УДК 532.5+533+517.9

УРАВНЕНИЯ МЕЛКОЙ ВОДЫ НА ВРАЩАЮЩЕЙСЯ ПРИТЯГИВАЮЩЕЙ СФЕРЕ 2. ПРОСТЫЕ СТАЦИОНАРНЫЕ ВОЛНЫ И ЗВУКОВЫЕ ХАРАКТЕРИСТИКИ

А. А. Черевко, А. П. Чупахин

Институт гидродинамики им. М. А. Лаврентьева СО РАН, 630090 Новосибирск E-mails: cherevko@mail.ru, chupakhin@hydro.nsc.ru

Исследуется модель мелкой воды на вращающейся притягивающей сфере, описывающая крупномасштабные движения газа в атмосфере планет и жидкости в Мировом океане. Изучается распространение звуковых возмущений на состоянии равновесия. Система уравнений для бихарактеристик проинтегрирована в эллиптических функциях. Приведено описание простых стационарных волн. Доказано существование двух типов решений (сверх- и докритического), описывающих движение газа в сферическом поясе, так что одна из граничных параллелей является источником, а другая — стоком. Дана интерпретация полученных решений как крупномасштабных циркуляционных ячеек в атмосфере.

Ключевые слова: мелкая вода, движения на сфере, стационарные решения, распространение звуковых возмущений, циркуляционные ячейки.

ВВЕДЕНИЕ

В работе [1] представлена модель мелкой воды на вращающейся сфере, описывающая крупномасштабные движения в атмосферах планет и Мировом океане. Предполагается, что толщина слоя несжимаемой сплошной среды (воздух или вода) на поверхности планеты мала по сравнению с радиусом планеты, поэтому движением в радиальном направлении можно пренебречь. Как отмечено в [2], такие предположения возможны в том случае, когда эффект вращения оказывает существенное влияние на движение среды. Рассматриваются движения с достаточно большими временными масштабами. Кроме того, в случае крупномасштабных геофизических движений траектории жидких частиц незначительно отклоняются от сферы в радиальном направлении.

1. ПОСТАНОВКА ЗАДАЧИ

Предложенная модель совпадает с уравнениями газовой динамики на вращающейся сфере для политропного уравнения состояния газа с показателем адиабаты $\gamma = 2$, описывающими движения на поверхности сферы, не зависящие от радиуса $r = \sqrt{x^2 + y^2 + z^2}$. Система уравнений, записанная в неинерциальной системе координат, вращающейся вместе со сферой с постоянной угловой скоростью Ω_0 , имеет вид

82

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 08-01-00047а), а также в рамках Программы поддержки ведущих научных школ РФ (грант № HIII-2826.2008.1.), гранта Министерства образования и науки РФ (№ 2.1.1/3543) и Интеграционного проекта СО РАН № 65.

Рис. 1. Постановка задачи

$$Dv = w^{2} \operatorname{ctg} \theta + r_{0} w \cos \theta + (1/4) r_{0}^{2} \sin \theta \cos \theta - f_{0} h_{\theta},$$

$$Dw = -vw \operatorname{ctg} \theta - r_{0} w \cos \theta - f_{0} (\sin \theta)^{-1} h_{\varphi},$$

$$Dh + (\sin \theta)^{-1} h(w_{\varphi} + (v \sin \theta)_{\theta}) = 0,$$

(1.1)

где $D = \partial_t + v \partial_\theta + (\sin \theta)^{-1} w \partial_\varphi$ — полная производная вдоль поверхности сферы. Уравнения (1.1) записаны в сферической системе координат: $0 < \theta < \pi$ — широта, $0 \leq \varphi < 2\pi$ долгота; v, w — меридиональная и долготная компоненты вектора скорости; h > 0 — глубина слоя. Положительными считаются направления с севера на юг и с запада на восток. Безразмерные параметры r_0 и f_0 связаны с числами Россби R_0 и Фруда F

$$R_0 = \frac{V_0}{2a_0\Omega_0}, \qquad F = \frac{V_0}{\sqrt{gH_0}}$$

соотношениями

$$r_0 = R_0^{-1}, \qquad f_0 = F^{-2}.$$

Здесь V_0 , H_0 — характерные масштабы касательной к сфере компоненты вектора скорости и глубины слоя; a_0 — радиус сферы; g — ускорение свободного падения (рис. 1).

Параметр мелкой воды $\varepsilon = H_0/a_0$ предполагается малым по сравнению с параметрами r_0 и f_0 , которые для Земли имеют один порядок малости, следовательно, эффекты вращения и гравитации оказывают сопоставимое влияние на движение газа. Описание этого движения и является основной целью данной работы. Особенность модели состоит в компактности многообразия определения решения. В [1] построены бесконечномерные преобразования эквивалентности системы (1.1) в стационарном случае и представлены решения, соответствующие состоянию равновесия и зональным течениям вдоль параллелей. Задача о распространении звуковых возмущений в атмосфере для газодинамической модели поставлена Л. В. Овсянниковым. В настоящей работе описываются звуковые характеристики на состоянии равновесия и исследуются стационарные простые волны системы (1.1). Отметим также работы [3, 4], в которых изучены групповые свойства ряда моделей физики атмосферы и исследованы точные решения, построенные с помощью допускаемых этими моделями групп симметрий.

