УДК 577.118.543.422

Влияние неорганических и органических примесей на нуклеацию одноводного оксалата кальция

О. А. ГОЛОВАНОВА¹, Ю. О. ПУНИН², А. С. ВЫСОЦКИЙ¹, В. Р. ХАННАНОВ¹

¹Омский государственный университет, проспект Мира, 55А, Омск 644077 (Россия)

E-mail: golovanoa2000@mail.ru

²Санкт-Петербургский государственный университет, Университетская наб., 7/9, Санкт-Петербург 199034 (Россия)

(Поступила 16.02.11)

Аннотация

На основе экспериментального материала рассмотрен комплекс проблем, связанных с особенностями кристаллизации уэвеллита в присутствии добавок. С помощью рентгенофазового анализа установлено, что образующиеся во всех изучаемых условиях осадки представлены одноводным оксалатом кальция. Присутствие в растворе ионов магния, гидрофосфат-, фосфат- и сульфат-ионов оказывает ингибирующее действие на кристаллизацию одноводного оксалата кальция. При этом тормозящий эффект добавки растет пропорционально увеличению концентрации добавки. Экспериментально доказано, что аминокислоты оказывают различное влияние на зародышеобразование: одни (глутаминовая, глицин, лизин и др.) ингибируют процесс, другие (пролин, аланин, валин и др.) выступают в качестве катализатора, а ряд аминокислот (серин, фенилаланин) оказывает незначительное действие на нуклеацию.

Ключевые слова: моногидрат оксалата кальция, период индукции, аминокислоты, ингибирование, кристаллизация

введение

Прогнозирование поведения биологической системы при изменении тех или иных ее параметров особенно актуально при изучении процессов, обусловленных аномальным функционированием организма. Один из результатов таких процессов – новообразования патогенного характера, в частности мочевые камни человека, на 80 % сложенные моногидратом оксалата кальция [1–8].

Моногидрат оксалата кальция в диапазоне пересыщений, характерном для биологических жидкостей, представляет собой термодинамически устойчивую фазу [8]. Однако многочисленные исследования [9–15] показали, что механизм образования данной фазы сложный и многоступенчатый, при этом характер его реализации зависит от условий проведения синтеза и наличия в растворе различных добавок. В этой связи актуальное значение имеет исследование процесса кристаллизации оксалата кальция и влияния на него различных примесей, в том числе органических — неотъемлемых компонентов физиологического раствора.

Опубликовано немало работ, посвященных влиянию органических и неорганических примесей на зарождение и рост кристаллов оксалата кальция и фазовый состав осадков [16-23]. Многие авторы [23-31] подчеркивают особое значение органических (различные аминокислоты, белки, цитрат-ионы) и неорганических (магний, кальций, калий-натриевые соли и др.) веществ в процессах образования и роста оксалатных минералов. Однако механизм их действия до конца не установлен. Нарушение обмена веществ, а следовательно, и соотношения органических и неорганических компонентов в физиологических жидкостях (например, в моче) в человеческом организме зачастую приводит к осаждению в органах мочевой системы оксалатов кальция, т. е. к появлению патогенных минеральных образований в организме. При этом изучение взаимодействия аминокислот с оксалатом кальция очень важно, особенно с учетом роста числа заболеваний и необходимости поиска новых методов лечения и профилактики мочекаменной болезни.

В связи с этим установление роли компонентов естественной кристаллообразующей среды в формировании одноводного оксалата кальция имеет определяющее значение для разработки методов предотвращения его кристаллизации в организме.

Цель данной работы — изучение закономерности процесса нуклеации моногидрата оксалата кальция в присутствии органических и неорганических добавок, содержащихся в моче человека.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Процесс кристаллизации изучали при температуре 20–23 °С и пересыщениях растворов оксалата кальция $\gamma = C_0/C_s$ (C_0 – концентрация оксалата кальция в пересыщенном растворе; C_s – растворимость оксалата кальция, равная 0.7 · 10⁻⁴ моль/л), равных 5, 7 и 10. Выбор основных значений γ обусловлен тем, что именно эти значения характерны для биологических сред, в частности для мочи здорового взрослого среднестатистического человека [32]. Проведены также дополнительные опыты при $\gamma = 12$, 15, 20, 25 для получения более полной информации.

