2016. Том 57, № 4

Май – июнь

C. 792 – 797

УДК 54.057:548.736.5:546.656

КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА НОВОГО БИЯДЕРНОГО КОМПЛЕКСА бис(2,4,6,8-ТЕТРАМЕТИЛ-2,4,6,8-ТЕТРААЗАБИЦИКЛО(3.3.0)ОКТАН-3,7-ДИОН-О,О')-ТЕТРААКВА-гексакис(НИТРАТО-О,О')-ДИЕВРОПИЯ(III)

Е.Е. Нетреба¹, Е.А. Сарнит¹, С.В. Шабанов¹, А.А. Великожон¹, Н.В. Сомов²

¹Таврическая академия Крымского федерального университета им. В.И. Вернадского, Симферополь, Россия

E-mail: evgtnu@gmail.com

²Нижегородский государственный университет им. Н.И. Лобачевского, Нижний Новгород, Россия

Статья поступила 7 февраля 2016 г.

Синтезирован центросимметричный биядерный комплекс нитрата европия(III) с бициклической бисмочевиной — 2,4,6,8-тетраметил-2,4,6,8-тетраазабицикло(3.3.0)октан-3,7дионом или мебикаром (Mk) — [Eu(C₈H₁₄N₄O₂)(H₂O)₂(NO₃)₃]₂ (I) и определена его атомная структура (CIF file CCDC № 1451437). Кристаллы I триклинные: пр. гр. $P \bar{1}$, a = 9,8343(4), b = 10,2544(4), c = 10,9411(4) Å, $\alpha = 74,366(3)^{\circ}$, $\beta = 67,734(4)^{\circ}$, $\gamma = 67,673(4)^{\circ}$, V = 934,32(7) Å³, ρ (выч.) = 2,03398 г/см³, Z = 1. Атом европия координирован двумя атомами кислорода двух молекул Mk, связанных операцией центра симметрии, тремя бидентатными нитрат-анионами и двумя молекулами воды. Координационный полиэдр атома европия — десятивершинник, расстояние Еи…Еи составляет 9,7433(6) Å.

DOI: 10.15372/JSC20160418

Ключевые слова: бициклические бисмочевины, мебикар, европий(III), структура, десятивершинник, ИК, РСА.

Координационные соединения лантанидов с лигандами класса бициклических бисмочевин октанового ряда на данный момент времени мало изучены. Один из таких лигандов — 2,4,6,8-тетраметил-2,4,6,8-тетраазабицикло(3.3.0)октан-3,7-дион или мебикар (C₈H₁₄N₄O₂, Mk):

Мебикар обладает стресс-протективным, анксиолитическим и ноотропным действием и используется в медицинской практике как коммерческий препарат под названием "Адаптол". Он регулирует измененный ночной сон, не обладая прямым снотворным эффектом, не имеет холинолитического и миорелаксантного действия, не влияет на координацию движений, также ослабляет никотиновую абстиненцию [1—3]. Известно, что мебикар улучшает кислородное снабжение тканей миокарда, регулирует электролитный баланс плазмы, содержание калия в крови, эритроцитах и тканях миокарда, помогает усилению синтеза белков и повышению энергоресурсов клетки [4—6].

[©] Нетреба Е.Е., Сарнит Е.А., Шабанов С.В., Великожон А.А., Сомов Н.В., 2016

А.Ю. Цивадзе с сотрудниками ранее получили и описали некоторые комплексы с мебикаром: $[Co(Mk)_2(H_2O)_2Br_2] \cdot 2H_2O$, $[Ni(Mk)_2(H_2O)_2Br_2]$, $[NiMk(H_2O)_4](NO_3)_2$ и $[Cu_2(Mk)_3Br_4] \cdot 2H_2O$, $CdCl_2 \cdot Mk \cdot 3H_2O$, $CaCl_2 \cdot 2Mk \cdot H_2O$, $Co(NO_3)_2 \cdot 2Mk \cdot 4H_2O$, $Ni(NO_3)_2 \cdot Mk \cdot 4H_2O$, $CdX_2 \cdot Mk$ (X = Br, I, NCS), $Cd(NO_3)_2 \cdot 1,5Mk \cdot H_2O$, $ZnCl_2 \cdot Mk$, $ZnI_2 \cdot Mk$, $Ca(NO_3)_2 \cdot 2Mk$, $Cu(NO_3)_2 \cdot 0,5Mk$, $[Li_2(Mk)_2(H_2O)_4]Br_2$ [7—10]. Полученные соединения охарактеризованы данными элементного анализа, ИК и КР спектроскопии, некоторые с помощью РСА. Было показано, что Mk координируется к металлам через атомы кислорода мочевинных фрагментов, что подтверждалось понижением частоты CO амид-I и повышением частоты деформационных колебаний метиламинных групп.

