УДК 532.516

ВОЗНИКНОВЕНИЕ КВАЗИПЕРИОДИЧЕСКИХ ТЕЧЕНИЙ МЕЖДУ ДВУМЯ ВРАЩАЮЩИМИСЯ ПРОНИЦАЕМЫМИ ЦИЛИНДРАМИ

В. В. Колесов, М. Н. Романов

Южный федеральный университет, 344090 Ростов-на-Дону E-mails: kolesov@math.rsu.ru, romanovmaks@yandex.ru

Исследуются течения вязкой несжимаемой жидкости между двумя бесконечными вращающимися проницаемыми концентрическими цилиндрами вблизи точки бифуркаций, в результате которых возникают вторичное стационарное течение и автоколебания с азимутальными волнами. Методами теории бифуркаций коразмерности два гидродинамических течений, обладающих цилиндрическими симметриями, найдены стационарные, периодические и квазипериодические режимы движения жидкости с двумя, тремя и четырьмя независимыми частотами.

Ключевые слова: проницаемые цилиндры, вторичное стационарное течение, азимутальные волны, устойчивость, бифуркации, амплитудная система, предельные циклы, квазипериодические течения.

Введение. Основной режим движения жидкости между вращающимися проницаемыми цилиндрами представляет собой стационарное вращательно-симметричное течение. Экспериментальные исследования [1–3] показывают, что с увеличением числа Рейнольдса это течение сменяется вторичным стационарным течением или автоколебательным течением с бегущими в азимутальном направлении волнами. Дальнейшее увеличение числа Рейнольдса приводит к усложнению структуры течения жидкости и возникновению различных сложных режимов, а затем и турбулентности.

В середине 80-х гг. ХХ в. В. И. Юдовичем в России [4], а также Ж. Йоссом и П. Шосса во Франции [5] была развита теория бифуркаций коразмерности два гидродинамических течений с цилиндрическими симметриями. Это позволило исследовать различные режимы движения жидкости, существующие вблизи точки бифуркаций, в результате которых возникают вторичное стационарное течение и азимутальные волны, для случая непроницаемых цилиндров [4, 5]. В данной работе эта теория применяется при расчете сложного движения жидкости в задаче Куэтта — Тейлора для проницаемых цилиндров.

1. Исходные уравнения и основной режим. Пусть вязкая однородная несжимаемая жидкость заполняет полость между двумя твердыми бесконечными проницаемыми концентрическими цилиндрами с радиусами R_1 и R_2 ($R_1 < R_2$), вращающимися с угловыми скоростями Ω_1 и Ω_2 . Предположим, что внешние массовые силы отсутствуют. В качестве масштабов длины, скорости, времени примем соответственно R_1 , $\Omega_1 R_1$, $1/\Omega_1$.

Работа выполнена в рамках базовой части государственного задания, выполняемого Южным федеральным университетом (проект № 213.01-11/2014-1), и при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 12-01-31262).

[©] Колесов В. В., Романов М. Н., 2014

В цилиндрических координатах r, φ, z (ось z направлена вдоль оси цилиндров) безразмерные уравнения Навье — Стокса и неразрывности имеют вид

$$\frac{\partial v'_r}{\partial t} + (\mathbf{V}', \nabla) v'_r - \frac{v'_{\varphi}^2}{r} + \frac{\partial \Pi'}{\partial r} = \frac{1}{\lambda} \Big(\Delta v'_r - \frac{v'_r}{r^2} - \frac{2}{r^2} \frac{\partial v'_{\varphi}}{\partial \varphi} \Big),$$

$$\frac{\partial v'_{\varphi}}{\partial t} + (\mathbf{V}', \nabla) v'_{\varphi} + \frac{v'_r v'_{\varphi}}{r} + \frac{1}{r} \frac{\partial \Pi'}{\partial \varphi} = \frac{1}{\lambda} \Big(\Delta v'_{\varphi} - \frac{v'_{\varphi}}{r^2} + \frac{2}{r^2} \frac{\partial v'_r}{\partial \varphi} \Big),$$

$$\frac{\partial v'_z}{\partial t} + (\mathbf{V}', \nabla) v'_z + \frac{\partial \Pi'}{\partial z} = \frac{1}{\lambda} \Delta v'_z, \quad \text{div } \mathbf{V}' = 0,$$

$$\Delta = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}, \quad \nabla = \Big\{ \frac{\partial}{\partial r}, \frac{1}{r} \frac{\partial}{\partial \varphi}, \frac{\partial}{\partial z} \Big\}.$$
(1.1)

Здесь $V' = \{v'_r, v'_{\varphi}, v'_z\}$ — вектор скорости; П' — давление; t — время; $\lambda = \Omega_1 R_1^2 / \nu$ — число Рейнольдса; ν — кинематическая вязкость.

