2014. Том 55, № 3

Май – июнь

C. 448 – 453

УДК 547.979.733:541.1

МОЛЕКУЛЯРНАЯ СТРУКТУРА *БИС*(ДИПИРРОЛИЛМЕТЕНАТОВ) *d*-МЕТАЛЛОВ ПО ДАННЫМ КВАНТОВО-ХИМИЧЕСКИХ РАСЧЕТОВ МЕТОДОМ РМ6

А.А. Ксенофонтов², Г.Б. Гусева¹, Е.В. Антина¹, А.И. Вьюгин¹

¹Институт химии растворов им. Г.А. Крестова РАН, Иваново E-mail: gbg@isc-ras.ru ²Ивановский государственный химико-технологический университет

Статья поступила 12 апреля 2013 г.

С доработки — 26 июня 2013 г.

С использованием метода РМ6 в программном пакете Gaussian 09W проведены квантово-химические расчеты молекулярной структуры *бис*(дипирролилметенатов) кобальта(II), никеля(II), меди(II), цинка(II), кадмия(II) и ртути(II) состава [M₂L₂]. Оптимизированы длины координационных связей М—N, величины двугранных углов, образованных связями N—M—N, расстояния $l_{M\cdots M}$ между атомами М···M. Отмечено, что закономерности, полученные из анализа результатов квантово-химических расчетов молекулярной структуры геликатов [M₂L₂], достоверно отражают основные тенденции изменения их физико-химических свойств в зависимости от природы комплексообразователя и особенностей строения лиганда.

Ключевые слова: *бис*(дипирролилметенаты), геликаты, квантово-химические расчеты, метод РМ6, молекулярная структура, реакционная способность.

введение

В настоящее время широкое развитие получило направление координационной химии бис(дипирролилметенов) — ациклических тетрапиррольных тетрадентатных лигандов (H₂L), построенных из двух дипирролилметеновых доменов. Биядерные гомолептические геликаты бис(дипирролилметенов) состава [M₂L₂] со структурой двойной спирали обладают интенсивными хромофорными и, в ряде случаев, люминесцентными свойствами [1,2], высокой кинетической [3] и термической стабильностью [1], что придает соединениям данного класса большой теоретический и практический потенциал. Для синтеза геликатов с требуемыми для конкретной задачи практически полезными свойствами, в первую очередь, необходимы представления о взаимосвязи между молекулярным строением и свойствами, полученные на примере большой серии структурно-родственных соединений. К сожалению, синтез и скрининг бис(дипирролилметенатов), как и их аналогов — металлопорфиринов, весьма длительная и трудоемкая задача. Поэтому одной из актуальных задач является поиск методов квантово-химических расчетов, которые бы достоверно описывали структурные параметры бис(дипирролилметенатов), давали хорошее совпадение с экспериментальными данными и при этом соответствовали комплексному критерию "время расчета — затраты ресурсов — качество расчета". В связи с этим цель работы заключалась в выборе квантово-химического метода расчета, удовлетворительно описывающего структурные параметры бис(дипирролилметенатов), и проведении анализа различий в молекулярном строении геликатов [M₂L₂] и влияния их на физикохимические свойства соединений.

[©] Ксенофонтов А.А., Гусева Г.Б., Антина Е.В., Вьюгин А.И., 2014

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Квантово-химические расчеты выполнены с использованием программного пакета Gaussian 09W [4] методом PM6 на PC Athlon под управлением OC Windows 7 и программы GaussView 5 [4], для анализа результатов и визуализации данных использована программа Chemcraft 1.6 [5]. Описание метода приведено в [6], погрешность и параметризация — в [7].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

В качестве объектов моделирования выбраны геликаты Co(II), Ni(II), Cu(II), Zn(II), Cd(II) и Hg(II) с декаметилзамещенными *бис*(дипирролилметенами), различающимися позициями 3,3'-, 2,3'- и 2,2'- присоединения центрального спейсера к проксимальным пиррольным ядрам:

Выбор квантово-химического метода расчета, адекватно описывающего структурные параметры исследуемых комплексов, проведен путем сравнения величин общей относительной погрешности и статистической проверки полученных результатов расчета с данными эксперимента на основе регрессивного анализа. Оптимизация геометрии изолированных молекул исследуемых комплексов [Co₂L₂], [Ni₂L₂], [Zn₂L₂], [Cu₂L₂], [Cd₂L₂], [Hg₂L₂] осуществлена методами AM1, PM3, PM6, RHF/6-31G(*p*,*f*), MP2/6-31G(*p*,*f*), DFT/B3LYP/6-31G(*d*,*p*) (табл. 1) в программе Gaussian 09W [4]. Определяли оптимизированные по энергии структуры комплексов, вычисляли их электронные характеристики и распределение эффективных зарядов. Характер найденных стационарных точек был установлен на основе анализа собственных чисел соответствующих гессианов. Полученные результаты геометрической оптимизации геликата [Zn₂(I)₂] сравнивали с известными результатами РСА [8] (см. табл. 1). Рассчитанные величины свидетельствуют, что наименьшей погрешностью между рассчитанными данными и данными РСА обладает метод DFT/B3LYP/6-31G(d,p), а наибольшей — AM1. Проведенная оценка расхождения расчетных и экспериментальных данных показывает, что адекватно описывают данные эксперимента методы DFT/B3LYP/6-31G(*p*,*f*), MP2/6-31G(*p*,*f*), PM6 и RHF/6-31G(*p*,*f*). В связи с тем, что метод РМ6 соответствует критерию "время расчета — затраты ресурсов — качество расчета", он был выбран для анализа особенностей молекулярной структуры бис(дипирролилметенатов).

К настоящему времени данные PCA получены для небольшого числа биядерных гомолигандных геликатов тетрадентатных лигандов *бис*(дипирролилметенов) (H₂L) с двухзарядными ионами металлов [8—13]. Для координационных полиэдров *бис*(дипирролилметенатов) харак-

Таблица 1

Структурные параметры (длины координационных связей $l_{ m Zn-N}$, межъядерные расстояния $l_{ m Zn^{}Zn}$, А
и валентные углы \angle_{N-Zn-N} , град.) для [Zn ₂ (I) ₂], полученные с применением методов РСА [8]
и квантово-химических расчетов

			1				
Структурный параметр	PCA [8]	B3LYP/6-31G**	MP2/6-31G**	RHF/6-31G**	PM6	PM3	AM1
		12	n—N	I I			
Zn(1)— $N(1)$	1,981(2)	1,984	1,986	1,959	1,902	2,003	2,052
Zn(1) - N(3)	1,992(2)	1,993	1,995	1,970	1,903	2,013	2,071
Zn(1) - N(2)	1,994(2)	1,995	1,997	1,971	1,903	2,013	2,071
Zn(1)—N(4)	1,973(2)	1,975	1,978	1,952	1,902	2,003	2,052
N(4) - Zn(1) - N(1)	121,91(9)	121,41	121,39	116,39	116,75	118,38	120,23
N(4) - Zn(1) - N(3)	96,39(9)	96,35	95,87	92,87	101,01	99,08	95,22
N(1)— $Zn(1)$ — $N(3)$	117,28(10)	116,99	116,75	114,75	111,29	116,13	119,57
N(4)— $Zn(1)$ — $N(2)$	118,07(9)	117,96	117,55	117,55	116,74	116,13	119,57
N(1) - Zn(1) - N(2)	96,43(9)	96,40	95,91	92,91	101,01	99,08	95,22
N(3) - Zn(1) - N(2)	107,22(9)	107,01	106,77	103,7	110,77	108,53	108,13
$l_{\mathrm{Zn}\cdots\mathrm{Zn}}$, Å	7,649	7,652	7,641	7,701	7,703	8,067	8,159
Средняя погрешность, %		0,13	0,34	2,14	3,75	5,74	9,14
Время расчета, ч		≈ 20	≈ 30	≈ 10	≈ 1	≈ 1	≈ 1