В связи с этим синтез и изучение координационных соединений данного лиганда — жесткого основания Льюиса — пояснит более полно химизм его взаимодействия с ионами лантанидов, а также позволит выяснить дентатность лиганда в среде ацетона.

Цель настоящей работы — получение координационного соединения нитрата европия(III) — жесткой кислоты Льюиса — с молекулами мебикара и воды, $[Eu(C_8H_{14}N_4O_2)(H_2O)_2(NO_3)_3]_2$ (I), и определение его структуры.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В работе использовали Eu(NO₃)₃·6H₂O (XЧ), Mk, полученный по методикам [11, 12], и ацетон (OсЧ).

Синтез I. Навеску нитрата европия растворяли в ацетоне, затем вносили мебикар в мольном соотношении 1:0,5 и 5—10 мин перемешивали на магнитной мешалке. Полученный раствор фильтровали и оставляли на несколько суток для формирования кристаллов в закрытом сосуде. Выделившиеся кристаллы белого цвета отфильтровывали, промывали ацетоном и сушили на воздухе. Выход ~89 % (по лиганду). Комплекс I устойчив на воздухе.

Элементный анализ. Определение содержания С, Н, N в I проведено на элементном анализаторе EA-3000 фирмы EuroVector (Италия). Найдено, %: С 16,81, Н 3,19, N 17,11. Для [Eu(C₈H₁₄N₄O₂)(H₂O)₂(NO₃)₃]₂ вычислено, %: С 16,79, Н 3,17, N 17,13.

ИКС. Спектры мебикара и I регистрировали на ИК-Фурье спектрометре Bruker Vertex 70 с приставкой НПВО на кристалле алмаза (разрешение 4 см^{-1} , 20 сканов, диапазон $350-4500 \text{ см}^{-1}$).

РСА. Экспериментальный материал для кристалла I получен на автоматическом дифрактометре Oxford Diffraction Gemini S с CCD детектором Sapphire III (MoK_{α} -излучение, $\lambda = 0,71073$ Å) при 293(2) К. Структура расшифрована прямым методом по комплексу программ SHELX [13] с использованием интегрированной системы WINGX [14]. Положения атомов водорода найдены из разностного синтеза электронной плотности. Структура уточнена полноматричным МНК в анизотропном приближении для неводородных атомов по F^2 ; на значения некоторых параметров атомов водорода наложены ограничения.

Основные характеристики эксперимента и параметры элементарной ячейки приведены в табл. 1, длины связей и углы в структуре I — в табл. 2.

Результаты РСА I депонированы в Кембриджском банке структурных данных (ССDС № 1451437; deposit@ccdc.cam.ac.uk или http://www.ccdc.cam.ac.uk/data_request/cif).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

В ИК спектрах I и мебикара наблюдаются следующие характеристические полосы (v, см⁻¹): для Mk — 2926, 2884, 2831, 2804 (CH₃, CH₂); 1701 (C=O, амид-I); 1454, 1367 (C—N); для I — 3400, 3243 (H₂O); 2940, 2891 (CH₃, CH₂); 1655 (C=O, амид-I); 1437, 1367 (C—N); 1548, 1285, 1027, 835 (NO₃).