2. РАСПРОСТРАНЕНИЕ ЗВУКОВЫХ ВОЗМУЩЕНИЙ НА СОСТОЯНИИ РАВНОВЕСИЯ

Поскольку система (1.1) является гиперболической, большое значение для приложений имеет конечная скорость распространения звуковых возмущений. В силу газодинамической аналогии эта скорость равна скорости звука $c = \sqrt{f_0 h}$. Пусть семейство звуковых характеристик задается уравнениями $\chi(t, \theta, \varphi) = \text{const.}$ Тогда на заданном решении $\boldsymbol{u} = (v, w), h$ функция χ удовлетворяет уравнению [5]

$$\chi_t + v\chi_\theta + (\sin\theta)^{-1}w\chi_\varphi = \varepsilon cN \qquad (\varepsilon = \pm 1),$$
(2.1)

где

$$N = |\nabla \chi| = \left(\chi_{\theta}^2 + (\sin \theta)^{-2} \chi_{\varphi}^2\right)^{1/2}.$$

При этом звуковые возмущения распространяются по поверхности сферы единичного радиуса.

Для вывода уравнений бихарактеристик системы (1.1) на заданном решении, т. е. характеристик уравнения (2.1), являющихся кривыми в пространстве $\mathbb{R}^{3}(\boldsymbol{x})$, вдоль которых распространяются звуковые возмущения ("звуковые лучи"), используем общие данные о структуре характеристик дифференциальных уравнений первого порядка [6].

Уравнение (2.1) является уравнением Гамильтона — Якоби для функции $\chi = \chi(t, x_1, \ldots, x_n)$ и записывается в виде

$$\chi_t + H(t, x_1, \dots, x_n, \chi_1, \dots, \chi_n) = 0,$$
(2.2)

где $\chi_i = \partial \chi / \partial x_i$ (i = 1, ..., n). Характеристическая система для уравнения (2.2), называемая также канонической системой дифференциальных уравнений, имеет вид

$$\frac{dx_i}{dt} = H_{\chi_i}, \qquad \frac{d\chi_i}{dt} = -H_{x_i} \qquad (i = 1, \dots, n)$$
(2.3)

и является гамильтоновой системой уравнений с гамильтонианом *H*.

Далее используется

Теорема 1 [6. С. 115–116]. Если для дифференциального уравнения (2.2) известен полный интеграл $\chi = \varphi(t, x_1, \dots, x_n, a_1, \dots, a_n) + a$, зависящий от n + 1 параметров a, a_1, \dots, a_n , то из уравнений

$$\varphi_{a_i} = b_i, \qquad \varphi_{x_i} = p_i \qquad (i = 1, \dots, n),$$

где $p_i = \chi_i$, с 2n произвольными параметрами a_i , b_i в неявном виде получается 2nпараметрическое семейство решений канонической системы дифференциальных уравнений (2.3).

Изучим звуковые характеристики и бихарактеристики уравнений (1.1) на некоторых простых решениях.

Модель мелкой воды (1.1) допускает состояние равновесия, в котором относительные компоненты вектора скорости равны нулю (v = w = 0) и имеет место следующее распределение глубины:

$$h = \alpha_0^2 (k_0^2 + \sin^2 \theta). \tag{2.4}$$

Здесь $\alpha_0^2 = r_0^2/(8f_0), k_0^2 = 8f_0h_0/r_0^2, h_0 > 0$ — постоянные. Скорость звука на данном решении $c = (r_0/2\sqrt{2})(k_0^2 + \sin^2\theta)^{1/2}$. При $\theta \in (0, \pi)$ уравнение

$$r = \alpha_0^2 (k_0^2 + \sin^2 \theta) \tag{2.5}$$

в пространстве $\mathbb{R}^{3}(\boldsymbol{x})$ задает поверхность вращения, характеризующую равновесный профиль глубины, отличный от сферического. Равновесная поверхность (2.5) показана на рис. 2 в работе [1]. Так как уравнение (2.1) однородно по производным функции χ и само уравнение семейства характеристик допускает масштабное преобразование, то, умножая функцию χ на постоянный множитель, гамильтониан H для уравнений (2.1) можно привести к виду

$$H = (k_0^2 + \sin^2 \theta)^{1/2} \left(\chi_\theta^2 + (\sin \theta)^{-2} \chi_\varphi^2 \right)^{1/2}.$$
 (2.6)

Обозначим $Q = (k_0^2 + \sin^2 \theta)^{1/2}$. Тогда H = QN.

Гамильтонова система (2.3) для гамильтониана (2.6) имеет следующий вид:

$$\frac{d\theta}{dt} = \frac{Q}{N} \chi_{\theta}, \qquad \frac{d\varphi}{dt} = \frac{Q}{N} \frac{\chi_{\varphi}}{\sin^2 \theta},$$

$$\frac{d\chi_{\theta}}{dt} = -\frac{\sin\theta\cos\theta}{QN} \left(\chi_{\theta}^2 - k_0^2(\sin\theta)^{-4}\chi_{\varphi}^2\right), \qquad \frac{d\chi_{\varphi}}{dt} = 0.$$
(2.7)

