурную перестройку для шпинелей с  $Fe^{3+}/Cr^{3+} < 1$ , а для образцов с отношением  $Fe^{3+}/Cr^{3+} > 1$  необходимо уменьшить скорость охлаждения, чтобы обеспечить переход в равновесное состояние. При  $Fe^{3+}/Cr^{3+} = 1$  шпинель имеет кубическую структуру независимо от температуры и скорости охлаждения.

Рассмотрение структуры остальных образцов, прокаленных при 600 и 900 °С, необходимо проводить в рамках кубической тетрагонально-искаженной шпинели, как сделано в работе [ 10 ] для феррита меди. На рис. 6 показана связь стандартной элементарной тетрагональной ячейки пространственной группы №141 —  $I4_1/amd$ , нестандартной  $F4_1/ddm$  и кубической Fd3m.

Puc.~6.~ Связь элементарных ячеек кубической шпинели (Fd3m) с параметром э.я.  $a^*$ , тетрагонально искаженной  $(F4_1ddm)$  с параметрами э.я.  $a^*$  и  $c^*$  и тетрагональной шпинели в кристаллографически правильной установке  $I4_1/amd$  с параметрами э.я. a и c

Как известно [ 14 ], кубическая шпинель имеет в основе 32 аниона, формирующих гранецентрированный куб, в котором катионы занимают 16 октаэдрических позиций (16d) и 8 тетраэдрических позиций (8a). Кубические шпинели характеризуются пространственной группой № 227 —



Fd3m и параметром решетки  $a^*$ , одинаковым по всем трем осям x, y, z. При тетрагональном искажении один из параметров становится отличным от  $a^*$ , решетка становится тетрагонально-искаженной с параметрами решетки  $a^*$  и  $c^*$  и описывается нестандартной пр. гр.  $F4_1/ddm$  тетрагональной сингонии, где  $a^* = a \cdot \sqrt{2}$  и  $c^* = c$  (см. рис. 6). Отношение  $c^*/a^* = \gamma$  характеризует степень тетрагонального искажения. Такая ячейка нестандартная, так как можно выбрать элементарную ячейку с меньшим объемом и обычно для описания тетрагональной фазы используют пространственную группу № 141 —  $I4_1/amd$ .

Отношение параметров решетки тетрагонально-искаженных шпинелей изменяется от 1,04 для  $CuFe_2O_4$  до 0,92 для  $CuCr_2O_4$ . Согласно [ 10 ], отношение  $c^*/a^* > 1$  считается надежным признаком присутствия ионов меди преимущественно в октаэдрических позициях,  $c^*/a^* < 1$  — в тетраэдрических позициях. Для прокаленных при 900 °C и охлажденных до комнатной температуры образцов совместных шпинелей при частичной замене ионов железа ионами хрома и ионов хрома ионами железа тетрагональное искажение уменьшается, и для состава  $CuFe_{1,0}Cr_{1,0}O_4$  отношение  $c^*/a^*$  становится равным 1. Следовательно, в совместных шпинелях по мере замены ионов железа ионами хрома уменьшается количество ионов меди в октаэдрических позициях и по мере замены ионов хрома ионами железа уменьшается количество ионов меди в тетраэдрических позициях. Надо полагать, что в  $CuFe_{1,0}Cr_{1,0}O_4$  имеет место равное размещение ионов меди в тетраэдрических и октаэдрических позициях. В табл. 3 приведены расчетные данные о распределении катионов Cu, Fe, Cr по октаэдрическим и тетраэдрическим позициям.

Анализ межатомных расстояний в полиэдрах, проведенный в [ 10 ], показал, что если в кубической фазе межатомные расстояния в тетраэдрах (AO)<sub>4</sub> и октаэдрах (BO)<sub>6</sub> одинаковы, то в тетрагональной фазе происходит некоторое сжатие кислородных тетраэдров, а октаэдры вытягиваются вдоль тетрагональной оси и сжимаются в перпендикулярной плоскости. Вследствие этого происходит тетрагональное искажение структуры.