терна геометрия искаженного тетраэдра, при этом каждый атом металла координирован четырьмя атомами азота. Отмечено, что на молекулярные характеристики *бис*(дипирролилметенатов) основное влияние оказывают природа комплексообразователя, геометрическая предорганизация лиганда, определяемая в основном позициями присоединения центрального спейсера, а также эффекты стерического отталкивания периферийных заместителей или даже атомов водорода при C_{α} -позициях. По данным РСА, межъядерные расстояния М····М в ряду 2,2'-, 2,3'-и 3,3'-*бис*(дипирролилметенатов) существенно возрастают, составляя в среднем 4,61, 6,23 и 8,03 Å соответственно. Положение спейсера в меньшей степени влияет на величины длин связей М—N (1,937—2,005 Å), в отличие от диэдральных углов, образованных пересечением плоскостей дипирролилметеновых доменов каждого лиганда (82,5—108°) и отражающих степень их спирализации, и углов, образованных координационными связями N—M—N (92,49—133,15°).

Основные результаты расчетов молекулярной структуры геликатов $[M_2(I)_2]$, $[Zn_2(II)_2]$ и $[Zn_2(III)_2]$ (оптимизированные длины связей М—N, величины двугранных углов, образованных связями N—M—N, расстояния $l_{M\cdots M}$ между атомами М…M), проведенных нами с использованием метода РМ6 в программном пакете Gaussian 09W [4], представлены в табл. 2. Квантово-химические расчеты подтверждают двухспиральную 3D геометрию молекул геликатов $[M_2L_2]$ и с учетом различий в фазовом состоянии находятся в удовлетворительном согласии с известными данными РСА [8—13]. В молекулах $[M_2(I)_2]$ расстояние между атомами М…M в зависимости от природы комплексообразователя увеличивается в ряду комплексов:

$$[M_2(\mathbf{I})_2]: [Cu_2(\mathbf{I})_2] < [Co_2(\mathbf{I})_2] < [Ni_2(\mathbf{I})_2] < [Zn_2(\mathbf{I})_2] < [Cd_2(\mathbf{I})_2] < [Hg_2(\mathbf{I})_2] l_{M \cdots M}, \text{\AA}: 7,170 7,251 7,634 7,649 7,680 7,929$$

Более сильное влияние на межъядерное расстояние в молекулах $[Zn_2L_2]$ оказывает расположение центрального спейсера в геликандах: величина $l_{M \cdots M}$ уменьшается почти в два раза при замене 3,3'- или 2,3'- на 2,2'-бис(дипирролилметен):

$$[Zn_2L_2]: [Zn_2(\mathbf{I})_2] > [Zn_2(\mathbf{II})_2] > [Zn_2(\mathbf{III})_2] \\ l_{M\cdots M}, \mathring{A}: 7,649 \qquad 6,907 \qquad 4,599$$

Как отмечено выше, об аналогичных различиях в величинах $l_{M...M}$ свидетельствуют и данные PCA кристаллов комплексов цинка(II) с декаметилзамещенным 3,3'-*бис*(дипирролилметеном), алкилзамещенным биладиеном-*a*,*c* и с 1-(дипиррин-2-ил)-1'-(дипиррин-3-ил)метаном [8, 14, 15].