В ИК спектре I наблюдается смещение на 46 см⁻¹ в дальневолновую область полосы поглощения, отвечающей валентным колебаниям v(C=O (амид-I)), что говорит о координировании молекул Mk с атомом Eu через атомы кислорода [15]. Также присутствуют полосы погло-

Таблица 1

Кристаллографические данные, параметры эксперимента и уточнения структуры I

Параметр	Значение			
M	1144,51			
Сингония	Триклинная			
Пр. гр.	$P\overline{1}$			
Параметры ячейки: <i>a</i> , <i>b</i> , <i>c</i> , Å	9,8343(4), 10,2544(4), 10,9411(4)			
α, β, γ, град.	74,366(3), 67,734(4), 67,673(4)			
V, Å ³	934,32(7)			
Ζ	1			
ρ(выч.), г/см ³	2,03398			
$\mu({ m Mo}K_lpha),$ мм $^{-1}$	3,438			
F(000)	564			
Размер кристалла, мм	0,22×0,14×0,09			
Область углов θ , град.	3,559—33,071			
Интервалы индексов отражений	$-15 \le h \le 14, -15 \le k \le 14, -16 \le l \le 15$			
Число измер. / независ. рефлексов (R _{int})	18470 / 6374 (0,0499)			
Число рефлексов с $I > 2\sigma(I)$	5938			
Число уточняемых параметров	278			
Число ограничений	6			
R -фактор ($I > 2\sigma(I)$)	$R_1 = 0,0337, \ wR_2 = 0,0825$			
<i>R</i> -фактор по всем отражениям	$R_1 = 0,0361, \ wR_2 = 0,0841$			
GOOF по F^2	1,084			
$\Delta ho_{ m max}$ и $\Delta ho_{ m min}$, $e/{ m \AA}^{-3}$	2,768 и –2,513			

Таблица 2

Некоторые длины связей (Å) и валентные углы (град.) в структуре I								
Связь	<i>d</i> , Å	Связь	d, Å	<i>d</i> , Å Связь				
O(1)—Eu(1)	2,503(2)	O(7)—Eu(1)	2,593(2)	O(11w)—Eu(1)	2,442(2)			
O(3)—Eu(1)	2,569(2)	O(9)—Eu(1)	2,594(3)	O(12)—Eu(1)	2,385(2)			
O(4)—Eu(1)	2,4875(2)	O(10w)—Eu(1) 2,488(2)		O(13)—Eu(1)	2,3350(2)			
O(6)—Eu(1)	2,584(2)							
Угол	ω, град.	Угол	ω, град.	Угол	ω, град.			
O(13)Eu(1)O(12)	70,49(7)	O(13)Eu(1)O(3)	116,74(8)	O(12)Eu(1)O(9)	115,41(8)			
O(13)Eu(1)O(11w)	76,93(9)	O(12)Eu(1)O(3)	70,58(7)	O(11w)Eu(1)O(9)	67,30(8)			
O(12)Eu(1)O(11w)	143,64(8)	O(11w)Eu(1)O(3)	112,29(7)	O(4)Eu(1)O(9)	106,49(7)			
O(13)Eu(1)O(4)	144,04(8)	O(4)Eu(1)O(3)	67,38(7)	O(10w)Eu(1)O(9)	108,93(8)			
O(12)Eu(1)O(4)	78,75(7)	O(10w)Eu(1)O(3)	63,65(8)	O(1)Eu(1)O(9)	134,61(8)			
O(11w)Eu(1)O(4)	137,05(8)	O(1)Eu(1)O(3)	50,09(7)	O(3)Eu(1)O(9)	171,08(8)			
O(13)Eu(1)O(10w)	141,46(8)	O(13)Eu(1)O(6)	100,97(8)	O(6)Eu(1)O(9)	67,24(8)			
O(12)Eu(1)O(10w)	132,85(7)	O(12)Eu(1)O(7)	137,44(7)	O(7)Eu(1)O(9)	48,82(7)			
O(11w)Eu(1)O(10w)	68,99(8)	O(11w)Eu(1)O(7)	73,80(8)	O(12)Eu(1)O(6)	70,73(7)			
O(4)Eu(1)O(10w)	74,05(7)	O(4)Eu(1)O(7)	72,10(7)	O(11w)Eu(1)O(6)	132,65(8)			
O(13)Eu(1)O(1)	79,45(8)	O(10w)Eu(1)O(7)	66,89(7)	O(4)Eu(1)O(6)	50,02(7)			
O(12)Eu(1)O(1)	85,99(7)	O(1)Eu(1)O(7)	134,89(7)	O(10w)Eu(1)O(6)	115,14(7)			
O(11w)Eu(1)O(1)	72,36(8)	O(3)Eu(1)O(7)	122,26(7)	O(1)Eu(1)O(6)	154,75(8)			
O(4)Eu(1)O(1)	117,13(6)	O(6)Eu(1)O(7)	66,81(7)	O(3)Eu(1)O(6)	110,52(7)			
O(10w)Eu(1)O(1)	73,61(7)	O(13)Eu(1)O(9)	72,10(8)					

