УДК 536.42: 546.664

Плотность и тепловое расширение диспрозия в интервале температур 110–1950 K^{*}

Ю.М. Козловский, С.В. Станкус

Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск

E-mail: stankus@itp.nsc.ru

Представлены результаты дилатометрического исследования термического коэффициента линейного расширения диспрозия в интервале температур 110–590 К. Измерения проведены с погрешностью (1,5–2,0)×10⁻⁷ K⁻¹. Получены аппроксимационные зависимости данного коэффициента с привлечением ранее выполненных исследований плотности диспрозия гамма-методом, рассчитаны справочные таблицы термических свойств для интервала 110–1950 К твердого и жидкого состояний. Установлен характер изменения термического коэффициента линейного расширения в области точки Нееля. Определены его критические индексы и критические амплитуды. Показано, что и выше, и ниже температуры Нееля экспериментальные данные не удается обработать одним уравнением скейлинговского типа. Проведено сопоставление с известными литературными данными.

Ключевые слова: коэффициент теплового расширения, плотность, диспрозий, твердое и жидкое состояния, точка Нееля.

Введение

Подробные обзоры работ по измерению теплового расширения диспрозия, выполненных до начала 70-х годов прошлого столетия, приводятся в известных справочных изданиях [1, 2]. Существует несколько экспериментальных исследований более позднего периода [3–5], однако нигде, включая [1, 2], не приводятся ни первичные данные, ни аппроксимационные уравнения, ни табулированные значения термического коэффициента линейного расширения (ТКЛР) диспрозия в области отрицательных температур. Результаты измерений представлены лишь в виде небольших графиков, которые позволяют судить только об общем характере изменения ТКЛР в зависимости от температуры. Тем не менее, было установлено, что в точке Нееля термический коэффициент линейного расширения диспрозия по кристаллографическим осям ГПУ¹-решетки имеет острые пики, причем вдоль плотноупакованных плоскостей ТКЛР является положительным, а перпендикулярно им — отрицательным.

Цель настоящей работы — детальное исследование теплового расширения поликристаллического диспрозия в области точки Нееля, получение аппроксимационных зависимостей для всего температурного интервала и критических индексов ТКЛР для перехода антиферромагнетик-парамагнетик.

^{*} Работа выполнена при финансовой поддержке РФФИ (проект № 13-08-00137).

¹ГПУ — гранецентрированная плотноупакованная кристаллическая решетка.

[©] Козловский Ю.М., Станкус С.В., 2015

Методика и экспериментальная техника

Тепловое расширение диспрозия исследовалось на горизонтальном дилатометре DIL-402C с держателем и толкателем, изготовленными из плавленого кварца. Методика проведения экспериментов подробно описана в работах [6–7]. Образец устанавливался на подставке из плавленого кварца и зажимался между держателем и толкателем с усилием 45 сH, которое поддерживалось постоянным в ходе всего эксперимента. Удлинение измерялось индуктивным датчиком перемещения (LVDT) с разрешением 1 нм, а температура – термопарой (тип S), королек которой располагался в непосредственной близости от боковой поверхности образца. Измерения проводились при нагреве–охлаждении печи со скоростью 0,5 или 2 К/мин и 30-минутной изотермической выдержке при максимальной и минимальных температурах. Регистрация температуры и удлинения образца проводилась каждые две секунды, что позволяло получать данные с шагами около 0,017 или 0,07 К. Перед экспериментом установка вакуумировалась (1 Па) и заполнялась гелием (99,995 об. %), который дополнительно очищался устройством очистки и осушки инертных газов — ЭПИШУР-А 11 СЛ.

Учет нелинейности характеристики датчика перемещений, отличия в температурах и коэффициентах линейного расширения материалов держателя и толкателя и т.д. проводился путем измерения нулевого хода дилатометра. Нулевой ход определялся на стандартном образце плавленого кварца длиной 25 мм и диаметром 6 мм, сертифицированном фирмой NETZSCH в условиях, идентичных условиям основных экспериментов. Определенный таким образом нулевой ход воспроизводился в пределах 0,2 мкм.