Таблица 2

Соединение		Длина связи М—N, Å		Углы N—M—N, град.	
1		2		3	
[Co ₂ (I) ₂]		Co(1)—N(1) Co(1)—N(2) Co(1)—N(3) Co(1)—N(4)	1,875 1,930 1,875 1,930	N(1)—Co(1)—N(2) N(2)—Co(1)—N(3) N(3)—Co(1)—N(4) N(4)—Co(1)—N(1) N(1)—Co(1)—N(3)	89,4 101,4 89,4 101,4 136,0
$[Zn_2(\mathbf{I})_2]$		Zn(1)—N(1) Zn(1)—N(2) Zn(1)—N(3) Zn(1)—N(4)	1,903 1,909 1,909 1,903	$\begin{array}{l} N(2) - Co(1) - N(4) \\ N(1) - Zn(1) - N(2) \\ N(2) - Zn(1) - N(3) \\ N(3) - Zn(1) - N(4) \\ N(4) - Zn(1) - N(1) \\ N(1) - Zn(1) - N(3) \end{array}$	151,1 101,0 111,1 101,0 113,3 115,5
[Ni ₂ (I) ₂]		Ni(1)—N(1) Ni(1)—N(2) Ni(1)—N(3) Ni(1)—N(4)	1,893 1,905 1,906 1,893	N(2)—Zn(1)—N(4) N(1)—Ni(1)—N(2) N(2)—Ni(1)—N(3) N(3)—Ni(1)—N(4) N(4)—Ni(1)—N(1) N(1)—Ni(1)—N(3)	115,5 95,1 134,4 95,1 145,2 98,2
		Ni(2)—N(5) Ni(2)—N(6) Ni(2)—N(3) Ni(2)—N(4)	1,904 1,910 1,910 1,904	N(2)— $Ni(1)$ — $N(4)N(5)$ — $Ni(2)$ — $N(6)N(6)$ — $Ni(2)$ — $N(7)N(7)$ — $Ni(2)$ — $N(8)N(8)$ — $Ni(2)$ — $N(5)N(5)$ — $Ni(2)$ — $N(7)$	98,2 95,2 98,2 95,2 95,4 142,3
[Cd ₂ (I) ₂]		Cd(1)—N(1) Cd(1)—N(2) Cd(1)—N(3) Cd(1)—N(4)	2,009 2,011 2,011 2,009	N(3) - N(2) - N(0) N(1) - Cd(1) - N(2) N(2) - Cd(1) - N(3) N(3) - Cd(1) - N(4) N(4) - Cd(1) - N(1) N(1) - Cd(1) - N(3) N(2) - Cd(1) - N(4)	142,5 93,4 114,3 93,8 117,1 120,0 119,9
[Hg ₂ (I) ₂]		Hg(1)—N(1) Hg(1)—N(2) Hg(1)—N(3) Hg(1)—N(4)	2,070 2,069 2,069 2,069	$\begin{array}{l} N(2) - Ed(1) - N(4) \\ N(1) - Hg(1) - N(2) \\ N(2) - Hg(1) - N(3) \\ N(3) - Hg(1) - N(4) \\ N(4) - Hg(1) - N(1) \\ N(1) - Hg(1) - N(3) \\ N(2) - Hg(1) - N(4) \end{array}$	98,2 110,0 98,2 113,5 119,1 119,0

Структурные параметры молекул $[M_2(I)_2]$, $[Zn_2(II)_2]$ и $[Zn_2(III)_2]$
(pacчem PM6, программный пакет Gaussian 09W)

Окончание табл. 2					
	1	2	2 3		
$[Cu_2(\mathbf{I})_2]$	· ~ ~	Cu(1)—N(1)	1,796	N(1)—Cu(1)—N(2)	97,2
		Cu(1)—N(2)	1,854	N(2)— $Cu(1)$ — $N(3)$	125,8
		Cu(1)—N(3)	1,871	N(3) - Cu(1) - N(4)	97,4
		Cu(1)—N(4)	1,792	N(4) - Cu(1) - N(1)	149,7
	with the state			N(1)-Cu(1)-N(3)	96,5
				N(2) - Cu(1) - N(4)	96,2
		Cu(2)—N(5)	2,025	N(5)-Cu(2)-N(6)	93,3
		Cu(2)—N(6)	2,026	N(6)— $Cu(2)$ — $N(7)$	124,0
		Cu(2)—N(7)	2,027	N(7)—Cu(2)—N(8)	93,2
		Cu(2)—N(8)	2,026	N(8)—Cu(2)—N(5)	123,4
				N(5)— $Cu(2)$ — $N(7)$	113,1
	_			N(6) - Cu(2) - N(8)	112,7
$[Zn_2(\mathbf{II})_2]$	a the second second	Zn(1) - N(1)	1,915	N(1)— $Zn(1)$ — $N(2)$	101,2
		Zn(1) - N(2)	1,903	N(2)— $Zn(1)$ — $N(3)$	119,4
		Zn(1) - N(3)	1,910	N(3)— $Zn(1)$ — $N(4)$	100,7
	and the second of the	Zn(1) - N(4)	1,913	N(4) - Zn(1) - N(1)	109,8
				N(1) - Zn(1) - N(3)	111,3
	•			N(2) - Zn(1) - N(4)	114,6
$[Zn_2(III)_2]$		Zn(1) - N(1)	1,977	N(1) - Zn(1) - N(2)	95,7
		Zn(1)— $N(2)$	1,941	N(2) - Zn(1) - N(3)	138,7
		Zn(1)—N(3)	1,977	N(3) - Zn(1) - N(4)	95,7
	and a start of	Zn(1)—N(4)	1,941	N(4) - Zn(1) - N(1)	99,3
				N(1) - Zn(1) - N(3)	110,9
				N(2) - Zn(1) - N(4)	110,9
	••	N(5)— $Zn(2)$	1,902	N(5) - Zn(2) - N(6)	116,9
		N(6)— $Zn(2)$	1,899	N(6) - Zn(2) - N(7)	112,2
		Zn(2) - N(7)	1,902	N(7)— $Zn(2)$ — $N(8)$	116,9
		Zn(2)—N(8)	1,899	N(8)— $Zn(2)$ — $N(5)$	108,5
				N(5)— $Zn(2)$ — $N(7)$	101,4
				N(6)— $Zn(2)$ — $N(8)$	101,4