Поскольку $H_t = H_{\varphi} = 0$, гамильтонова система (2.7) имеет интегралы H и H_{φ} . Заменой переменных гамильтониан (2.6) приводится к гамильтониану на сфере. Действительно, поверхность (2.5) состояния равновесия конформна сфере, поскольку ее метрика имеет вид

$$dl^2 = Q \, ds^2$$

где $ds^2 = d\theta^2 + \sin^2 \theta \, d\varphi^2$ — метрика на единичной сфере. Конформное соответствие двумерных поверхностей в пространстве $\mathbb{R}^3(\boldsymbol{x})$ может быть реализовано двумя способами: умножением метрики на ненулевой множитель (в данном случае — на Q) либо заменой координат, являющейся конформным преобразованием на плоскости комплексной переменной, представляющей собой стереографическую проекцию сферы. В новых переменных $\alpha = \alpha(\theta, \varphi), \beta = \beta(\theta, \varphi)$ имеем

$$H_1 = \left(H_{\alpha}^2 + (\sin\alpha)^{-2}H_{\beta}^2\right)^{1/2}.$$
(2.8)

Гамильтониану (2.8) соответствует гамильтонова система на сфере. Следовательно, задача о распространении звуковых возмущений на состоянии равновесия (2.4) конформноэквивалентна задаче о волновых фронтах на сфере [7].

Функции $\alpha(\theta, \varphi)$ и $\beta(\theta, \varphi)$ являются сложными комбинациями эллиптических интегралов, и переход к переменным (α, β) не упрощает задачу. В этом случае сложность задачи заключается в поиске и исследовании преобразования $(\theta, \varphi) \rightarrow (\alpha, \beta)$, приводящего гамильтониан к виду (2.8). Сказанное выше позволяет сделать вывод, что система (2.7) может быть проинтегрирована в эллиптических функциях. Для этого, используя теорему 1, представим решение в неявном виде. Интеграл χ уравнения звуковых характеристик будем искать в виде

$$\chi = -a_0 t - b_0 \varphi + g(\theta),$$

где a_0, b_0 — параметры; функция g определяется после подстановки ее в уравнение Гамильтона — Якоби (2.2) с гамильтонианом (2.6). В результате вычислений получаем

$$g(\theta) = \varepsilon \sigma_0 \int_{\theta_0}^{\theta} \sin \theta \, \sqrt{\frac{1 - l_0^2 \sin^2 \theta}{k_0^2 + \sin^2 \theta}} \, d\theta \qquad (\varepsilon = \pm 1), \tag{2.9}$$

где

$$\sigma_0^2 = a_0^2 - b_0^2 k_0^2 > 0, \qquad l_0^2 = (b_0 / \sigma_0)^2.$$
(2.10)

Функция $g(\theta)$ вида (2.9) представляется в виде комбинации эллиптических интегралов. Из-за громоздкости это выражение в данной работе не приводится. Звуковые характеристики на состоянии равновесия задаются уравнениями

$$\frac{\partial g}{\partial a_0} = t - t_0, \qquad \frac{\partial g}{\partial b_0} = \varphi - \varphi_0.$$
 (2.11)

Постоянные θ_0 , φ_0 определяют точку на единичной сфере, являющуюся вершиной характеристического коноида при $t = t_0$.

Уравнения (2.11) после подстановки в них функции g в виде (2.9), (2.10) принимают вид

$$\frac{a_0}{|\sigma_0|} \int_{\theta_0}^{\theta} \sin\theta \sqrt{\frac{k_0^2 + \sin^2\theta}{1 - l_0^2 \sin^2\theta}} \, d\theta = t - t_0,$$

$$\frac{b_0}{\sigma_0|} \int_{\theta_0}^{\theta} \sin\theta (k_1^2 + \sin^2\theta) \sqrt{\frac{k_0^2 + \sin^2\theta}{1 - l_0^2 \sin^2\theta}} \, d\theta = -(\varphi - \varphi_0),$$
(2.12)

где $k_1^2 = (b_0 k_0)^2$. Интегралы в левых частях уравнений (2.12) выражаются в виде комбинаций эллиптических интегралов и также не приводятся из-за громоздкости формул.

Из изложенного выше следует

Теорема 2. Звуковые характеристики модели мелкой воды (1.1) на состоянии равновесия (2.4) задаются неявно уравнениями (2.12) и описываются комбинациями эллиптических интегралов.

При интегрировании уравнений бихарактеристик (2.3) следует задать начальные данные $x_{i0} = x_i(t_0)$ и $\chi_{i0} = \chi_i(t_0)$. При этом начальные значения всех производных $\chi_{i0} = \chi_i(t_0)$ должны быть согласованы с исходным уравнением (2.2) и уравнением характеристик $\chi(t_0, x_{10}, \ldots, x_{n0}) = \text{const.}$ Для характеристического коноида — геометрического места всех бихарактеристик, выходящих из данной точки $P_0(\boldsymbol{x}_0)$ при $t = t_0$, — решение системы (2.3) дает двухпараметрическое семейство кривых, зависящее от параметров λ и μ : $r = R(t, \lambda, \mu), \theta = \Theta(t, \lambda, \mu), \varphi = \Phi(t, \lambda, \mu)$. При рассмотрении распространения возмущений по поверхности сферы получим однопараметрическое семейство кривых $\Gamma: \theta = \Phi(t, \lambda), \varphi = \Phi(t, \lambda)$.

Численный анализ характеристического коноида. Из системы уравнений (2.7) следует, что вид характеристического коноида зависит от параметра $k_0^2 = 8f_0h_0/r_0^2$ и параметров φ_0, θ_0 , определяющих положение вершины коноида на сфере. Поскольку система (2.7) допускает перенос по φ , параметр φ_0 является несущественным.