Пересыщение по оксалату кальция создавалось за счет химической реакции

$\mathrm{Ca}^{^{2+}} + \mathrm{C_2O_4^{2-}} \rightarrow \mathrm{CaC_2O_4}$

которая реализовывалась при смешении исходных растворов стехиометрического состава легкорастворимых соединений — хлорида кальция и оксалата аммония. Для каждой серии экспериментов были приготовлены растворы, причем содержащиеся в них катионы и анионы в данных условиях не образуют малорастворимых соединений. Далее растворы смешивались в эквивалентных объемах. Готовый раствор сливали в коническую колбу и перемешивали в течение 5–10 с.

Для определения параметров нуклеации использовался метод, основанный на измерении периодов индукции. В основе метода лежит зависимость величины индукционных периодов от исходной концентрации пересыщенных растворов. Определение времени индукции осуществляли визуальным способом по помутнению раствора.

В качестве растворителя использовалась бидистиллированная вода. Для приготовления исходных растворов брали соли квалификации "ч. д. а.". Ввиду того что хлорид кальция в процессе хранения способен гидратироваться, перед экспериментом проводилась стандартизация его раствора путем комплексонометрического титрования трилоном [33].

Стандартизация процесса зародышеобразования осуществлялась за счет соблюдения постоянства условий эксперимента. Исследуемая система готовилась в кристаллизаторе быстрым смешиванием исходных растворов. Время помутнения растворов определяли по секундомеру; отчет времени начинался по окончании смешивания исходных растворов. Для каждого значения концентрации проводили несколько параллельных экспериментов (5–6), при этом относительное стандартное отклонение периодов индукции ($\tau_{инд}$) составило $S_r = 0.01-0.02$. Все опыты проводили без перемешивания.

Примеси вводились в один из исходных растворов перед смешиванием. При этом неорганические анионы добавляли в раствор оксалата аммония, а неорганические катионы и органические примеси - в раствор хлорида кальция. В качестве органических добавок использовались аминокислоты (L-пролин (CH₂(COOH)CH₂CH₂CH₂)NH), L-треонин (CH₃CH(OH)CH(NH₂)COOH), DL-валин $(CH_3)_2 CHCH(NH_2)COOH,$ *L*-аспарагин $(HOOCCH(NH_2)CH_2COOH),$ L-серин (CH₂(OH)CH(NH₂)COOH), L-фенилаланин (C₆H₅CH₂CH(NH₂)COOH), L-изолейцин (C₂H₅CH(CH₃)CH(NH₂)COOH), L-аргинин (H₂N(NH)CNHCH₂CH₂CH₂CH(NH₂)COOH), L-лизин (H₂NCH₂CH₂CH₂CH₂CH(NH₂)COOH), DL-метионин (CH₃SCH₂CH₂CH(NH₂)COOH), DL-лейцин ((CH₃)₂CHCH₂CH(NH₂)COOH), L- α -аланин (CH₃CH(NH₂)COOH), аминоуксусная кислота (глицин) (CH₂(NH₂)COOH), *DL*-глутаминовая кислота (HOOCCH(NH₂)CH₂CH₂COOH), *DL*-тирозин ((OH)C₆H₄CH₂CH(NH₂)COOH). В основном эти аминокислоты были обнаружены в составе почечных камней [28].

В качестве неорганических добавок, исходя из литературных данных по составу мочи [3, 6, 7], использованы ионы магния в виде $MgCl_2 \cdot 2H_2O$, ионы железа (III) (Fe(NH₄)(SO₄)₂ · 12H₂O), гидрофосфат-ионы ((NH₄)₂HPO₄), фосфат-ионы (Na₃PO₄ · 12H₂O), сульфат-ионы ((NH₄)₂SO₄). Концентрации добавок соответствовали физиологическим (для аминокислот биологическая концентрация равна 0.004 ммоль/л) и изменялись в зависимости от требований опыта.