П р и м е ч а н и е. Для комплексов $[M_2(I)_2]$, $M^{2+} = Zn$, Со, Сd и Hg и $[Zn_2(II)_2]$ длины связей M—N (Å) и углы N—M—N (град.) одинаковы для обоих MN₄-координационных узлов.

Средние значения длин координационных связей l_{M-N} в молекулах [M₂(I)₂], рассчитанные из приведенных в табл. 2 данных, увеличиваются на 0,008 Å в следующем ряду геликатов:

 $[Co_2(\mathbf{I})_2] < [Ni_2(\mathbf{I})_2] < [Zn_2(\mathbf{I})_2] < [Cu_2(\mathbf{I})_2] < [Cd_2(\mathbf{I})_2] < [Hg_2(\mathbf{I})_2] \\ l_{M-N}, \mathring{A}: 1,902 1,903 1,906 1,927 2,009 2,010$

Анализ длин связей и величины углов, образованных координационными связями, показал, что в молекулах $[Ni_2(I)_2]$ и особенно $[Cu_2(I)_2]$ (вследствие проявления эффекта Яна—Теллера) наблюдается более существенное искажение тетраэдрической геометрии координационных узлов по сравнению с другими комплексами. Так, если в молекуле комплекса $[Zn_2(I)_2]$ валентные углы, образованные координационными связями, близки по величине ($\angle N_1$ —Zn— $N_2 = 101,0$ и $\angle N_2$ —Zn— $N_3 = 111,1^\circ$), то для координационных центров комплексов $[Ni_2(I)_2]$ и $[Cu_2(I)_2]$ они существенно различаются: $\angle N_1$ —Ni— $N_2 = 95,1$, $\angle N_2$ —Ni— $N_3 = 134,4^\circ$; $\angle N_1$ —Cu— $N_2 = 97,2$, $\angle N_2$ —Cu— $N_3 = 125,8^\circ$.

Таким образом, можно выделить две группы комплексов. Первую группу образуют комплексы [Co₂(I)₂], [Ni₂(I)₂] и [Zn₂(I)₂] с более короткими связями М—N, вторую — геликаты $[Cd_2(I)_2]$ и $[Hg_2(I)_2]$ с бо́льшими значениями длины координационных связей и геликат $[Cu_2(I)_2]$ с бо́льшими различиями в величинах длин координационных связей и углов в отдельных ядрах, т.е. с большим искажением тетраэдрической геометрии координационных узлов. Уместно упомянуть, что термодинамические константы реакций образования геликатов Ni(II), Co(II) и Zn(II) ($\lg K^{\circ}$: 11,6, 12,58 и 13,73 соответственно) почти на 5 порядков выше, чем комплексов Cu(II), Cd(II) и Hg(II) (lgK°: 8,56, 9,60 и 10,78 соответственно), причем ряд уменьшения термодинамической устойчивости [16] практически повторяет ряд увеличения средних значений длин связей в молекулах геликатов. Наряду с этим экспериментально доказано, что именно комплексы второй группы — $[Cu_2(I)_2]$, $[Cd_2(I)_2]$ и $[Hg_2(I)_2]$ — характеризуются более низкой кинетической стабильностью в растворах [3] и термостабильностью [1]. Так, в последовательности $[Cd_2(I)_2] < [Hg_2(I)_2] < [Cu_2(I)_2] < [Ni_2(I)_2] < [Zn_2(I)_2] < [Co_2(I)_2],$ отражающей рост кинетической устойчивости, значения истинных констант процесса диссоциации геликатов в протонодонорной среде понижаются на 3 порядка при переходе от комплекса меди(II) к геликату кобальта(II) [3].