Предположим, что количество жидкости, втекающей через поверхность одного цилиндра, совпадает с количеством жидкости, вытекающей через поверхность другого цилиндра. Тогда краевые условия для системы (1.1) имеют вид

$$v'_{r} = \chi_{0}, \qquad v'_{\varphi} = 1, \qquad v'_{z} = 0, \qquad r = 1,$$

 $v'_{r} = \chi_{0}/R, \qquad v'_{\varphi} = \Omega R, \qquad v'_{z} = 0, \qquad r = R,$ (1.2)

где $\chi_0 = S/(\Omega_1 R_1^2)$ — безразмерный коэффициент, характеризующий поток жидкости сквозь цилиндры; S — размерный коэффициент, определяющий интенсивность поступления жидкости через поверхность одного цилиндра и вытекания ее через поверхность другого цилиндра; $R = R_2/R_1$; $\Omega = \Omega_2/\Omega_1$.

Задача (1.1), (1.2) обладает группой симметрий G, т. е. инвариантна (сохраняет вид) относительно поворота L^{δ}_{φ} вокруг оси цилиндров на произвольный угол δ , сдвига L^{h}_{z} вдоль этой оси на произвольное расстояние h и преобразования инверсии J, действующих на поле скоростей по правилу

$$(L_{\varphi}^{\delta} \mathbf{V}')(t, r, \varphi, z) = \mathbf{V}'(t, r, \varphi + \delta, z),$$

$$(L_{z}^{h} \mathbf{V}')(t, r, \varphi, z) = \mathbf{V}'(t, r, \varphi, z + h),$$

$$(J\mathbf{V}')(t, r, \varphi, z) = \{v'_{r}(t, r, \varphi, -z), v'_{\varphi}(t, r, \varphi, -z), -v'_{z}(t, r, \varphi, -z)\}.$$
(1.3)

Задача (1.1), (1.2) допускает точное решение [6, 7], представляющее собой основное стационарное вращательно-симметричное течение с ненулевыми радиальной и азимутальной компонентами вектора скорости:

$$\mathbf{V}_{0} = \{v_{0r}, v_{0\varphi}, 0\}, \qquad \Pi_{0} = \int_{1}^{r} \left(\frac{v_{0\varphi}^{2}}{s} + \frac{\chi_{0}^{2}}{s^{3}}\right) ds + \text{const}, \qquad v_{0r} = \frac{\chi_{0}}{r}, \\
v_{0\varphi} = \begin{cases} ar^{\chi+1} + b/r, & \chi \neq -2, \\ (a_{1}\ln r + 1)/r, & \chi = -2, \end{cases} \\
a = \frac{\Omega R^{2} - 1}{R^{\chi+2} - 1}, \quad b = 1 - a, \quad a_{1} = \frac{\Omega R^{2} - 1}{\ln R}, \quad \chi_{0} = \frac{\chi}{\lambda}.$$
(1.4)

Здесь $\chi = S/\nu$ — радиальное число Рейнольдса. При $\chi > 0$ радиальный поток жидкости направлен от внутреннего цилиндра к внешнему, а при $\chi < 0$ — от внешнего к внутреннему.

В случае отсутствия радиального потока ($\chi = 0$) жидкость движется по концентрическим окружностям в плоскости, перпендикулярной оси цилиндров, а центры этих окружностей лежат на оси цилиндров (круговое течение Куэтта). Наличие даже небольшого радиального потока жидкости ($\chi \neq 0$) приводит к возникновению ненулевой радиальной компоненты вектора скорости, поэтому жидкость перемещается не только в азимутальном направлении, но и в радиальном. Соответствующие картины линий тока приведены в [8].

2. Постановка задачи. Наложим на основной режим (1.4) возмущения скорости *V* и давления П, т. е. будем искать решение задачи (1.1), (1.2) в виде

$$\mathbf{V}' = \mathbf{V}_0 + \mathbf{V}, \qquad \Pi' = \Pi_0 + \Pi/\lambda. \tag{2.1}$$