Результаты измерений представлялись в виде температурной зависимости относительного удлинения образцов *є* при нагреве или охлаждении:

$$\varepsilon(T) = (L(T) - L_{293})/L_{293}, \qquad (1)$$

где L_{293} и L(T) — длина образца при 293,15 К и T соответственно. Термический коэффициент линейного расширения α и истинный термический коэффициент линейного расширения (ИТКЛР) α^* рассчитывались по формулам

$$\alpha(T) = \frac{1}{L_{293}} \left(\frac{\partial L}{\partial T} \right)_p = \left(\frac{\partial \varepsilon}{\partial T} \right)_p, \qquad (2)$$

$$\alpha^{*}(T) = \frac{1}{L} \left(\frac{\partial L}{\partial T} \right)_{p} = \frac{\alpha(T)}{1 + \varepsilon(T)},$$
(3)

где *р* — давление.

Для получения температурной зависимости ТКЛР данные по относительному удлинению численно дифференцировались с помощью выражения

$$\alpha(T_i) = \frac{1}{2} \left(\frac{\varepsilon_{i+1} - \varepsilon_i}{T_{i+1} - T_i} + \frac{\varepsilon_i - \varepsilon_{i-1}}{T_i - T_{i-1}} \right),$$

где $\varepsilon_i = \varepsilon(T_i)$ — относительное удлинение при температуре T_i . Реальный интервал определения термического коэффициента линейного расширения $(T_{i+1} - T_i)$ не превышал 0,2 К (вблизи точки Нееля он составлял 0,07 К), что обеспечивало аппроксимацию производной $(\partial \varepsilon / \partial T)_p$ с погрешностью менее $1 \times 10^{-8} \text{ K}^{-1}$. Прямое численное дифференцирование экспериментальных данных позволяет прямо получить температурную зависимость ТКЛР, а не выполнять дифференцирование аппроксимационного уравнения для относительного удлинения. Последнее вносит дополнительную погрешность в α , обусловленную неоднозначностью выбора вида зависимости $\varepsilon(T)$, а также не выявляет особенностей поведения линейного коэффициента термического расширения в области фазовых превращений.

Систематическая погрешность определения ТКЛР определялась в экспериментах с образцами алюминия (99,99 мас. %) длиной 25 мм в условиях, идентичных условиям основных экспериментов с диспрозием. Эксперименты показали, что отличие полученных

в настоящих экспериментах и справочных данных по ТКЛР [8] не превышает $(1,5-2) \times 10^{-7} \text{ K}^{-1}$ и в среднем составляет $8 \times 10^{-8} \text{ K}^{-1}$.

Результаты измерений и обсуждение

Образцы диспрозия были получены многократной вакуумной дистилляцией технически чистого металла на конденсатор с регулируемой температурой. По данным химического анализа содержание основного компонента в рафинированном металле превышало 99,98 мас. %. Основными примесями являлись: кислород — 2×10^{-3} %, углерод — 2×10^{-3} %, медь — 5×10^{-3} %, сопутствующие редкоземельные металлы — 5×10^{-3} %. Для получения плотного поликристаллического металла дистиллированный диспрозий был переплавлен в танталовом тигле. Вырезанный из слитка образец предварительно отжигался в вакууме (1 мПа) при 1300 К в течение четырех часов для снятия остаточных напряжений и удаления растворенного водорода, который оказывает сильное влияние на свойства редкоземельных металлов [9].

Тепловое расширение диспрозия было исследовано дилатометрическим методом в интервале температур 110–580 К в нескольких циклах нагрева–охлаждения образцов. На рис. 1 представлены типичные результаты измерений, полученные в одном из экспериментов. Резкий минимум на температурной зависимости $\alpha(T)$ связан с переходом антиферромагнитного диспрозия (ГПУ1-фаза) в парамагнитное состояние (ГПУ2-фаза). Следует отметить, что переход диспрозия из антиферромагнитного в парамагнитное состояние четко заметен не только на кривой ТКЛР, но и на зависимости относительного удлинения (как и у гадолиния в точке Кюри [10]). Температура минимума ТКЛР, которая принималась за точку Нееля, при одинаковых условиях эксперимента (скорость, режим) воспроизводилась в пределах 0,1 К, определенная по нагревам, она составила

$$T_N = 181,7 \pm 1,5 \text{ K},$$
 (4)

что в пределах погрешности совпадает с данными $T_N = 180,77$ К [4], $T_N = 180,3-180,8$ [11] и несколько выше $T_N = 179,9$ К [12]. Скорее всего, это связано с различной чистотой образцов, т.к. известно, что технологические примеси понижают температуру Нееля диспрозия [4, 11].