Таблица 3
Распределение катионов по структурным позициям шпинели и величина энергии активации реакции паровой конверсии СО для шпинелей Си—Fe—Cr (150—210 °C)

| Образец                | Тетраэдры (8 <i>b</i> ) | Октаэдры (16 <i>d</i> ) | $E_{\rm a}$ , ккал/моль |
|------------------------|-------------------------|-------------------------|-------------------------|
| CuCr <sub>2</sub>      | 8Cu                     | 16Cr + 0Cu              | 8                       |
| $CuCr_{1,75}Fe_{0,25}$ | 7Cu + 1Fe               | 14Cr + 1Fe + 1Cu        | 9                       |
| $CuCr_1Fe_1$           | 4Cu + 4Fe               | 8Cr + 4Fe +4Cu          | 10                      |
| $CuCr_{0,75}Fe_{1,25}$ | 3Cu + 5Fe               | 6Cr + 5Fe + 5Cu         | 12                      |
| $CuCr_{0,25}Fe_{1,75}$ | 1Cu + 7Fe               | 2Cr + 7Fe + 7Cu         | 19                      |
| CuFe <sub>2</sub>      | 0Cu + 8Fe               | 8Fe + 8Cu               | 24                      |

Аналогично, можно рассмотреть степень тетрагональности в ряду образцов при изменении соотношения  $Fe^{3+}/Cr^{3+}$ . В табл. 2 приведены параметры ячейки феррит-хромитов в нестандартной  $F4_1/ddm$  установке и степень тетрагонального искажения  $c^*/a^* = \gamma$ . Для образца  $CuFe_{1,0}Cr_{1,0}O_4$   $\gamma=1$ , т.е. при данном химическом составе шпинель кубическая. В ней из 16d октаэдрических мест 8 занято ионами  $Cr^{3+}$ , имеющими высокую энергию предпочтения к октаэдрической координации ионами кислорода, а 8a мест — ионами  $(Cu^{2+}$  и  $Fe^{3+})$ , т.е., по-видимому, при данном соотношении катионов все ионы меди не могут перейти в октаэдрические позиции, а только их часть (но не более половины). В табл. 3 показано расчетное распределение катионов при изменении соотношения  $Fe^{3+}/Cr^{3+}$ . Необходимо отметить, что эти рассмотрения находятся в согласии с результатами ИКС исследования.

Сопоставление распределения катионов меди с величиной энергии активации реакции паровой конверсии СО показывает, что координация катионов меди в хромит-феррите меди оказывает существенное влияние на энергетические характеристики активной формы меди. В области активности медных центров (при температуре 150—210 °C [1]) кажущаяся энергия активации реакции возрастает с 8 до 24 ккал/моль по мере увеличения содержания ионов меди в октаэдрической кислородной координации в структуре шпинели.

### выводы

Комплексом физико-химических методов проведено исследование структурных особенностей и распределения катионов в кристаллографических позициях хромита, феррита меди и совместных хромит-ферритов со структурой шпинели, полученных терморазложением при 600 и 900 °C совместных гидроксосоединений меди, железа и хрома состава  $Cu^{2+}$ :  $(Fe^{3+}+Cr^{3+})=1:2$  и различным соотношением  $Fe^{3+}/Cr^{3+}$ . Показано, что образующиеся фазы шпинельной структуры существуют в двух модификациях — кубической и тетрагональной. Распределение катионов по кристаллографическим позициям, характер и степень тетрагонального искажения шпинели CuFeCr зависит от состава образцов: при соотношении  $Fe^{3+}/Cr^{3+} > 1$  отношение параметров элементарной ячейка  $c^*/a^* > 1$ , при  $Fe^{3+}/Cr^{3+} < 1$  отношение  $c^*/a^* < 1$ , при  $Fe^{3+}/Cr^{3+} = 1$  шпинель является кубической независимо от температуры термообработки. Проанализирована кристаллографическая связь между кубической и тетрагонально-искаженной фазами шпинели. Проведен кристаллохимический анализ распределения катионов  $Cu^{2+}$  по тетраэдрическим и октаэдрическим позициям в зависимости от соотношения  $Fe^{3+}/Cr^{3+}$ . Координация ионов меди кислородом в структуре шпинели существенно влияет на каталитические свойства образцов в реакции низкотемпературной паровой конверсии CO.