Подставляя (2.1) в (1.1), (1.2), получаем нелинейную задачу для возмущений

$$D_{1}v_{r} - \frac{v_{\varphi}^{2}}{r} + \frac{1}{\lambda}\frac{\partial\Pi}{\partial r} = \frac{1}{\lambda}\left(D_{2}v_{r} + \chi\frac{v_{r}}{r^{2}} - \frac{2}{r^{2}}\frac{\partial v_{\varphi}}{\partial \varphi}\right) + 2\omega v_{\varphi},$$

$$D_{1}v_{\varphi} + \frac{v_{r}v_{\varphi}}{r} + \frac{1}{\lambda r}\frac{\partial\Pi}{\partial \varphi} = \frac{1}{\lambda}\left(D_{2}v_{\varphi} - \chi\frac{v_{\varphi}}{r^{2}} + \frac{2}{r^{2}}\frac{\partial v_{r}}{\partial \varphi}\right) + gv_{r},$$

$$D_{1}v_{z} + \frac{1}{\lambda}\frac{\partial\Pi}{\partial z} = \frac{1}{\lambda}\left(D_{2}v_{z} + \frac{v_{z}}{r^{2}}\right), \quad \text{div } \mathbf{V} = 0,$$

$$v_{r} = v_{\varphi} = v_{z} = 0, \quad r = 1, R,$$

$$D_{1} = \frac{\partial}{\partial t} + \omega\frac{\partial}{\partial \varphi} + (\mathbf{V}, \nabla), \quad D_{2} = \Delta - \frac{\chi}{r}\frac{\partial}{\partial r} - \frac{1}{r^{2}},$$

$$\omega = \frac{v_{0\varphi}}{r}, \quad g = -\left(\frac{d}{dr} + \frac{1}{r}\right)v_{0\varphi}.$$

$$(2.2)$$

Компоненты поля скорости и давление будем считать периодическими по φ и z с известными периодами $2\pi/m$ и $2\pi/\alpha$ соответственно (m, α — азимутальное и аксиальное волновые числа).

Таким образом, нелинейная задача для возмущений (2.2) зависит от шести безразмерных параметров: отношения радиусов цилиндров R, отношения угловых скоростей вращения цилиндров Ω , числа Рейнольдса λ , радиального числа Рейнольдса χ , азимутального и аксиального волновых чисел m, α .

Для любых $V = \{v_r, v_{\varphi}, v_z\}$ и $U = \{u_r, u_{\varphi}, u_z\}$ определим дифференциальные выражения

$$M\mathbf{V} = \left\{ \Delta v_r - \frac{\chi}{r} \frac{\partial v_r}{\partial r} + (\chi - 1) \frac{v_r}{r^2} - \frac{2}{r^2} \frac{\partial v_\varphi}{\partial \varphi}, \ \Delta v_\varphi - \frac{\chi}{r} \frac{\partial v_\varphi}{\partial r} - (\chi + 1) \frac{v_\varphi}{r^2} + \frac{2}{r^2} \frac{\partial v_r}{\partial \varphi}, \\ \Delta v_z - \frac{\chi}{r} \frac{\partial v_z}{\partial r} \right\},$$

$$N\boldsymbol{V} = \omega \frac{\partial \boldsymbol{v}}{\partial \varphi} + \{-2\omega v_{\varphi}, -gv_{r}, 0\},$$
$$L(\boldsymbol{V}, \boldsymbol{U}) = \left\{ (\boldsymbol{V}, \nabla)u_{r} - \frac{v_{\varphi}u_{\varphi}}{r}, (\boldsymbol{V}, \nabla)u_{\varphi} + \frac{v_{r}u_{\varphi}}{r}, (\boldsymbol{V}, \nabla)u_{z} \right\}$$

Тогда нелинейная задача для возмущений принимает вид

$$\frac{\partial \mathbf{V}}{\partial t} = \frac{1}{\lambda} M \mathbf{V} - N \mathbf{V} - \frac{1}{\lambda} \nabla \Pi - L(\mathbf{V}, \mathbf{V}),$$

div $\mathbf{V} = 0, \quad v_r = v_{\varphi} = v_z = 0, \quad r = 1, R.$ (2.3)

Выполненные в [9, 10] вычисления показали, что с увеличением числа Рейнольдса течение (1.4) теряет устойчивость двумя способами. В результате монотонной вращательносимметричной неустойчивости возникает вторичный стационарный режим (его расчет путем прямого численного интегрирования задачи (2.2) выполнен в [11]). Колебательная трехмерная неустойчивость порождает автоколебательный режим с бегущими в азимутальном направлении волнами. Нейтральные кривые, соответствующие этим двум типам потери устойчивости, при определенных значениях параметров задачи пересекаются. Вблизи таких точек наблюдается сильное взаимодействие монотонных и трехмерных возмущений, что приводит к возникновению большого количества разнообразных режимов движения жидкости. Для определения таких режимов в данной работе применяется методика изучения кратных бифуркаций [4, 5], использованная для поиска аналогичных режимов в задаче Куэтта — Тейлора для непроницаемых цилиндров.

Целью настоящей работы является выявление вторичных течений, в том числе квазипериодических, возникающих в малой окрестности точки пересечения нейтральных кривых монотонной и колебательной потери устойчивости основного режима, а также исследование устойчивости и бифуркаций найденных течений с учетом наличия радиального потока.