Минеральный (фазовый) состав полученных в ходе синтеза осадков изучен с использованием рентгенофазового анализа. Дифрактограммы получены методом порошка на рентгеновском аппарате ДРОН-3. Качественный анализ фазового состава образца проводился путем сопоставления экспериментальных значений межплоскостных расстояний и относительных интенсивностей дифракционных максимумов с набором соответствующих табличных значений для каждой из предполагаемых фаз. Идентификация фаз производилась с использованием международной картотеки ASTM. Точность рентгенофазового анализа зависит от дисперсности и может составлять 2-10 % от определяемой величины.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Исследование образующихся при кристаллизации твердых фаз с помощью рентгенофазового анализа показало, что полученный осадок во всех случаях представляет собой одноводный оксалат кальция (рис. 1); других фаз в качестве примесей не обнаружено. Вместе с тем, в ряде работ [34, 35] сообщается об образовании в аналогичных экспериментах двухи трехводных оксалатов кальция.

На первом этапе изучено влияние пересыщения на период индукции моногидрата оксалата кальция без добавок. Определялись периоды индукции при $\gamma = 5$, 7, 10, 12, 15, 17, 20 (рис. 2). Видно, что полученная зависимость прямолинейная, а это противоречит теории нуклеации.

Рис. 1. Рентгенограмма одноводного оксалата кальция.

Известно, что период индукции $\tau_{инд}$ обратно пропорционален скорости нуклеации *J* и экспоненциально зависит от обратного квадрата пересыщения:

 $J \sim \exp \left(-16\pi\sigma^3 v^2/3k^3T^3(m \ln \gamma)^2\right)$

где σ – удельная поверхностная энергия; v – объем молекулы; k – константа Больцмана; T – температура; m – число ионов, на которые диссоциирует оксалат кальция в растворе, равное 2 [34]. Отсюда $\ln \tau_{\rm инд}$ должен линейно зависеть от $(\ln \gamma)^{-1/2}$. Однако на графике этой зависимости наблюдаются две прямые с изломом при $\gamma = 12$. Такое поведение соответствует переходу от гетерогенного зарождения при $\gamma < 12$ к гомогенному при $\gamma > 12$ [28, 34]. Таким образом, "линейная" зависимость на рис. 2 в действительности является композицией двух экспоненциальных зависимостей с разными показателями экспоненты. Значения поверхностной энергии для двух

Рис. 2. Зависимость периода индукции зарождения моногидрата оксалата кальция ($\tau_{\mu \mu \eta}$) от пересыщения (γ). $y = -7.9732x + 61.893, R^2 = 0.9968.$

участков кинетической кривой равны 15.3 и 36.0 мДж/м² для гетерогенного и гомогенного зарождения соответственно и близки к полученным нами ранее результатам [28]. При этом эти значения существенно отличаются от литературных данных [34], что мы связываем с отсутствием примесей в нашей системе, в отличие от условий работы [34].

Влияние органических добавок различных аминокислот на период индукции одноводного оксалата кальция

В ряде работ [28-31] установлено, что на процесс образования моногидрата оксалата кальция большое влияние оказывают аминокислоты, которые содержатся в физиологическом растворе и обнаружены в составе оксалатных почечных камней [36]. В органической составляющей почечных камней фиксируется до десятка аминокислот, из которых глутаминовая кислота, глицин и некоторые другие аминокислоты составляют основу органического вещества. По этой причине в качестве добавок нами выбраны именно эти аминокислоты, чтобы выяснить их влияние на процесс зародышеобразования оксалата кальция.

Диаграмма на рис. 3 иллюстрирует влияние аминокислот на период индукции моногидрата оксалата кальция. Видно, что аминокислоты могут как ингибировать процесс кристаллизации одноводного оксалата кальция, так и катализировать его. При этом некоторые аминокислоты оказывают незначительное действие на кристаллизацию. Предполагается, что ингибирующее действие аминокислот связано с их адсорбцией на активных центрах поверхности образующихся кристаллов за счет взаимодействия между положительно заряженной поверхностью кристаллов и агрегатов оксалата кальция и аминокислотой, которая находится в наиболее вероятной конформации. В этом случае можно ожидать, что с ростом ингибирующего действия будет увеличиваться содержание аминокислоты в почечных камнях.