Значение ТКЛР в точке Нееля, определенное по первичным данным, составило

$$\alpha(T_N) = -9.2 \times 10^{-6} \,\mathrm{K}^{-1}.$$
(5)

Из рис. 1 видно, что описать температурную зависимость ТКЛР диспрозия единой зависимостью не представляется возможным. Поэтому весь интервал измерений разбивался на семь областей, в которых проводилась раздельная обработка данных. Температуры границ областей определялись из условия равенства на них ТКЛР. Вне температурных интервалов, непосредственно прилегающих к точке Нееля, первичные данные аппроксимировались методом наименьших квадратов полиномами вида

$$\alpha(T) = \sum_{i=0}^{k} A_i t^i, \qquad (6)$$

где t = T - 293,15 К.

Анализ показал, что в пределах случайных погрешностей все экспериментальные данные по ТКЛР совпадают между собой. Вне области перехода антиферромагнетик-парамагнетик аппроксимационные уравнения были получены совместной обработкой двух нагревов диспрозия (двух нагревов и двух охлаждений при высоких температурах), а вблизи T_N нагревы обрабатывались раздельно. В табл. 1 приведены результаты аппроксимации. Для единообразия коэффициенты уравнения (6) для третьей и четвертой областей рассчитывались в линейном приближении по сглаженным значениям $\alpha_2(T)$ на верхней границе области 2, $\alpha_4(T)$ на нижней границе области 4 и по величинам T_N и $\alpha(T_N)$, найденным из (4), (5).

Рис. 1. Первичные данные по термическому коэффициенту линейного расширения (1, 2) и относительному удлинению (3) диспрозия.

На рис. 2 приведено сопоставление полученных данных с результатами других работ. Погрешность ТКЛР в работе [1] составляет 5–10 %, в работах [2–4] — не приведена, в [5] — 4–10 %. В пределах оцениваемых погрешностей данные, полученные в настоящей работе, совпадают с данными [1] выше 480 К, с данными [2] — в интервале 220–300 К и с данными [5] — при всех положительных температурах. Хорошее согласование данных настоящих измерений с рекомендациями работы [5] (отличие 0,14 % или $1,3 \times 10^{-8}$ K⁻¹) позволяет использовать полученные результаты для построения политерм термических свойств в интервале температур 600–1683 К (области 8, 9 в табл. 1).

Уравнения (6) и функциональная связь α от ε позволяют получить при помощи интегрирования ТКЛР с дополнительным условием ε (293,15 K) = 0 температурную зависимость относительного удлинения, которая согласована с температурной зависимостью ТКЛР. Эти данные вместе с рентгеновским значением плотности при комнатной температуре [12]

$$\rho_R = (8551 \pm 2) \text{ Kr/m}^3 \tag{7}$$

Таблица 1

№ обл.	Интервал, К	$A_0 \times 10^6$, K ⁻¹	$A_1 \times 10^7$, K ⁻²	$A_2 \times 10^9$, K ⁻³	$A_3 \times 10^{12}, \text{ K}^{-4}$	$\Phi^*(\alpha), 10^{-7}, \mathrm{K}^{-1}$
1	110-170,2	-76,107	-12,6768	-7,101	-13,8127	0,2
2	170,2-180,7	-3047,184	-732,961	-589,3958	-1583,58	0,5
3	180,7-181,7	-341,88	-29,85	-	-	-
4	181,7-183,2	1063,4	96,24	-	-	-
5	183,2-197,2	15,193	0,9056	-	-	0,25
6	197,2-268,2	7,347	0,01523	-0,07613	-	0,7
7	268,2-600	7,369	0,04465	0,0050695	-	0,25
8	600-1653	6,985	0,06982	0,00061	-	-
9	1653-1683	22,88	0,02813	_	-	-

Коэффициенты уравнений (6) и случайные погрешности аппроксимации

* Φ(α) — средняя случайная погрешность аппроксимации первичных данных для доверительной вероятности 95 %. Для 8-ой и 9-ой областей приведены результаты измерений термических свойств диспрозия гамма-методом, выполненных авторами в работе [5]. Рис. 2. Сопоставление данных по термическому коэффициенту линейного расширения диспрозия. Результаты работ [1] — 1, [2] — 2, [5] — 3, настоящей работы — 4.