При замене 3,3'-геликанда на 2,3'- или 2,2'-*бис*(дипирролилметен) средние значения длин связей l_{M-N} в геликатах [Zn₂(I)₂], [Zn₂(II)₂] и [Zn₂(III)₂] увеличиваются в последовательности 1,906, 1,910 и 1,930 Å, наряду с этим возрастают различия в величинах валентных углов, образованных координационными связями как в отдельных узлах, так и между ними, т.е. растет искажение их тетраэдрической геометрии (см. табл. 2). Такие различия объясняют экспериментально выявленные закономерности [1, 3] уменьшения кинетической и термической стабильности геликатов в последовательности [Zn₂(I)₂], [Zn₂(II)₂], [Zn₂(III)₂].

Таким образом, закономерности, полученные из анализа результатов квантово-химических расчетов молекулярной структуры геликатов $[M_2L_2]$ методом РМ6 с использованием программного пакета Gaussian 09W [4], достаточно достоверно отражают основные тенденции изменения их физико-химических свойств в зависимости от природы комплексообразователя и особенностей строения геликанда.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант № 12-03-97510-р_центр_а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Антина Л.А., Гусева Г.Б., Вьюгин А.И. и др. // Координац. химия. 2012. 38, № 6. С. 529 536.
- 2. *Кузнецова Р.Т., Аксенова Ю.В., Тельминов Е.Н. и др.* // Опт. и спектроскоп. 2012. **112**, № 5. С. 811 819.
- 3. Антина Л.А., Гусева Г.Б., Вьюгин А.И. и др. // Журн. общ. химии. 2012. 82, № 7. С. 1195 1200.
- 4. Frisch M.J. et al. Gaussian 09, Revision A.1, Gaussian, Inc. Wallingford CT, 2009.
- 5. Журко Г.А. ChemCraft. / Г.А. Журко. http://www.chemcraftprog.com/progs.html.
- 6. Блатов В.А., Шевченко А.П., Пересыпкина Е.В. Полуэмпирические расчетные методы в квантовой химии // Учеб. пособие. Изд. 2-е. Самара: Универс-групп, 2005.
- 7. *Цирельсон В.Г.* Квантовая химия: молекулы, молекулярные системы и твердые тела. // Учеб. для вузов. М.: Бином. Лаборатория знаний, 2010.
- 8. Berezin M.B., Antina E.V., Dudina N.A. et. al. // Mendeleev Commun. 2011. 21, N 3. P. 168 170.
- 9. Wood E., Thompson A. // Chem. Rev. 2007. 107, N 5. P. 1831 1861.
- 10. Sheldrick W.S., Engel J. // J. Chem. Soc., Chem. Comm. 1980. N 1. P. 5 6.
- 11. *Thompson A., Rettig S.J., Dolphin D.* // Chem. Commun. 1999. N 7. P. 631 632.
- 12. Zhang Z., Dolphin D. // Inorg. Chem. 2010. 49, N 24. P. 11550 11555.
- 13. Thompson A., Dolphin D. // J. Org. Chem. 2000. 65, N 23. P. 1870 1877.
- 14. Tabba H.D., Cavaleiro J.A.S., Jeyakumar D. et. al. // J. Org. Chem. 1989. 54. P. 1943 1948.
- 15. Yang L., Zhang Y., Chen Q., Ma J.S. // Monatshefte fur Chemie. 2004. 135. P. 223 229.
- 16. Антина Е.В., Гусева Г.Б., Дудина Н.А. и др. // Журн. общ. химии. 2009. 79, № 11. С. 1903 1912.