Рис. 1. Фрагмент атомной структуры I. Тепловые эллипсоиды неводородных атомов показаны на уровне 50%-ой вероятности нахождения

щения v_{s+as} (НОН) воды и набор полос поглощения колец Мк. Свободный нитрат-анион как плоский ион (точечная группа D_{3h}) имеет четыре основные колебательные частоты: симметричные валентные колебания v_s (NO) (1050—1060 см⁻¹), несимметричные дважды вырожденные валентные колебания v_e (NO) (1350—1400 см⁻¹) и две частоты деформационных колебаний δ (NO₃) (810—840 и 710—730 см⁻¹). В ИК спектре обычно активны только три частоты: v_e (NO) и две δ (NO₃) [16]. При координировании нитрат-аниона его симметрия может понижаться до C_s и C_{2v} . В результате в ИК спектре появляются шесть интенсивных линий в областях (см⁻¹): 970—1040 (полносимметричное колебание); 1550—1410 и 1290—1250 (валентное антисимметричное колебание, проявляющееся в виде двух интенсивных линий); 830—800 (неплоское колебание); 780—700 и ~680 (плоское деформационное колебание, проявляющееся в виде двух полос) [17, 18]. В ИК спектре I присутствуют линии при 1548, 1285, 1027, 835 см⁻¹. Это свидетельствует о том, что нитрат-анионы координированы с металлом по бидентатно-хелатному типу.

По данным PCA, соединение I — центросимметричный биядерный комплекс катиона европия(III) с двумя молекулами мебикара (связанными центром симметрии), бидентатными нитрат-анионами и двумя молекулами воды (рис. 1). Координационный полиэдр атома металла — десятивершинник; расстояние Eu...Eu составляет 9,7433(6) Å.

Практически плоские сопряженные пятичленные гетероциклы мебикара имеют форму "бабочки" или "приоткрытой книги". Двугранный угол между плоскостями колец равен 58,05(9)°. Значительное различие наблюдается в величине валентных углов МОС — Eu(1)O(13)C(2) 166,24(2)° и Eu(1)O(12)C(1) 143,26(2)°. Углы ОМО с карбонильными группами лиганда одинаковы 70,48(8)°. Очевидно, угол МОС наиболее подвижен в комплексе. Карбонильные атомы O(12) и O(13) компланарны с циклами и связаны с ними. Расстояния между координированной водой и катионом европия практически одинаковы: Eu(1)—O(10w) 2,489(2) и Eu(1)—O(11w) 2,442(3) Å.

Расположение атомов углерода групп CH₃ по отношению к плоскостям бициклов различно; все радикалы смотрят вовне. Атомы C(3), C(4) и C(7) отклоняются на довольно значительную величину от плоскостей циклов по отношению к внутренней части бициклов (на 0,231(4), 0,178(4) и 0,321(4) Å соответственно), атом C(8) — незначительно (на 0,065(4) Å). Полиэдры атомов азота имеют форму практически правильных треугольников, лежащих в плоскостях бициклов (отклонение ~0,1 Å).

Таблица 3

р ц л	Расстояние, Å			VEOR D. H. A. FROM
<i>D</i> —п…А	D—H	НА	DA	утол <i>D</i> —пА, град.
O(10w)—H(1)O(7) ⁱ O(10w)—H(2)O(4) ⁱ O(11w)—H(3)O(2) ⁱⁱ	0,850(2) 0,850(2) 0,850(2)	2,22(2) 2,136(17) 1,941(12)	2,911(3) 2,899(3) 2,731(3)	139,(3) 149,(3) 154,(2)

Геометрические параметры водородных связей в структуре I*

* Симметрично эквивалентные позиции: ⁱ 2-*x*, 2-*y*, 1-*z*; ⁱⁱ 1-*x*, 2-*y*, 1-*z*.