Сравним полученный ряд аминокислот по возрастанию ингибирующих свойств: *L*-пролин < *L*-треонин < *DL*-валин < *L*-аспарагин < *L*-серин < *L*-фенилаланин < *L*-изолейцин < *L*-аргинин < *L*-лизин < *DL*-метионин < *DL*лейцин < *L*-α-аланин < аминоуксусная кислота (глицин) < *DL*-глутаминовая кислота – с рядом аминокислот по увеличению их содержания в почечных камнях: метионин < аргинин < фенилаланин < треонин < валин < серин < аланин < глицин < лизин < глутамин. Видно, что по крайней мере для четырех основных аминокислот оксалатных почечных камней наше предположение подтверждается.

Полученные нами результаты по ряду аспектов расходятся с литературными данны-

Рис. 3. Влияние аминокислот на период индукции моногидрата оксалата кальция.

ми, которые, впрочем, достаточно противоречивы. Так, по данным разных авторов, глутаминовая кислота - наиболее сильный ингибитор в наших экспериментах - усиливает нуклеацию [35], ослабляет ее [30] или не влияет на зарождение оксалата кальция [37]. Треонин, согласно [30], не влияет на нуклеацию, а по нашим данным, он ее промотирует. Наиболее сильное расхождение полученных нами результатов с литературными данными получено для аспарагиновой кислоты. Согласно данным [30, 37, 38], эта кислота в большей или меньшей степени ингибирует рост и нуклеацию моногидрата оксалата кальция, однако в нашей работе наблюдается существенное промотирование зарождения.

Исследование влияния аминокислот на период индукции показывает, что их действие не связано с основными характеристиками аминокислот, определяющими их адсорбцию на поверхности оксалата кальция [38]: а) с кислотностью – основностью, т. е. рІ (среди ингибиторов имеются кислые, нейтральные и основные аминокислоты); б) с константами диссоциации (диапазон значений рК1 для ингибиторов и промоторов одинаков и составляет около 2.0-2.3); в) с константами устойчивости комплексов с кальцием (для ингибиторов pK = 1.2-2.2, для промоторов pK = 1.4-1.6); г) с числом карбоксильных групп (среди ингибиторов и промоторов имеются как моно-, так и двухосновные аминокислоты). Выявить какую-либо общую характеристику аминокислоты, определяющую ее действие на нуклеацию моногидрата оксалата кальция, пока не удается.

Особое внимание обращает на себя факт противоположного поведения аспарагиновой и глутаминовой кислот. Различия между этими аминокислотами сравнительно невелики: по значениям второй константы диссоциации ($pK_2 = 3.75$ и 4.15 для аспарагиновой и глутаминовой кислоты соответственно) и изоэлектрической точки (pI = 2.77 и 3.22 соответственно), а также по длине радикала (у глутаминовой кислоты на одну CH₂-группу больше). Противоположное действие этих кислот на зарождение оксалата кальция можно объяснить лишь тем, что и ингибирование, и промотирование нуклеации реализуется на поверхности зародыша (ингибирование) или в растворе (промотирование) за счет одного механизма – прочного связывания аминокислоты с ионами кальция. Благодаря меньшему значению второй константы диссоциации, аспарагиновая кислота при pH ~ 6 сильнее ионизирована, что должно ослаблять ее адсорбцию на поверхности оксалата кальция [38]. С другой стороны, при этом должно усиливаться образование в растворе карбоксилатных комплексов кальция, которые могут служить центрами нуклеации оксалата кальция.

Влияние неорганических добавок на период индукции одноводного оксалата кальция

Неорганические добавки (ионы магния и железа (III), фосфат-, гидрофосфат- и сульфат-ионы) выбраны исходя из состава физиологического раствора и результатов предыдущих исследований [3, 6, 7, 39].