дают возможность определить и политерму плотности твердого диспрозия от 110 до 1683 К. Расчеты показали, что плотность при температуре плавления $(T_f = 1683 \pm 4 \text{ K [5]})$ составляет

$$\rho_{\rm S} = (8122 \pm 28) \, {\rm kr/m^3}.$$
 (8)

Согласно работе [5], скачок плотности при плавлении диспрозия находится как

$$\delta \rho_f = (1,53 \pm 0,15) \%,$$
 (9)

а значение объемного коэффициента расширения расплава

$$\beta_L = (6,34 \pm 0,60) \times 10^{-5} \,\mathrm{K}^{-1}. \tag{10}$$

Используя величины (7)–(10), легко получить уравнение для температурной зависимости плотности жидкого диспрозия:

$$\rho_m(T) = 7998 - 0{,}507 (T - 1683) \,\mathrm{kr/m^3}. \tag{11}$$

В табл. 2 приведены рекомендуемые значения плотности, относительного удлинения и термических коэффициентов расширения диспрозия в интервале температур 110–1950 К, полученные по описанной выше процедуре. Следует еще раз подчеркнуть, что данные для всех свойств согласованы как между собой, так и для твердого и жидкого состояний.

В области магнитного фазового перехода обработка проводилась (следуя [11, 13]) также с использованием скейлинговских зависимостей. Для этого из значений $\alpha^*(T)$ выделялся магнитный вклад

$$\chi^{*}_{mag}(T) = \alpha^{*}(T) - \alpha^{*}_{para}(T),$$
(12)

где $\alpha_{\text{para}}^*(T)$ находилась аппроксимаций экспериментальных данных в интервале температур 270–580 К парамагнитного состояния диспрозия:

$$\alpha_{\text{para}}^{*}(T) = 7,361 + 4,45 \times 10^{-3} T - 5,07 \times 10^{-6} T^{2},$$
(13)

T представлена в К, α — в 10⁻⁶ K⁻¹

Магнитная составляющая ИТКЛР записывалась в виде

$$\alpha_{\rm mag}^* = A \left| \tau \right|^a + B,\tag{14}$$

где *A*, *B* — константы, *a* — критический индекс ИТКЛР, а $\tau = (T - T_N)/T_N$ — приведенная температура. Очевидно, что $B = \alpha^*_{mag}(T_N)$. Тогда, вводя новую переменную $Y_{mag} = \alpha^*_{mag} - \alpha^*_{mag}(T_N)$, из (14) получим

$$\ln\left(Y_{\text{mag}}\right) = \ln(A) + a \ln\left(\left|\tau\right|\right). \tag{15}$$

Как видно из (15), проводя линейную аппроксимацию $\ln(Y_{mag})$ по $\ln(|\tau|)$, можно вычислить значения критической амплитуды *A* и критического индекса *a*.

Таблица 2

Фаза	TV	$-10^{-6} V^{-1}$	$a 10^{-5} v^{-1}$	- 10 ⁻⁶	2 m/x ³	Погрешность	
Ψαзα	1, К	α, 10 κ	<i>ρ</i> , 10 K	<i>E</i> , 10	ρ , KI/M	ρ	α, β
	110	2,73	0,82	-762	8571	0,08	-
	120	2,20	0,66	-738	8570	0,08	-
	140	1,10	0,33	-704	8569	0,08	-
ГПУ1	160	-0,60	-0,18	-698	8569	0,07	-
	170	-1,89	-0,57	-710	8569	0,07	_
	178	-4,39	-1,32	-733	8570	0,07	_
	180	-5,67	-1,70	-743	8570	0,07	_
	181	-7,11	-2,13	-749	8570	0,07	-
T_N	181,7	-9,20	-2,76	-755	8570	0,07	-
	182	-6,31	-1,90	-757	8570	0,06	_
	183,2	5,24	1,57	-758	8570	0,06	3
	190	5,85	1,76	-720	8569	0,06	3
	200	6,54	1,96	-657	8568	0,06	2
	220	6,83	2,05	-523	8564	0,06	2
	240	7,05	2,12	-385	8561	0,05	2
	260	7,21	2,16	-242	8557	0,05	2
	293,15	7,37	2,21	0	8551	0,05	2
	300	7,40	2,22	51	8550	0,05	2
ГПУ2	400	7,90	2,37	815	8530	0,06	2
	500	8,51	2,55	1635	8509	0,07	3
	600	9,22	2,76	2520	8487	0,08	3
	700	9,93	2,97	3476	8462	0,10	6
	800	10,68	3,19	4506	8436	0,12	5
	900	11,45	3,41	5612	8409	0,14	4
	1000	12,23	3,04	0/90	85/9	0,10	4
	1200	13,02	3,87	0300	8314	0,18	4
	1300	14 63	4 34	10822	8279	0,20	6
	1400	15.46	4 58	12326	8242	0.24	7
	1500	16.30	4.82	13914	8204	0.26	8
	1600	17,15	5,07	15587	8163	0,28	9
T_t^-	1653	17,61	5,20	16508	8141	0,30	10
T_t^+	1653	26,70	7,88	16508	8141	0,32	20
ОЦК	1675	26,76	7,89	17096	8127	0,34	20
T_f^-	1683	26,79	7,90	17310	8122	0,35	20
T_f^+	1683	-	6,34	-	7998	0,39	10
	1700	_	6,35	-	7989	0,40	10
расплав	1800	-	6,39	-	7938	0,42	10
1	1900	_	6,43	-	7888	0,44	10
	1950		6,45	-	7862	0,45	10