3. Амплитудная система. Пусть точка (Ω_*, λ_*) на плоскости параметров (Ω, λ) является точкой пересечения нейтральных кривых монотонной вращательно-симметричной и колебательной трехмерной потери устойчивости течения (1.4). Предположим, что значение λ близко к λ_* , а Ω — к Ω_* , тогда $\delta_1 = \lambda - \lambda_*$ и $\delta_2 = \Omega - \Omega_*$ — малые параметры одного порядка.

Следуя [4, 5], решение нелинейной задачи для возмущений (2.3) будем искать в виде линейной комбинации независимых собственных решений линеаризованной задачи устойчивости

$$\mathbf{V} = \sqrt{|\delta_1|} (\mathbf{\Phi} + \mathbf{\Phi}^*), \qquad \Pi = \sqrt{|\delta_2|} (p + p^*),
\mathbf{\Phi} = \eta_0(\xi) \mathbf{\Phi}_0(r, z) + e^{ic_* t} [\eta_1(\xi) \mathbf{\Phi}_1(r, \varphi, z) + \eta_2(\xi) \mathbf{\Phi}_2(r, \varphi, z)] + \dots,$$

$$p = \eta_0(\xi) p_0(r, z) + e^{ic_* t} [\eta_1(\xi) p_1(r, \varphi, z) + \eta_2(\xi) p_2(r, \varphi, z)] + \dots.$$
(3.1)

Здесь η_0 , η_1 , η_2 — неизвестные комплексные амплитуды (функции "медленного" времени $\xi = |\delta_1|t$); c_* — неизвестная циклическая частота (фазовая скорость азимутальных волн), найденная при $\lambda = \lambda_*$, $\Omega = \Omega_*$; Φ_0 , p_0 — собственное решение линеаризованной задачи устойчивости для монотонных вращательно-симметричных возмущений; Φ_1 , p_1 и Φ_2 , p_2 — независимые собственные решения линеаризованной задачи устойчивости для колебательных трехмерных возмущений. При этом вектор Φ_2 получается инверсией (1.3) из Φ_1 , следовательно, $\Phi_2 = J\Phi_1$. Величины порядка δ_1 , δ_2 и выше в (3.1) опущены.

Подставляя (3.1) в задачу (2.3), получаем систему с кубическими ведущими нелинейными членами [4, 5]

$$\frac{d\eta_0}{d\xi} = (\sigma + A|\eta_0|^2 + B|\eta_1|^2 + B^*|\eta_2|^2)\eta_0 + D\eta_0^*\eta_1^*\eta_2,
\frac{d\eta_1}{d\xi} = (\mu + P|\eta_0|^2 + Q|\eta_1|^2 + R|\eta_2|^2)\eta_1 + S\eta_0^{*2}\eta_2,
\frac{d\eta_2}{d\xi} = (\mu + P|\eta_0|^2 + R|\eta_1|^2 + Q|\eta_2|^2)\eta_2 + S\eta_0^2\eta_1.$$
(3.2)

Система (3.2), называемая амплитудной системой, впервые была получена в работах [4, 5]. Неизвестными являются три комплексные амплитуды η_0 , η_1 , η_2 . Коэффициенты системы (3.2) выражаются явно через решения серии линейных краевых задач. Коэффициенты

χ	α	Ω_*	λ_*	c_*	A	B_r	B_i	D	P_r	P_i	Q_r	Q_i
-0,25	2	-0,362	127,494	0,2533	-639,8	$78,\!9$	$-26,\!6$	-285,5	-646,8	137,9	88,4	-933,5
	3	-0,349	99,395	0,2679	-287,1	-368,1	583,9	-227,8	-290,8	-526,5	-140,9	-190,2
	4	-0,366	98,062	0,2819	-199,8	-270,5	211,0	-220,8	-368,4	-214,6	-123,3	-153,8
0,25	2	-0,407	119,530	$0,\!2534$	-500,3	72,2	-0,89	-230,2	-435,9	90,3	-28,6	-843,5
	3	-0,393	94,120	0,2706	-409,7	-403,1	448,5	-302,5	-438,9	-453,4	-151,6	$-157,\!5$
	4	-0,414	93,389	0,2861	-229,1	-275,9	$173,\!3$	-219,5	-383,7	-174,9	-132,0	-129,0

Значения коэффициентов

A, D — вещественные числа, B, P, Q, R, S — комплексные числа. Величины σ, μ — свободные параметры задачи [4, 8].