Прежде всего, необходимо уточнить роль магния. В естественной оксалатообразующей среде присутствуют ионы магния – одни из важнейших активаторов многих ферментативных процессов. Значительная доля магния поступает в организм с растительной пищей. Хотя всасывание магния регулируют те же вещества, что и всасывание кальция (например, белки и витамин D), в организме отмечается определенный антагонизм между магнием и кальцием [40].

При исследовании влияния добавок магния на нуклеацию одноводного оксалата кальция создавались концентрации в естественном биологическом диапазоне: максимальная (11 ммоль/л), средняя (8.15 ммоль/л) и минимальная (5.30 ммоль/л). Из данных рис. 4 следует, что ингибирующий эффект добавки ионов магния растет пропорционально увеличению концентрации ионов магния. Прямая пропорциональная зависимость наблюдается при всех значениях создаваемых пересыщений. Ингибирующий эффект добавки ионов магния существенный и проявляется при всех пересыщениях примерно в одинаковой степени. Так, при пересыщении $\gamma = 7$ и концентрации добавки, равной 8.15 ммоль/л, время нуклеации уменьшается в 1.5 раза, а при С_{лоб} = 11 ммоль/л – почти в 2 раза. В тех же пропорциях увеличивается время индукции и при γ = 15. Сильный ингибирующий эффект магния на кинетику кристаллизации может быть

Рис. 4. Влияние добавок ионов магния (a), гидрофосфат-ионов (б) и сульфат-ионов (в) на период индукции моногидрата оксалата кальция: a — без добавки (1), 5.3 ммоль/л (2), 8.15 ммоль/л (3), 11 ммоль/л (4); б — без добавки (1), 3.75 ммоль/л (2); в — без добавки (1), 3.34 ммоль/л (2), 6.69 ммоль/л (3).

связан, прежде всего, с повышением растворимости моногидрата оксалата кальция в присутствии магния. Оценочные расчеты показывают, что при концентрации магния 10 ммоль/л растворимость одноводного оксалата кальция увеличивается в 5.3 раза. Примерно такие же результаты получены в работе [41]. Нужно отметить, что эти данные учитывают только эффект комплексообразования. На самом деле из-за высаливания возрастание растворимости будет меньше. В любом случае реальное пересыщение раствора по оксалату кальция будет меньше заданного, что и приводит к увеличению времени индукции и уменьшению скорости нуклеации в присутствии примеси магния.

Что касается адсорбционного действия магния на нуклеацию моногидрата оксалата кальция, то им, по-видимому, можно пренебречь. По крайней мере, определенные по данным о кинетике нуклеации значения эффективной поверхностной энергии зародышей в присутствии магния сопоставимы с таковыми для системы, не содержащей добавки, и равны 13.8 и 34.2 мДж/м² для гетерогенного и гомогенного зарождения соответственно.

Влияние добавки катиона Fe³⁺ на период индукции одноводного оксалата кальция изучалось при биологической концентрации, равной 3 мкмоль/л. Установлено, что ионы железа (III) практически не влияют на период индукции одноводного оксалата кальция: различие находится в пределах ошибки опыта. При этом в работах [6, 7] сообщается о сильном торможении роста кристаллов моногидрата оксалата кальция примесью железа. Установленное нами незначительное действие железа на процесс нуклеации, по-видимому, связано с очень низкой концентрацией ионов железа в физиологическом растворе.

Далее нами было изучено действие добавок фосфат-и гидрофосфат-ионов – непременных составляющих физиологической жидкости - на процесс образования моногидрата оксалата кальция. Для фосфат-иона задавалась биологическая концентрация, равная 23 ммоль/л, и более низкие значения концентрации (11, 5.7, 2.8, 1.4 ммоль/л). При всех значениях концентраций и при $\gamma = 5, 7,$ и 10 отмечалось образование осадка фосфата кальция, который не исчезал в течение нескольких суток. Важно отметить, что фосфатионы при концентрации, которая в 16 раз меньше биологической, полностью ингибировали процесс нуклеации одноводного оксалата кальция вследствие образования малорастворимого осадка фосфата кальция (произведение растворимости $\Pi P = 2.0 \cdot 10^{-29}$).