Влияние параметров k_0 и θ_0 на образование каустик удобно отслеживать, наблюдая за коноидом при достаточно больших временах распространения возмущения, близких к моменту, когда появляются особенности фронта возмущения.

Влияние вращения. В случае если глубина слоя жидкости при отсутствии вращения и радиус сферы фиксированы, бо́льшим значениям k_0 соответствуют меньшие скорости вращения. При $k_0 \to \infty$ скорость вращения стремится к нулю.

Предположим, что вершина коноида расположена на экваторе. Тогда при отсутствии вращения глубина жидкости на всей сфере постоянна и бихарактеристики представляют собой большие круги на сфере. В этом случае фронт возмущения всегда является окружностью и сходится в точке, диаметрально противоположной вершине коноида (рис. $2, a, \delta$). При увеличении скорости вращения фронт возмущения вытягивается по широте. Следует отметить, что при $k_0 > 0.37$ каустики на фронте, обусловленные пересечением бихарактеристик, образуются ближе к полюсам (рис. 2, e, c), а при меньших k_0 (т. е. при бо́льших скоростях вращения) — на экваторе (рис. 2, d, e).

Рис. 2. Характеристический коноид с вершиной, расположенной на экваторе, при малых $(a, 6, \partial)$ и больших (δ, c, e) временах распространения возмущения: a, δ — в отсутствие вращения; e, c — при умеренной скорости вращения $(k_0 > 0,37)$; ∂, e — при большой скорости вращения $(k_0 < 0,37)$

При $k_0 = 0$ уравнения для бихарактеристик интегрируются в элементарных функциях:

$$\varphi(t) = t/\sqrt{C_0^2 + 1} + \varphi_0, \quad \theta(t) = \operatorname{arcctg}(\operatorname{sh}\tau), \quad \chi_{\varphi}(t) = \chi_{\varphi 0}, \quad \chi_{\theta}(t) = -\chi_{\varphi 0}C_0 \operatorname{ch}\tau.$$

Здесь $\tau = (C_0/\sqrt{C_0^2 + 1})t + C_1.$

Указанные два предельных случая подтверждают описанное выше поведение коноида.

Влияние положения вершины коноида. В случае если вершина коноида находится на экваторе, коноид симметричен относительно экватора. Если вершина коноида расположена в южном полушарии, то фронт возмущения сходится в северном полушарии (рис. 3). Такое поведение бихарактеристик естественно, поскольку скорость распространения возмущения не зависит от долготы φ и достигает максимального значения на экваторе.

Рис. 3. Коноид с вершиной, расположенной в южном полушарии: *a* — вид со стороны вершины; *б* — вид с противоположной стороны

3. ПРОСТЫЕ СТАЦИОНАРНЫЕ ВОЛНЫ

Рассмотрим простые стационарные волны, описываемые системой уравнений (1.1), в которых искомые функции v, w, h зависят лишь от широты θ . В этом случае уравнения (1.1) сводятся к системе обыкновенных дифференциальных уравнений

$$vv' = w^{2} \operatorname{ctg} \theta + r_{0}w \cos \theta + (r_{0}^{2}/4) \sin \theta \cos \theta - f_{0}h',$$

$$vw' = -vw \operatorname{ctg} \theta - r_{0}v \cos \theta,$$

$$vh' \sin \theta + h(v \sin \theta)' = 0,$$
(3.1)

где штрих означает производную по θ . Система (3.1) интегрируется в конечном виде. Впервые этот класс решений описан в [8].

Существует два типа решений. В решениях первого типа, рассмотренных в [1], $v \equiv 0$, в решениях второго типа $v \neq 0$.

Рассмотрим решения системы (3.1), в которых $v \neq 0$. В этом случае второе и третье уравнения (3.1) интегрируются и дают следующие представления для компонент вектора скорости:

$$v = \frac{q_0}{h\sin\theta}, \qquad w = \frac{w_0}{\sin\theta} - \frac{r_0}{2}\sin\theta \tag{3.2}$$

 $(q_0, w_0$ — постоянные интегрирования). Интеграл Бернулли на данных решениях имеет вид

$$(v^2 + w^2)/2 + f_0 h - (r_0^2/8) \sin^2 \theta = b_0, \qquad (3.3)$$

где $b_0 = \text{const.}$ Подставляя в (3.3) представления (3.2), получим алгебраическое уравнение третьей степени для определения глубины:

$$h^3 - \alpha h^2 + \beta = 0. (3.4)$$

Здесь

$$\alpha = \frac{1}{2f_0} \Big(\varkappa_0 - \frac{w_0^2}{\sin^2 \theta} \Big), \qquad \beta = \frac{q_0^2}{2f_0 \sin^2 \theta}, \qquad \varkappa_0 = 2b_0 + w_0 r_0.$$
(3.5)

Решив уравнение (3.4), получим профиль глубины $h = h(\theta)$; подставив найденное значение h в представления (3.2) для v, найдем вектор скорости. Таким образом, решение задачи о простых стационарных волнах сводится к анализу уравнения (3.4). Согласно (3.5) $\beta > 0$.

Поскольку в соответствии с физическим смыслом h > 0, из (3.4) следует, что и $\alpha > 0$. Тогда согласно (3.5) $\varkappa_0 > 0$.