Связь C(1)—O(12) незначительно удлинена до 1,245(3) Å по сравнению со средним значением для подобных мочевинных фрагментов (1,24 Å) [19] и связи C(2)—O(13) (1,239 Å) вследствие координации атома кислорода с атомом Eu. Это хорошо согласуется с данными ИК спектроскопии.

В цикле, содержащем атомы N(4) и N(5), фрагменты О—С—N—С неплоские, торсионные углы O(13)C(2)N(5)C(5) и O(13)C(2)N(4)C(6) равны 173,85(3)° и -173,19(3)°. В цикле, содержащем атомы N(7) и N(6), торсионные углы O(12)C(1)N(7)C(6) и O(12)C(1)N(6)C(5) равны 172,77(3)° и -172,03(3)° соответственно.

Молекулы в кристалле I объединены посредством водородных связей (табл. 3, рис. 2).

Впервые синтезирован биядерный комплекс нитрата европия(III) с 2,4,6,8-тетраметил-2,4,6,8-тетраазабицикло(3.3.0)октан-3,7-дионом или мебикаром. Методом РСА установлено, что биядерный комплекс I — центросимметричен. Доказано, что за счет особенностей строения мебикар реализует бидентатно-мостиковую функцию и координируется через атомы кислорода карбамидных фрагментов в среде ацетона.

Рис. 2. Фрагмент упаковки кристалла I

Работа выполнена при финансовой поддержке Министерства образования и науки Российской Федерации (2015/701, проект № 3874).

СПИСОК ЛИТЕРАТУРЫ

- 1. Каримов А.У. // Социальная и клиническая психиатрия. 2007. 17, № 4. С. 9.
- 2. Маннанов А.М., Шахабиддинов Т.Т., Хаитов К.Н. // Педиатрия. 2010. 89, № 6. С. 127.
- 3. Лапшина Л.А., Кравчун П.Г., Шевченко О.С. // Врачебная практика. 2008. 61, № 1. С. 23.
- 4. *Стаценко М.Е., Спорова О.Е., Шилина Н.Н. др. //* Кардиология и сердечно-сосудистая хирургия. 2011. **4**. С. 41.
- 5. Скрыпник И.Н., Невойт А.В., Берук О.В. // Вісн. проблем біології і медицини. 2007. 4. С. 151.
- 6. Федорович С.В., Арсентьева И.Л. // Аллергология и иммунология. 2007. 8, № 1. С. 54.
- 7. Цивадзе А.Ю., Иванова И.С., Киреева И.К. // Журн. неорган. химия. 1986. 31, № 7. С. 1780.
- 8. Цивадзе А.Ю., Иванова И.С., Киреева И.К. // Журн. неорган. химия. 1987. 32, № 8. С. 1876.
- 9. Ходашова Т.С., Иванова И.С., Киреева И.К. и др. // Журн. неорган. химия. 1989. 34, № 8. С. 1972.
- 10. *Порай-Кошиц М.А., Цивадзе А.Ю., Иванова И.С. и др. //* Журн. координац. химия. 1985. **11**, № 9. С. 1246.
- 11. Suvorova L.I., Eres'ko V.A., Epishina L.V. // Russ. Chem. Bull. 1979. 28, N 6. P. 1222.
- 12. Kravchenko A.N., Sigachev A.S., Maksareva E.Yu. // Russ. Chem. Bul. 2005. 54, № 3. P. 691.
- 13. Sheldrick G.M. SHELXS-2014. Program for Crystal Structure Solution. Germany, University. of Göttingen, 2014.
- 14. Farrugia L.J. // Appl. Crystallogr. A. 1999. **32**. P. 837.
- 15. Григорьев А.И. Введение в колебательную спектроскопию неорганических соединений. М.: МГУ, 1977.
- 16. Накамото К. Инфракрасные спектры неорганических и координационных соединений. М.: Мир, 1966.
- 17. Харитонов Ю.Я. Аналитическая химия: Аналитика. Кн. 1. М.: Высшая школа, 2003.
- 18. Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991.
- 19. Burgi H.-B., Dunitz J.D. Structure Correlation. Vol. 1. Weinheim: VCH, 1994.