Для гидрофосфат-ионов использовалась биологическая концентрация добавки, равная 60 ммоль/л, а также задавались следующие значения концентрации, ммоль/л: 30, 15, 7.5, 3.75. Установлено, что осадок оксалата кальция выпадает только при концентрациях гидрофосфатионов 3.75 и 7.5 ммоль/л, что, соответственно, в пять и четыре раза меньше по сравнению с его физиологической концентрацией. Время индукции при этом даже для минимальной концентрации примеси (3.75 ммоль/л) существенно выше по сравнению с таковым для чистой системы (см. рис. 4, б). При концентрации гидрофосфата, равной 7.5 ммоль/л, и $\gamma = 10$ осадок начинает образовываться только через 2 ч. С уменьшением пересыщения раствора ингибирующий эффект усиливается (см. рис. 4, б). При более высоких концентрациях гидрофосфатиона выпадает труднорастворимый осадок гидрофосфата кальция (ПР = $2.7 \cdot 10^{-7}$), который не исчезает в течение 1 сут. Далее происходит обмен гидрофосфат-иона на ион оксалата, т. е. образуется моногидрат оксалата кальция (ПР оксалата кальция < ПР гидрофосфата кальция). Ингибирующее действие гидрофосфат-ионов, очевидно, связано с их адсорбцией на зародышах оксалата кальция, согласно правилу Фаянса – Пескова – Панета [23].

Существенной составляющей физиологической жидкости являются также сульфаты. Влияние добавки сульфат-иона на период индукции одноводного оксалата кальция изучалось при биологической концентрации, равной 53.5 ммоль/л, и концентрациях 26.7, 13.3, 6.7 и 3.3 ммоль/л. При этом осадок одноводного оксалата кальция образуется только при концентрациях сульфат-иона 6.7 и 3.3 ммоль/л, т. е., соответственно, в четыре и пять раз меньших по сравнению с физиологической концентрацией. Видно, что сульфат-ионы так же, как и гидрофосфат-ионы, оказывают ингибирующее действие. С увеличением концентрации добавки возрастает период индукции. С уменьшением значения пересыщения раствора ингибирующий эффект усиливается (см. рис. 4, в). При концентрации сульфат-ионов выше 6.7 ммоль/л и выбранных значениях пересыщения кристаллизация не происходит, а нуклеация полностью заторможена. Однако, в отличие от действия гидрофосфат-ионов, не происходит и осаждения других фаз (гипса или полугидрата), т. е. имеет место ингибирование нуклеации в чистом виде, которое также может быть объяснено адсорбцией примеси по правилу Фаянса – Пескова – Панета [23].

ЗАКЛЮЧЕНИЕ

В результате проведенного исследования нуклеации одноводного оксалата кальция в модельных растворах без примесей и с добавками неорганических компонентов и аминокислот в концентрациях, близких к физиологическим, получены следующие результаты: 1. В растворах без добавок примесей наблюдается переход от гетерогенного к гомогенному зарождению при увеличении пересыщения $\gamma > 12$, причем эффективная поверхностная энергия возрастает более чем вдвое.

 Различные аминокислоты оказывают на нуклеацию моногидрата оксалата кальция как ингибирующее, так и промотирующее действие.

 Возрастание ингибирующих свойств аминокислот коррелирует с увеличением их содержания в оксалатных почечных камнях.

4. Примесь магния ингибирует нуклеацию моногидрата оксалата кальция путем увеличения его растворимости и снижения эффективного пересыщения.

5. Другие неорганические добавки (сульфат-, фосфат-, гидрофосфат-ионы) ингибируют процесс образования осадка при физиологической концентрации ионов за счет адсорбции на зародышах, при этом ухудшаются ингибирующие свойства в ряду: фосфат > гидрофосфат > сульфат > железо (III).

Работа выполнена при частичной финансовой поддержке РФФИ (проект № 10-05-00881-а) и в рамках реализации ФЦП "Научные и научнопедагогические кадры инновационной России" на 2009-2013 годы (ГК № 16.740.11.0602).