Определим число вещественных положительных корней уравнения (3.4). Дискриминант уравнения (3.4) равен [9]

$$D_h = \beta (27\beta - 4\alpha^3),$$

следовательно, поскольку $\beta > 0$, при $D_1 = 27\beta - 4\alpha^3 < 0$ уравнение (3.4) имеет три вещественных корня, при $D_1 > 0$ — один, а уравнение $D_1 = 0$ задает дискриминантную кривую, определяющую кратные корни.

Согласно теореме Виета и в силу того, что $\beta > 0$, произведение корней уравнения (3.4) отрицательно, а сумма положительна, поскольку $\alpha > 0$. Следовательно, один вещественный корень всегда отрицателен. Значит, вариант $D_1 > 0$ можно не рассматривать, так как в этом случае отсутствуют решения, имеющие физический смысл.

Уравнение (3.4) имеет сигнатуру знаков коэффициентов вида (+-+), следовательно, согласно теореме Декарта [9] оно может иметь два положительных вещественных корня, что возможно при $D_1 < 0$. После ряда вычислений получим

$$D_1 = -\frac{\varkappa_0^3}{2f_0^3 s^3} P(s), \tag{3.6}$$

где $s = \sin^2 \theta$,

$$P(s) = s^3 - 3(\lambda_0 + \mu_0)s^2 + 3\lambda_0^2 s - \lambda_0^3.$$
(3.7)

Коэффициенты многочлена (3.7) имеют вид

$$\lambda_0 = w_0^2 / \varkappa_0, \qquad \mu_0 = 9 f_0^2 q_0^2 / \varkappa_0^3. \tag{3.8}$$

Из (3.8) следует, что $\lambda_0 > 0$, $\mu_0 > 0$. Согласно (3.6) $D_1 < 0$ при P(s) > 0. Дискриминант уравнения P(s) = 0 равен

$$D_P = 27\mu_0^2\lambda_0^3(4\mu_0 + 9\lambda_0)$$

и положителен при любых $\lambda_0 > 0$, $\mu_0 > 0$ (см. (3.8)). Следовательно, уравнение P(s) = 0имеет только один вещественный корень. Сигнатура знаков коэффициентов этого уравнения имеет вид (+ - +-). В этой сигнатуре три смены знака, значит, согласно теореме Декарта оно имеет либо три положительных корня, либо один. Может реализоваться лишь второй случай. Кроме того, поскольку $s = \sin^2 \theta < 1$, $\theta \in (0, \pi)$, этот положительный корень s_* должен находиться в интервале (0, 1), что обеспечивается неравенствами

$$P(0) = -\lambda_0^3 < 0, \qquad P(1) = (1 - \lambda_0)^3 - 3\mu_0 > 0.$$
(3.9)

Первое из этих неравенств выполняется автоматически, второе определяет допустимую область Γ параметров на плоскости $\mathbb{R}^2(\lambda_0, \mu_0)$.

Интервал $I = (\theta_*, \pi - \theta_*)$, где $\sin \theta_* = s_*$, соответствует случаю $D_1 < 0$, следовательно, на этом интервале уравнение (3.4) имеет два вещественных положительных корня $h_1 = h_1(\theta), h_2 = h_2(\theta)$. Функции h_1 и h_2 могут быть выписаны по формулам Кардано [9], но такое представление не является эффективным для анализа решения.

В пространстве $\mathbb{R}^{3}(\lambda_{0}, \mu_{0}, \theta)$ область существования положительных корней уравнения (3.4) задается неравенством P(s) > 0:

$$\sin^6 \theta - 3(\lambda_0 + \mu_0) \sin^4 \theta + 3\lambda_0 \sin^2 \theta - \lambda_0^3 \ge 0.$$
(3.10)

Рис. 4. Область существования положительных корней уравнения (3.4)

Неравенство (3.10) задает в пространстве $\mathbb{R}^{3}(\lambda_{0}, \mu_{0}, \theta)$ замкнутую ограниченную поверхность (рис. 4). Для точек, лежащих внутри этой поверхности, выполняется строгое неравенство (3.10) и существует два различных положительных корня h_{1} и h_{2} . Для точек, принадлежащих поверхности P = 0, существует единственный кратный положительный корень. Эта поверхность является дискриминантной поверхностью в пространстве $\mathbb{R}^{3}(\lambda_{0}, \mu_{0}, \theta)$. Конкретные параметры $\lambda_{0} > 0$, $\mu_{0} > 0$ течения соответствуют точке $P_{0}(\lambda_{0}, \mu_{0}, \theta)$. Отрезок перпендикуляра, восстановленного из точки P_{0} , находящейся в области P > 0, соответствует сферическому поясу I, а точки пересечения перпендикуляра с поверхностью P = 0 определяют граничные параллели Γ_{i} : $\theta = \theta_{i}$ (i = 1, 2), где $\theta_{1} = \theta_{*}$ и $\theta_{2} = \pi - \theta_{*}$. Эти кривые являются компонентами дискриминантной кривой $L = {\Gamma_{i}, i = 1, 2}$ на сфере. Все сечения поверхности P = 0 плоскостями $\theta =$ const подобны.

На основании сказанного выше можно сделать следующие выводы.

Решение вида (3.2), (3.4) существует лишь для определенных значений параметров λ_0 , μ_0 , задаваемых неравенствами (3.9).