Сглаженные значения термических коэффициентов линейного и объемного расширения, относительного удлинения и плотности диспрозия^{*}

* Примечание. $\beta = -\frac{1}{\rho} \left(\frac{\partial \rho}{\partial T} \right)_p$, где p — давление; ГПУ1 — антиферромагнитная фаза, ГПУ2 — пара-

магнитная фаза; T_t и T_f — температуры структурного перехода и плавления соответственно; ОЦК — объемноцентрированная кубическая кристаллическая решетка; индексы "–" и "+" относят свойства к состояниям выше и ниже температур фазовых превращений.

Практическая реализация процедуры обработки происходила следующим образом. Для каждого термического цикла по первичным экспериментальным данным определялось положение минимума ИТКЛР и соответствующие ему T_N и $\alpha(T_N)$, которые в дальнейшем использовались при расчетах приведенной температуры и коэффициента *B*.

Расчеты показали, что, как и в работах [10, 14], экспериментальные данные в окрестности точки магнитного фазового перехода не аппроксимируются одним уравнением (15). При значениях приведенной температуры

$$\tau_a^{\text{Low}} = (5 \pm 0.6) \times 10^{-3}, \quad \tau_a^{\text{High}} = (10 \pm 0.7) \times 10^{-3}$$
 (16)

как ниже (τ_a^{Low}) , так и выше (τ_a^{High}) точки Нееля наблюдался излом на зависимости $\ln(Y_{\text{mag}}) = f \left[\ln(|\tau|) \right]$ (рис. 3). По этой причине аппроксимация выполнялась раздельно в областях выше и ниже точки излома с исключением переходной области.

Для уточнения температуры Нееля проводилась вариация¹ величины T_N с тем, чтобы в области, прилегающей к точке Нееля ($\tau < \tau_a$), уравнение (15) аппроксимировало экспериментальные данные с наименьшим среднеквадратичным отклонением. Дополнительным требованием было также нахождение всех точек в доверительных границах случайной погрешности аппроксимации (95 % вероятность). Такая процедура, аналогичная [15], обеспечивала адекватность и устойчивость результатов обработки.

Результаты приведены в табл. 3. Величины τ_a (16) определялись по точке пересечения аппроксимирующих зависимостей (рис. 3) с последующим усреднением по всем термическим циклам. В (16) приведена случайная погрешность среднего значения.

Анализируя данные, представленные в табл. 3, можно заключить, что в областях, непосредственно примыкающих к точке Нееля как выше, так и ниже ее, значения критических индексов a и критических амплитуд A практически совпадают между собой. Все критические индексы имеют положительное значение, а абсолютная величина a существенно больше классического индекса для изобарной теплоемкости (0,10...0,14). Положительное значение критического индекса и совпадение вышеперечисленных свойств в точке Нееля при приближении к ней с обеих сторон соответствует существующим теоретическим представлениям [16, 17].

 $^{^{1}}$ Оказалось, что для достижения результата достаточно изменять температуру Нееля в пределах ± 0.05 К.

Таблица З

Критический индекс а и критическая амплитуда А истинного термического коэффициента						
линейного расширения диспрозия в области точки Нееля						

	$T < T_N$				$T > T_N$			
Режим	$ \tau < 5 \times 10^{-3}$		$ \tau > 5 \times 10^{-3}$		$ \tau \le 1 \times 10^{-2}$		$ \tau > 1 \times 10^{-2}$	
	а	$\ln(A)$	а	$\ln(A)$	а	$\ln(A)$	а	$\ln(A)$
Нагрев 1	1,52	8,93	0,32	2,79	1,73	10,81	0,030	2,79
Нагрев 2	1,62	9,28	0,34	2,65	1,81	10,65	0,051	2,81
Нагрев 3	_	-	0,32	2,83	-	-	0,026	2,81
Охл. 1	1,77	10,03	-	2,94	1,76	10,70	_	2,91
Охл. 2	_	-	0,37	2,68	-	-	0,053	2,72
< >	1,64	9,41	0,34	2,78	1,77	10,72	0,04	2,81
СКО	0,14	0,56	0,025	0,12	0,04	0,08	0,014	0,068

Примечание. < > — усредненное значение, СКО — среднеквадратичное отклонение от усредненного значения.