Знаки σ , μ_r (вещественная часть μ) определяют положение точки (Ω, λ) , в которой строятся разложения (3.1), относительно нейтральных кривых монотонной и колебательной потери устойчивости основного стационарного течения. При $\sigma > 0$ значения отношения угловых скоростей цилиндров Ω и числа Рейнольдса λ таковы, что точка (Ω, λ) расположена выше нейтральной кривой, соответствующей монотонной потере устойчивости, при $\sigma < 0$ — ниже. При $\mu_r > 0$ точка (Ω, λ) расположена выше нейтральной кривой, соответствующей монотонной потере устойчивости, соответствующей колебательной потере устойчивости, при $\mu_r < 0$ — ниже.

4. Расчет коэффициентов амплитудной системы. Вычисления проводились при фиксированных значениях следующих четырех параметров: отношения радиусов цилиндров R = 2 (радиус внешнего цилиндра в два раза больше радиуса внутреннего цилиндра), радиального числа Рейнольдса $\chi = -0.25$ (радиальный поток жидкости направлен от внешнего цилиндра к внутреннему) и $\chi = 0.25$ (поток направлен в противоположную сторону), азимутального волнового числа m = 1 (2 π -периодические возмущения в азимутальном направлении) и различных значениях аксиального волнового числа α . Рассчитанные значения коэффициентов амплитудной системы (3.2) представлены в табл. 1.

Алгоритм расчета коэффициентов амплитудной системы описан в работе [12] и аналогичен алгоритму, использованному при исследовании изотермического [4] и неизотермического [13, 14] течений Куэтта между цилиндрами.

Вычисления показали, что радиальное число Рейнольдса χ существенно влияет на значения коэффициентов амплитудной системы (3.2), поэтому учет наличия потока жидкости сквозь поверхности цилиндров приводит к увеличению количества сценариев возникновения вторичных течений по сравнению со случаем, когда цилиндры непроницаемы.

5. Моторная подсистема. Представим комплексные амплитуды η_0 , η_1 , η_2 в полярной форме: $\eta_0 = \rho_0 e^{i\psi_0}$, $\eta_1 = \rho_1 e^{i\psi_1}$, $\eta_2 = \rho_2 e^{i\psi_2}$. Тогда для модулей амплитуд ρ_0 , ρ_1 , ρ_2 и линейной комбинации амплитудных фаз $\beta = 2\psi_0 + \psi_1 - \psi_2$ получаем замкнутую систему, называемую моторной подсистемой амплитудной системы [4]:

$$\frac{d\rho_0}{d\xi} = [\sigma + A\rho_0^2 + B_r(\rho_1^2 + \rho_2^2)]\rho_0 + D\rho_0\rho_1\rho_2\cos\beta,$$

$$\frac{d\rho_1}{d\xi} = (\mu_r + P_r\rho_0^2 + Q_r\rho_1^2 + R_r\rho_2^2)\rho_1 + (S_r\cos\beta + S_i\sin\beta)\rho_0^2\rho_2,$$

$$\frac{d\rho_2}{d\xi} = (\mu_r + P_r\rho_0^2 + R_r\rho_1^2 + Q_r\rho_2^2)\rho_2 + (S_r\cos\beta - S_i\sin\beta)\rho_0^2\rho_1,$$

$$\frac{d\beta}{d\xi} = C(\rho_1^2 - \rho_2^2) - 2D\rho_1\rho_2\sin\beta - [S_i(\rho_1^2 - \rho_2^2)\cos\beta + S_r(\rho_1^2 + \rho_2^2)\sin\beta]\frac{\rho_0^2}{\rho_1\rho_2},$$

$$C = 2B_i + Q_i - R_i.$$

(5.1)

амплитудной системы

R_r	R_i	S_r	S_i	σ_1	σ_2	μ_{1r}	μ_{1i}	μ_{2r}	μ_{2i}
-27,9	-196,9	-57,3	-604,5	0,001 906	0,837101	0,001 722	0,000406	$0,\!292439$	-0,02437
-416,8	515,8	-593,3	713,5	0,003606	0,965742	0,003339	0,000504	$0,\!471876$	-0,12755
$-197,\!8$	$95,\!6$	-236,5	88,4	$0,\!004758$	0,947862	0,004323	$0,\!000439$	$0,\!569947$	-0,15243
-30,3	-163,1	5,71	-440,1	0,002086	0,727912	0,001 918	0,000412	$0,\!251679$	-0,02587
$-399,\!6$	317,6	-518,6	426,1	0,003910	0,839069	0,003655	$0,\!000513$	$0,\!411518$	-0,11993
-206,9	70,5	-218,4	69,3	$0,\!005117$	0,817600	0,004 682	$0,\!000439$	$0,\!497407$	-0,14076

Таким образом, амплитудная система (3.2) для трех комплексных неизвестных сводится к динамической системе (5.1) для четырех вещественных неизвестных. Фазовые переменные ψ_0 , ψ_1 , ψ_2 находятся из соответствующей системы путем интегрирования, причем одну из них можно выразить через две другие и β [4].