Течения газа, соответствующие решениям вида (3.2), (3.4), определены в некотором сферическом поясе I, симметричном относительно экватора.

Пояс *I* может быть сколь угодно широк, за исключением областей в виде малых дисков на полюсах сферы.

При допустимых фиксированных значениях параметров λ_0 , μ_0 существует два типа течения, соответствующих двум различным положительным корням h_1 и h_2 уравнения (3.4).

При одинаковой ширине пояса I, т. е. при фиксированном значении θ_* , существуют различные течения, определяемые различными наборами параметров λ_0 и μ_0 .

Остается выяснить физический смысл дискриминантных кривых, являющихся границами области определения решения.

4. ЗВУКОВЫЕ ХАРАКТЕРИСТИКИ НА ПРОСТЫХ СТАЦИОНАРНЫХ ВОЛНАХ

Будем искать звуковые характеристики стационарных уравнений (1.1) на решениях вида (3.2), (3.4). Пусть эти характеристики задаются на сфере семейством кривых $\chi(\theta,\varphi) = \text{const.}$ Тогда функция χ удовлетворяет уравнению

$$v\chi_{\theta} + (\sin\theta)^{-1}w\chi_{\varphi} = \varepsilon cN_1, \qquad (4.1)$$

где
$$N_1 = (\chi_{\theta}^2 + (r\sin\theta)^{-2}\chi_{\varphi}^2)^{1/2}; c = \sqrt{f_0 h}; v, w, h$$
 — решение (3.2), (3.4).

Запишем уравнение характеристик в разрешенном относительно долготы виде $\chi(\theta,\varphi)\equiv \varphi-f(\theta)={\rm const.}$ Тогда уравнение (4.1) сводится к уравнению

$$af'^2 - 2bf' + k = 0, (4.2)$$

где

$$a = (v^2 - f_0 h) \sin^2 \theta, \qquad b = vw \sin \theta, \qquad k = w^2 - f_0 h$$

Уравнения (4.2) принадлежат к классу неявных дифференциальных уравнений [10] (чаще используется менее точное их название — уравнения, не разрешенные относительно производной). Главной особенностью таких уравнений является неединственность решения, а также то, что решения определены лишь в некоторой области, граница которой представляет собой многообразие ветвления решений. Следует отметить, что исследование задач околозвуковой газовой динамики инициировало создание завершенной теории таких уравнений [11].

Уравнение (4.2) исследуется достаточно просто. При $a \neq 0$ оно разрешается в виде

$$f' = \frac{vw \pm \sqrt{f_0 h(v^2 + w^2 - f_0 h)}}{(v^2 - f_0 h)\sin\theta}.$$
(4.3)

Область определения решения уравнения (4.3) задается неравенством

$$v^2 + w^2 > f_0 h, (4.4)$$

описывающим область гиперболичности исходной стационарной системы (1.1) на данном решении. Используя интеграл Бернулли (3.3), получим

$$v^{2} + w^{2} = 2b_{0} + (r_{0}^{2}/4)\sin^{2}\theta - 2f_{0}h.$$
(4.5)

Сопоставляя (4.4) и (4.5), находим условие гиперболичности в виде

$$h < 2(b_0 + (r_0^2/8)\sin^2\theta)/(3f_0).$$
(4.6)

При выполнении неравенства (4.6) течение является сверхкритическим, в противном случае — докритическим. Учитывая наличие двух режимов течения (3.2), (3.4), соответствующих корням h_1 и h_2 , и вид этих корней, можно сделать следующий вывод. Меньшему корню $h_1 > 0$ уравнения (3.4) соответствует сверхкритическое (сверхзвуковое) течение, а большему h_2 — докритическое (дозвуковое).

Уравнение (4.2) вырождается при a = 0, т. е. при $v^2 = f_0 h$. В этом случае оно описывает звуковые характеристики вида $\theta = \theta_0$, являющиеся параллелями на сфере. Таким образом, имеется два типа звуковых характеристик на решениях вида (3.2), (3.4). Этот вывод следует из общей теории неявных дифференциальных уравнений, а именно из теоремы Чибрарио [10]. Параллели $\theta = \theta_i$ задают на сфере дискриминантные кривые, определяющие границы области определения решения. Из каждой точки P такой кривой выходит пара звуковых характеристик (4.3), образующих в точке P "клювик" — особенность типа полукубической параболы Нейля.

Можно доказать, что дискриминантная кривая L = 0 задает на сфере звуковые характеристики. Уравнения дискриминантной кривой L = 0:

$$h^3 - \alpha h^2 + \beta h = 0, \qquad 3h^2 - 2\alpha h = 0.$$
 (4.7)

При $h \neq 0$ из второго уравнения в (4.7) следует $\alpha = 3h/2$. Подставляя это выражение в первое уравнение в (4.7), на граничных параллелях Γ_i получаем $h = (2\beta)^{1/3}$, что совпадает с решением уравнения $v^2 = f_0 h$, задающего звуковые характеристики вида $\theta = \theta_i$.