Работа выполнена при частичной поддержке фонда Российского фонда фундаментальных исследований, грант № 13-03-00469, проекта V.45.3.6 и программы Президиума РАН, проект № V.45.8.11.

Авторы выражают благодарность М.П. Демешкиной и Ю.А. Чесалову за помощь при выполнении работы.

## СПИСОК ЛИТЕРАТУРЫ

- 1. Юрьева Т.М., Боресков Г.К., Поповский В.В. и др. // Кинетика и катализ. 1971. 12, № 1. С. 140.
- 2. *Kennedy B.J., Zhoy Q. //* J. Solid St. Chem. 2008. **181**. P. 2227.
- 3. Dollase W.A., O'Neill H.St.C. // Acta Cryst. C. 1997. 53, N 6. P. 657.
- 4. PC-WIN, PDF-2, 00-034-0424.
- 5. PC-WIN, PDF-2, 00-026-0509.
- 6. *Prince E.* // Acta. Crystallogr. 1957. 10. P. 554.
- 7. Устьянцев В.М., Марьевич В.И. // Неорган. материал. 1973. 9, № 2. С. 336.
- 8. PC-WIN, PDF-2, 00-025-0283.
- 9. PC-WIN, PDF-2, 00-034-0425.
- 10. *Балагуров А.М., Бобриков И.А., Мащенков М.С. и др. //* Кристаллография. 2013. **58**, № 5. С. 696. [*Balagurov A.M., Bobrikov B.A., Maschenkov M.S. et al. //* Cryst. Rep. 2013. **58**, № 5. Р. 710.]

- 11. Gomes J.A., Souse M.H., Tourinhe F.A. et al. // J. Magn. and Magn. Mater. 2005. 289. P. 184.
- 12. Эренбург Б.Г., Фатеева В.П. Миньков А.И. и др. // Изв. СО АН, Сер. хим. наук. 1981. № 2, вып.1. С. 51.
- 13. Эренбург Б.Г., Фатеева В.П., Миньков А.И. и др. // Изв. СО АН, Сер. хим. наук. 1981. № 4, вып.2. С. 54.
- 14. *Гинье А.* Рентгенография кристаллов: теория и практика. / Н.В. Белова. М.: Физматгиз, 1961. С. 319 320. [*Guinier A.* Théorie et Technique de la Radiocristallographie. Paris. Dunod, 1956. Р. 736.]
- 15. Яценко Д.А., Цыбуля С.В. // Изв. РАН. Сер. физич. 2012. **76**, № 3. С. 433. [*Yatsenko D.A., Tsybulya S.V.* // Bull. of Rus. Acad. of Sci.: Physics. 2012. **76**, N 3. P. 382.]
- 16. White W.B., DeAngelis B.A. // Spectrochim. Acta. A. 1967. 23, N 4. P. 985.
- 17. Ishii M., Nakahira M. // Solid State Commun. 1972. 11, N1. P. 209.
- 18. Khassin A.A., Kustova G.N., Jobic H. et al. // Phys. Chem. Chem. Phys. 2009. 11. P. 6090.
- 19. *Макарова О.В., Юрьева Т.М., Кустова Г.Н. и др.* // Кинетика и катализ. 1993. **34**, № 4. С. 681. [*Makarova O.V., Yurieva T.M., Kustova G.N. et al.* // Kinetics and Catalysis. 1993. **34**, № 4. Р. 608.]
- 20. Hafner S.Z. // Zeitschrift für Kristallographie Crystalline Materials. 1961. 115, N 5-6. P. 331.