Система (5.1) инвариантна относительно преобразования $\rho_1 \leftrightarrow \rho_2$, $\beta \to -\beta$ [4, 5], что является следствием инвариантности задачи (1.1) относительно инверсии J, определенной в (1.3). Отсюда, в частности, следует, что решения системы (5.1) либо J-симметричные (переводятся в себя преобразованием $\rho_1 \leftrightarrow \rho_2$, $\beta \to -\beta$), либо образуют J-связанные пары (переводятся этим преобразованием друг в друга).

Вид амплитудной системы (3.2), имеющей два свободных параметра σ и μ_r , сохраняется при масштабной замене $\eta_0 \to l\eta_0$, $\eta_1 \to l\eta_1$, $\eta_2 \to l\eta_2$, $\sigma \to l^2\sigma$, $\mu \to l^2\mu$, $\xi \to \xi/l^2$ для любого вещественного числа $l \neq 0$. Это позволяет при исследовании моторной подсистемы (5.1) ограничиться рассмотрением лишь трех значений параметра σ : нулевого, любого положительного и любого отрицательного. Поэтому вычисления проводились для трех фиксированных значений свободного параметра $\sigma = -10$, 0, 10.

6. Расчет равновесий моторной подсистемы. После расчета коэффициентов амплитудной системы (3.2) можно аналитически определить все равновесные состояния (стационарные решения) моторной подсистемы (5.1). Исследование этих состояний позволяет обнаружить стационарные, периодические и двухчастотные квазипериодические режимы движения жидкости. Формулы для расчета равновесных состояний и их гидродинамическая трактовка приведены в [12]. Из этих формул нетрудно получить выражения для компонент скорости и давления.

У моторной подсистемы (5.1) существуют следующие равновесные состояния: основной режим MF, вторичное стационарное течение SF, пара спиральных волн SW, чисто азимутальные волны AW, смешанные азимутальные волны первого MW^+ и второго MW^- родов, а также четыре пары равновесных состояний QPF, которым соответствуют двухчастотные квазипериодические течения жидкости. Эти четыре пары равновесных состояний находятся в результате определения корней полинома четвертой степени.

На рис. 1 для R = 2, $\chi = 0.25$, m = 1, $\alpha = 2$, $\sigma = 10$ представлена схема переходов, обусловленных бифуркациями равновесных решений моторной подсистемы (5.1) при изменении свободного параметра μ_r . При n = 1, 2, 3, 4, 5, 6, 7, 8, 9 параметр μ_r имеет следующие бифуркационные значения: $\mu_r^n = 0$; 6,865; 6,878; 7,381; 8,426; 8,584; 8,599; 8,827; 9,231.

Основное стационарное течение MF существует и неустойчиво для всех значений μ_r . В точке $\mu_r = \mu_r^1$ от него ответвляются чисто азимутальные волны AW и пара спиральных волн SW. Оба эти режима существуют, если $\mu_r > \mu_r^1$, и неустойчивы. При $\mu_r = \mu_r^2$ от чисто азимутальных волн AW ответвляются неустойчивые смешанные азимутальные волны первого рода MW^+ , которые исчезают на вторичном стационарном течении SF,

Таблица 1

Рис. 1. Схема переходов при $\chi = 0,25, \alpha = 2, \sigma = 10$: 1–5 — *J*-симметричные режимы (1 — *MF*, 2 — *SF*, 3 — *AW*, 4 — *MW*⁺, 5 — *MW*⁻), 6–8 — *J*-связанные пары режимов (6 — *SW*, 7 — *QPF*₁, 8 — *QPF*₂); I — устойчивые режимы, II — неустойчивые режимы, III — точки бифуркаций равновесных решений моторной подсистемы, IV — точки, в которых от равновесных решений ответвляются циклы моторной подсистемы

Рис. 2. Проекции фазовых траекторий устойчивого J-симметричного предельного цикла A_0 на координатные плоскости:

 $a = (\rho_1, \rho_2), \, \delta = (\rho_0, \rho_2), \, s = (\rho_1, \beta), \, z = (\rho_0, \beta)$

когда параметр μ_r становится равным μ_r^7 . В точке $\mu_r = \mu_r^6$ от режима MW^+ ответвляется неустойчивый *J*-симметричный предельный цикл.