Рис. 5. Типичные профили глубины на сфере: сплошные линии — сверхкритическое течение; штриховые — докритическое течение

Вычислим производную h' в точках дискриминантной кривой:

$$h' = \frac{\alpha' h^2 - \beta'}{3h(h - 2\alpha/3)} \to \infty \quad \text{при} \quad h \to \frac{2\alpha}{3}.$$
(4.8)

Согласно (4.8) на граничных параллелях $L = \{\Gamma_i, i = 1, 2\}$, являющихся компонентами дискриминантной кривой L, решение (3.2), (3.4) претерпевает градиентную катастрофу. В силу интеграла Бернулли (3.4) сами функции v, w, h ограничены. Неограниченность производной (4.8) можно трактовать как наличие источника и стока на параллелях Γ_i : глубина h возрастает при удалении от кривой Γ_1 начиная с некоторого значения и, напротив, убывает до этого значения в малой окрестности параллели Γ_2 (рис. 5).

Таким образом, границы Γ_i сферического пояса *I*, в котором определено решение (3.2), (3.4), являются звуковыми характеристиками. Одна из этих параллелей, например Γ_1 , является источником для данного течения, вторая Γ_2 — стоком.

5. ОПИСАНИЕ ДВИЖЕНИЯ ГАЗА

Уравнение линий тока течения

$$\frac{d\theta}{v} = \frac{\sin\theta \, d\varphi}{w}$$

на решении (3.2), (3.4) приводится к виду

$$\varphi = \frac{1}{q_0} \int_{\theta_0}^{\theta} \frac{h(\theta)(w_0 - (r_0/2)\sin^2\theta)}{\sin\theta} \, d\theta, \tag{5.1}$$

где $(0, \theta_0)$ — стартовая точка на граничной параллели, например Γ_1 , из которой выходит линия тока (5.1). В силу вращательной симметрии решения любая линия тока получается из линии тока (5.1) поворотом ее на угол φ_0 . На рис. 6 представлены картины течений, полученные в результате численного интегрирования уравнения (5.1) при различных значениях параметра $r_0/(2w_0)$.

Наличие двух решений, соответствующих двум корням h_1 и h_2 уравнения (3.3), позволяет построить решение в виде ячейки. Движение, являющееся, например, сверхкритическим (меньший корень h_1), начинается из параллели источника Γ_1 и заканчивается на

Рис. 6. Линии тока для докритического (a, e, d) и сверхкритического (b, e, e) режимов: $a, b - r_0/(2w_0) = 0.9; e, e - r_0/(2w_0) = 1.1; d, e - r_0/(2w_0) = 1.5$

параллели Γ_2 , соответствующей стоку. В свою очередь параллель Γ_2 является источником для докритического течения, соответствующего большему корню h_2 , при этом газ течет в противоположном направлении, стекая в сток, расположенный вдоль параллели Γ_1 .

При $w_0 > 0$ особенностью решения является возможность обращения в нуль окружной компоненты вектора скорости w на некоторых параллелях $\theta = \theta_0$, $\pi - \theta_0$, расположенных симметрично относительно экватора. Согласно (3.2) это происходит при $2w_0/r_0 < 1$ для значений θ_0 , являющихся решением уравнения

$$\sin \theta_0 = \sqrt{2w_0/r_0}.\tag{5.2}$$

Если уравнение (5.2) имеет решение, то окружная компонента вектора скорости меняет знак при переходе через параллели $\theta = \theta_0$, $\pi - \theta_0$, течение меняет направление по долготе на противоположное (с западного на восточное или наоборот).

6. ОБРАЗОВАНИЕ ДВУХ СФЕРИЧЕСКИХ ПОЯСОВ

В предельном случае, когда параметр $\mu = r_0/b_0$ является малым, область определения решения может разделяться на два сферических пояса.

Отбрасывая в интеграле Бернулли (3.3) член с μ^2 , получаем

 $v^2 + w^2 + h = 1.$

Сохраним прежние обозначения функций, считая, что соответствующее растяжение уже выполнено. Тогда представления для скоростей задаются формулами

$$v = \frac{v_0}{h\sin\theta}, \qquad w = \frac{w_0}{\sin\theta} + \beta_0\sin\theta.$$

Уравнение (3.4) принимает вид

$$h^{3} - \left(1 - \left(\frac{w_{0}}{\sin\theta} + \beta_{0}\sin\theta\right)^{2}\right)h^{2} + \frac{v_{0}^{2}}{\sin^{2}\theta} = 0.$$
 (6.1)

В пространстве $\mathbb{R}^3(v_0, w_0, \theta)$ неравенство

$$-64\sin^{6}\theta + (432v_{0}^{2} + 192w_{0}^{2})\sin^{4}\theta - 192w_{0}^{4}\sin^{2}\theta + 64w_{0}^{6} + (192w_{0}\sin^{6}\theta - 384w_{0}^{3}\sin^{4}\theta + 192w_{0}^{5}\sin^{2}\theta)\beta_{0} + (48\sin^{8}\theta - 288w_{0}^{2}\sin^{6}\theta + 240w_{0}^{4}\sin^{4}\theta)\beta_{0}^{2} + (-96w_{0}\sin^{8}\theta + 160w_{0}^{3}\sin^{6}\theta)\beta_{0}^{3} + (-12\sin^{10}\theta + 60w_{0}^{2}\sin^{8}\theta)\beta_{0}^{4} + (12w_{0}\sin^{10}\theta)\beta_{0}^{5} + (\sin^{12}\theta)\beta_{0}^{6} < 0$$
(6.2)

задает область существования двух вещественных положительных корней уравнения (6.1) (аналог области, задаваемой неравенством (3.10) в пространстве $\mathbb{R}^{3}(\mu_{0}, \lambda_{0}, \theta)$). При этом важную роль играет следующее утверждение.