Заключение

Новые экспериментальные данные по термическому коэффициенту линейного расширения твердого диспрозия в пересекающихся интервалах температур согласуются с большинством литературных данных и являются наиболее подробными. Критические показатели ИТКЛР выше и ниже точки Нееля совпадают между собой и являются положительными. Наличие излома на зависимости логарифма магнитной составляющей ИТКЛР диспрозия от логарифма приведенной температуры требует дополнительных исследований.

Список литературы

- 1. Touloukian Y.S., Kirby R.K., Taylor R.E., Desai P.D. Thermal expansion. Metallic elements and alloys // Thermophys. Prop. Matter. N.Y., Washington: IFI / Plenum, 1975. Vol. 12. 1348 p.
- 2. Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 294 с.
- **3. Tindall D.A., Steinitz M.O.** First- and second-order magnetic phase transitions in terbium and dysprosium // J. Phys. F. 1983. Vol. 13. P. L71–L73.
- Zochowski S.W., Tindall D.A., Kahrizi M., Genossar J., Steinitz M.O. Critical thermal expansion of dysprosium // J. of Magnetism and Magnetic Materials. 1986. Vol. 54–57. P. 707–709.
- 5. Станкус С.В., Тягельский П.В. Плотность высокочистого диспрозия в твердом и жидком состояниях // Теплофизика высоких температур. 2000. Т. 38, № 4. С. 579–583.
- 6. Козловский Ю.М., Станкус С.В. Тепловое расширение окиси бериллия в интервале температур 20–1550 °С // Теплофизика высоких температур. 2014. Т. 52, № 4. С. 563–567.
- 7. Станкус С.В., Козловский Ю.М., Яцук О.С., Верба О.И. Тепловое расширение стали ЧС-139 в интервале температур 20–720 °С // Теплофизика и аэромеханика. 2013. Т. 20, № 3 .С. 363–366.
- 8. Kroeger F.R., Swenson C.A. Absolute linear thermal expansion measurements on copper and aluminium from 5 to 320 K // J. Appl. Phys. 1977. Vol. 48, No. 3. P. 853–864.
- 9. Beaudry B.J., Spedding F.H. The solubility of RH_{2-x} in Gd, Er, Tm, Lu and Y from ambient to 850 °C // Met. Trans. 1975. Vol. 6B, No. 3. P. 419–427.
- 10. Козловский Ю.М., Станкус С.В. Тепловое расширение гадолиния в областях магнитных фазовых переходов // Теплофизика высоких температур. 2015. Т. 53. № 5. С. 671–677.
- 11. Амитин Е.Б., Бессергенев В.Г., Боярский Л.А., Ковалевская Ю.А. и др. Критические индексы аномалии электросопротивления образцов диспрозия различной чистоты в окрестности точки Нееля // Физика твердого тела. 1982. Т. 24, № 1. С. 245–252.
- Jayasuriya K.D., Campbell S.J., Stewart A.M. Magnetic transition in dysprosium: a specific-heat study // Physical Review B. 1985. Vol. 31, No. 9. P. 6032–6046.
- **13. Spedding F.H., Beaudry B.J.** The effect of impurities, particularly hydrogen, on the lattice parameters of the «ABAB» rare earth metals // J. Less-Common Metals. 1971. Vol. 25. P. 61–73.
- Dolejsi D.A., Swenson C.A. Experimental thermal expansivities for single-crystal gadolinium metal near the Curie temperature // Phys. Rev. B. 1981. Vol. 24, No. 11. P. 6326–6335.
- 15. Боярский Л.А., Стариков М.А. Аномалия магнитной восприимчивости диспрозия вблизи точки Нееля // Физика твердого тела. 1970. Т. 12, № 11. С. 3179–3183.
- 16. Ahlers G. Critical phenomena at low temperature // Rev. Mod. Phys. 1980. Vol. 52, No. 2. Part 1. P. 489-503.
- Боярский Л.А. Антиферромагнитное состояние и фазовые переходы в редкоземельных металлах: уч. пособие / Новосибирск: Новосиб. гос. ун-т, 2004. 54 с.

Статья поступила в редакцию 26 февраля 2015 г.