Вторичное стационарное течение SF существует для всех значений параметра μ_r . При $\mu_r < \mu_r^7$ оно устойчиво, при $\mu_r > \mu_r^7$ неустойчиво. В точке $\mu_r = \mu_r^8$ от режима SF ответвляются смешанные азимутальные волны второго рода MW^- , которые существуют в интервале $\mu_r^8 < \mu_r < \infty$. Эти волны неустойчивы в диапазоне $\mu_r^8 < \mu_r < \mu_r^9$ и устойчивы в диапазоне $\mu_r^8 < \mu_r < \infty$.

При $\mu_r = \mu_r^9$ смешанные азимутальные волны второго рода MW^- становятся устойчивыми в результате ответвления в докритическую по μ_r область *J*-симметричного предельного цикла, проекции фазовых траекторий которого показаны на рис. 2.

При $\mu_r = \mu_r^3$ от смешанных азимутальных волн первого рода MW^+ ответвляется первая неустойчивая *J*-связанная пара двухчастотных квазипериодических течений, соот-

Таблица 2

		QI	PF_1		QPF_2					
μ_r	$ ho_0$	ρ_1	ρ_2	β	$ ho_0$	$ ho_1$	ρ_2	β		
7	0,0124	0,3493	0,3368	0,1087						
9	0,0139	0,4140	0,3626	0,4044	0,0137	$0,\!1563$	0,0774	6,2768		
10	0,0146	0,4400	0,3782	0,4674	0,1422	0,1971	0,0661	6,2748		
20	0,0205	0,6386	0,5158	$0,\!6908$	0,1861	0,4121	0,0542	6,2731		
100	0,0454	1,4474	1,1296	$0,\!8359$	0,3876	1,0969	0,0883	6,2728		
500	0,1014	3,2439	2,5168	0,8630	0,8533	2,5236	$0,\!1860$	6,2728		

Значения модулей амплитуд и фазового инварианта, соответствующие состояниям равновесия $QPF_1,\ QPF_2$

ветствующая общему состоянию равновесия системы QPF_1 и существующая в интервале $\mu_r^3 < \mu_r < \infty$. В точке $\mu_r = \mu_r^4$ от нее ответвляется *J*-связанная пара неустойчивых предельных циклов.

В тот момент, когда параметр μ_r принимает значение μ_r^5 , от смешанных азимутальных волн первого рода MW^+ ответвляется вторая неустойчивая *J*-связанная пара двухчастотных квазипериодических течений, соответствующая общему состоянию равновесия системы QPF_2 и существующая в интервале $\mu_r^5 < \mu_r < \infty$.

Значения модулей амплитуд ρ_0 , ρ_1 , ρ_2 и фазового инварианта β равновесий QPF_1 и QPF_2 приведены в табл. 2.

На рис. 1 в интервале $\mu_r^7 < \mu_r < \mu_r^9$ устойчивые состояния равновесия отсутствуют, поэтому следует ожидать возникновения достаточно сложных режимов движения жидкости непосредственно после потери устойчивости основного режима.

7. Расчет циклов моторной подсистемы. Помимо равновесий у моторной подсистемы (5.1) могут существовать предельные циклы, т. е. изолированные периодические решения, ответвляющиеся в результате колебательной потери устойчивости равновесий. В общем случае каждому циклу соответствует трехчастотный квазипериодический режим движения жидкости.

Для вычисления предельных циклов применялись методы определения неподвижной точки эволюционного оператора или отображения последования Пуанкаре [15]. Устойчивость циклов и их бифуркации исследовались путем расчета мультипликаторов Флоке (собственных значений матрицы монодромии) [15].

Результаты расчета *J*-симметричного предельного цикла A_0 в виде проекций фазовых траекторий на координатные плоскости при R = 2, $\chi = 0.25$, m = 1, $\alpha = 2$, $\Omega_* = -0.407$, $\sigma = 10$ представлены на рис. 2. Этот цикл образуется при $\mu_r = \mu_r^9 = 9.231$ в результате бифуркации Хопфа смешанных азимутальных волн второго рода MW^- (см. рис. 1).

Цикл A_0 существует при $\mu_r < \mu_r^9$ и устойчив в интервале 8,608 $< \mu_r < \mu_r^9$. При $\mu_r = 9,215$ точка на фазовой траектории имеет координаты $\rho_0 = 0,144$, $\rho_1 = \rho_2 = 0,032$, $\beta = 3,142$; период цикла равен T = 0,332.

При переходе через точку $\mu_r = 8,608$ цикл A_0 теряет устойчивость, и от него ответвляется устойчивое двухчастотное квазипериодическое решение A_1 , фазовые траектории которого лежат на инвариантном двумерном торе. Это решение существует при $\mu_r < 8,608$. Проекции фазовых траекторий на начальной стадии формирования течения (на небольшом интервале времени) показаны на рис. 3. На рис. 4 приведено отображение Пуанкаре, соответствующее тору A_1 . При $\mu_r = 8,607$ точка на торе имеет координаты $\rho_0 = 0,141$, $\rho_1 = 0,011, \rho_2 = 0,017, \beta = -18,86$.