Лемма. Заменой $w_0 \to w_0 - (\beta_0/2) \sin^2 \theta$ неравенство (6.2) сводится к неравенству

$$-4\sin^6\theta + (27v_0^2 + 12w_0^2)\sin^4\theta - 12w_0^4\sin^2\theta + 4w_0^6 < 0.$$

То же неравенство получается из (6.2), если положить $\beta_0 = 0$.

Геометрический смысл леммы следующий: в пространстве $\mathbb{R}^{3}(v_{0}, w_{0}, \theta)$ область существования решения для вращающейся сферы получается из области существования решения для неподвижной сферы сдвигом сечений $\theta = \text{const}$ вдоль оси w_{0} по закону, указанному в лемме. При этом полюсы $\theta = 0$ и $\theta = \pi$ остаются неподвижными.

Пусть $v_0 \neq 0$ и $w_0 < 0$. При увеличении параметра β_0 вид поверхности S, задаваемой равенством (6.2), изменяется:

1) при небольших значениях β_0 сферический пояс *I* расширяется с ростом β_0 ;

2) при некотором значении $\beta_0 = \beta_0^k$ поверхность S становится невыпуклой в направлении оси θ ;

3) при дальнейшем увеличении параметра β_0 область течения распадается на два сферических пояса I_1 и I_2 , расположенных в разных полушариях симметрично относительно экватора;

4) далее при увеличении значения β_0 сферические пояса I_1 , I_2 смещаются к полюсам и их ширина уменьшается. При некотором критическом значении параметра $\beta_0 = \beta_0^c$ пояса исчезают, модель перестает работать.

На рис. 7 показана поверхность S при различных значениях β_0 .

В п. 5 построено решение в виде циркуляционной ячейки. При наличии двух поясов в разных полушариях, в которых определено решение, можно построить течение в виде симметричных циркуляционных ячеек (рис. 8).

Рис. 7. Поверхность S при различных значениях параметра β_0 : $a - \beta_0 < \beta_0^k; \ \delta - \beta_0^k < \beta_0 < \beta_0^c$

Рис. 8. Симметричные циркуляционные ячейки: *а* — вид сбоку; *б* — вид со стороны полюса

Такие пары ячеек моделируют ячейки Гадлея, Ферреля и полярные ячейки [12], которые являются крупномасштабными (планетарными) течениями, обеспечивающими циркуляцию воздуха в атмосфере преимущественно в меридиональном направлении. Из области экватора, где давление пониженное, воздух движется в область тропиков с более высоким давлением (на север и юг соответственно для северной и южной ячеек). При достижении некоторого максимального давления возникает течение в противоположном направлении, в котором давление уменьшается по мере приближения к экватору. Вращение приводит к отклонению линий тока от меридионального направления. В модели мелкой воды эти два течения можно представить происходящими на разных глубинах. Действительно, из анализа характеристик (см. п. 4) следует, что сверхкритические течения определены при меньших h, а докритические — при бо́льших. Таким образом, для экваториальных ячеек в нижнем подслое ячейки происходит сверхкритическое движение газа на север, а в верхнем докритическом — в противоположном направлении.

Авторы выражают благодарность Л. В. Овсянникову за содержательное обсуждение представленных результатов.

ЛИТЕРАТУРА

- 1. Черевко А. А., Чупахин А. П. Уравнения модели мелкой воды на вращающейся притягивающей сфере. 1. Вывод и общие свойства // ПМТФ. 2009. Т. 50, № 2. С. 24–36.
- 2. Педлоски Дж. Геофизическая гидродинамика. М.: Мир, 1984. Т. 1, 2.
- Bila N., Mansfield E. L., Clarkson P. A. Symmetry group analysys of the shallow water and semi-geostropic equations // Quart. J. Mech. Appl. Math. 2005. V. 59, N 1. P. 95–123.
- 4. Чесноков А. А. Симметрии и точные решения уравнений мелкой воды на пространственном сдвиговом потоке // ПМТФ. 2008. Т. 49, № 5. С. 41–54.
- 5. Овсянников Л. В. Лекции по основам газовой динамики. М.: Наука, 1981.
- 6. Курант Р. Уравнения в частных производных. М.: Мир, 1964.
- 7. Арнольд В. И. Волновые фронты и топология кривых. М.: Фазис, 2002.
- Черевко А. А., Чупахин А. П. Модель мелкой воды на сфере и ее подмодели // Тез. докл. Междунар. конф. "Лаврентьевские чтения по математике, механике и физике", Новосибирск, 27–31 мая 2005 г. Новосибирск: Ин-т гидродинамики СО РАН, 2005. С. 87–88.
- 9. Прасолов В. В. Многочлены. М.: Моск. центр непрерывного мат. образования, 1999.
- 10. Арнольд В. И. Геометрические методы в теории обыкновенных дифференциальных уравнений. Ижевск: Ижевск. респ. тип., 2000.
- 11. **Кузьмин А. Г.** Неклассические уравнения смешанного типа и их приложения к газодинамике. Л.: Изд-во Ленингр. гос. ун-та, 1990.
- 12. Атмосфера (справочные данные, модели). Л.: Гидрометеоиздат, 1991.

Поступила в редакцию 29/X 2007 г., в окончательном варианте — 4/IV 2008 г.