Рис. 3. Проекции фазовых траекторий, соответствующих начальной стадии формирования течения, на координатные плоскости:

Рис. 4. Отображение Пуанкаре двумерного тора A_1 на координатные плоскости: $a - (\rho_1, \rho_2), \ \delta - (\rho_0, \rho_2), \ \epsilon - (\rho_1, \beta), \ \epsilon - (\rho_0, \beta)$

Заключение. Таким образом, анализ устойчивости основного режима движения жидкости между вращающимися проницаемыми цилиндрами при наличии радиального потока в случае, когда его спектр устойчивости содержит нуль и пару чисто мнимых собственных значений, сводится к исследованию нелинейной системы трех комплексных амплитудных уравнений.

Обнаружено, что при определенных значениях параметров задачи образуются режимы, имеющие достаточно сложный характер. В частности, в результате потери устойчивости *J*-симметричного предельного цикла моторной подсистемы возникает устойчивое *J*-симметричное двухчастотное квазипериодическое решение моторной подсистемы, фазовые траектории которого лежат на инвариантном двумерном торе. Такому режиму соответствует четырехчастотный режим движения жидкости.

ЛИТЕРАТУРА

- Schwille J. A., Mitra D., Lueptow R. M. Anti-fouling mechanism in rotating filtration // Proc. of the 12th Intern. Couette — Taylor workshop, Sept. 6–8, 2001. Evanston: Northwestern Univ., 2001. Session 2D.
- Kroner K. H., Nissinen V. Dynamic filtration of microbial suspensions using an axially rotating filter // J. Membrane Sci. 1988. V. 36. P. 85–100.
- Wronski S., Molga E., Rudniak L. Dynamic filtration in biotechnology // Bioprocess Engng. 1989. V. 4, N 5. P. 99–104.

- 4. Колесов В. В., Юдович В. И. Расчет колебательных режимов в течении Куэтта вблизи точки пересечения бифуркаций возникновения вихрей Тейлора и азимутальных волн // Изв. РАН. Механика жидкости и газа. 1998. № 4. С. 81–93.
- 5. Chossat P. The Couette Taylor problem / P. Chossat, G. Iooss. N. Y.: Springer, 1994.
- Шапакидзе Л. Д. Устойчивость вязкого течения между двумя вращающимися проницаемыми цилиндрами // Сообщ. АН Груз.ССР. 1968. Т. 49, № 1. С. 19–24.
- Jain N. C., Bansal J. L. On the flow of a viscous incompressible fluid between two coaxial rotating porous cylinders // Proc. Indian Acad. Sci. Math. Sci. 1973. V. 78, N 5. P. 187–201.
- 8. Колесов В. В., Романов М. Н. Возникновение хаоса в проблеме Куэтта Тейлора для проницаемых цилиндров // Изв. РАН. Механика жидкости и газа. 2013. № 1. С. 52–64.
- Kolesov V., Shapakidze L. On oscillatory modes in viscous incompressible liquid flows between two counter-rotating permeable cylinders // Trends in applications of mathematics to mechanics. Boca Raton: Chapman and Hall, 2000. V. 106. P. 221–227.
- 10. Колесов В. В., Романов М. Н. Расчет бикритических точек в задаче об устойчивости течения вязкой жидкости между двумя вращающимися проницаемыми цилиндрами // Изв. вузов. Сев.-Кавк. регион. Естеств. науки. 2009. № 5. С. 28–30.
- 11. Serre E., Sprague M. A., Lueptow R. M. Stability of Taylor Couette flow in a finite-length cavity with radial throughflow // Phys. Fluids. 2008. V. 20, N 3. P. 034106-1–034106-10.
- 12. Колесов В. В., Романов М. Н. Расчет стационарных, периодических и квазипериодических движений вязкой жидкости между двумя вращающимися проницаемыми цилиндрами // Изв. РАН. Механика жидкости и газа. 2010. № 6. С. 53–62.
- Колесов В. В. Неизотермическая проблема Куэтта Тейлора / В. В. Колесов, А. Г. Хоперский. Ростов н/Д: Изд-во Юж. федер. ун-та, 2009.
- Kolesov V., Shapakidze L. Instabilities and transition in flows between two porous concentric cylinders with radial flow and a radial temperature gradient // Phys. Fluids. 2011. V. 23, N 1. P. 014107-1–014107-13.
- 15. Демидович Б. П. Лекции по математической теории устойчивости. М.: Наука, 1967.

Поступила в редакцию 30/IV 2013 г.