СПИСОК ЛИТЕРАТУРЫ

- 1 Пальчик Н. А., Мороз Т. Н., Максимова Н. В., Дарьин А. В. // Неорган. химия. 2006. Т. 51, № 7. С. 1177–1184.
- 2 Голованова О. А., Когут В. А., Желяев Е. В., Россеева Е. В. // Минералогия техногенеза. 2004. С. 115-126.
- 3 Кораго А.А. Введение в биоминералогию. СПб.: Недра, 1992. 280 с.
- 4 Пальчик Н. А., Мороз Т. Н., Леонова И. В. // Неорган. химия. 2004. Т. 49, № 8. С. 1353–1361.
- 5 Зузук Ф.В. // Материалы II Междунар. семинара "Минералогия и жизнь: биоминеральные взаимодействия". Сыктывкар, 1996. С. 143–144.
- 6 Петрова Е. В. Рост и растворение кристаллов моногидрата оксалата кальция: Автореф. дис. ... канд. хим. наук. Москва, 2004. 19 с.
- 7 Рашкович Л. Н., Петрова Е. В. // Химия и жизнь. 2006. № 1. С. 24–27.
- 8 Ельников В. Ю., Голованова О. А., Франк-Каменецкая О. В. // Минералогия техногенеза – 2005. Миасс: ИМинУрО РАН, 2005. С. 156–163.
- 9 Strtic D., Markovic M., Komunjer L., Furedi-Milhofer H. // J. Cryst. Growth. 1986. Vol. 79, No. 3. P. 791.
- 10 Tazzoli V., Domeneghetti C. // J. Am. Mineral. 1980. Vol. 65, No. 3. P. 327–334.
- 11 Millan A. // J. Mat. Sci.: Mater. Med. 1997. Vol. 8. P. 247-250.
- 12 Franchini-Angela M., Aquilano D. // J. Cryst. Growth. 1979. Vol. 8. P. 719-726.

- 13 Heijnen W. M. M. // J. Cryst. Growth. 1982. Vol. 65, No. 3. P. 216–232.
- 14 Walter-Levy L., Laniepce J. // Am. Mineral. 1980. Vol. 65. P. 186–192.
- 15 Сокол Э. В., Нигматулина Е. Н., Максимова Н. В. // Химия уст. разв. 2003. Т. 11, № 5. С. 547–558.
- 16 Стрикленд-Констебл Р. Ф. Кинетика и механизи кристаллизации. Л.: Недра, 1971. 412 с.
- 17 Лодиз Р. А., Паркер Р. Л. Рост монокристаллов. М.: Мир, 1974. 540 с.
- 18 Козлова О. Г. Рост и морфология кристаллов. М.: МГУ, 1972. 303 с.
- 19 Тимофеева В. А. Рост кристаллов из растворов и расплавов. М.: Наука, 1978. 267 с.
- 20 Банн Ч. Кристаллы и их роль в природе и науке. М.: Мир, 1980. 312 с.
- 21 Асбахов А. М. Кристаллогенезис и эволюция системы "кристалл – среда". СПб.: Наука, 1993. 154 с.
- 22 Кидяров Б. И. Кинетика образования кристаллов из жидкой фазы. Новосибирск: Наука, 1979. 136 с.
- 23 Фролов Ю. Г. Курс коллоидной химии: Учебник для вузов. М.: Химия, 1982. 400 с.
- 24 Boeve E. R., Cao L. C., De Bruijn W. C., Romijn J. C., Schroder F. H. // J. Urol. 1992. Vol. 147, No. 6. P. 1643– 1646.
- 25 Lamprecht L., Reller A., Reisen R., Wiedemann H. G. // J. Therm. Anal. 1997. Vol. 49. P. 1601–1607.
- 26 Eckhardt F. E. W. // Environmental Biogeochemistry and Geomicrobiology. The Terrestrial Environment. / W. E. Krumbein (Ed.). Michigan: Ann Arbor Sci. Publ., 1978. P. 675-686.
- 27 Caneva G., Salvadori O. //The Deterioration and Conservation of Stone / L. Larraini, R. Peiper (Eds.). UNESCO. Paris, 1989.

- 28 Голованова О. А., Ачкасова Е. Ю., Пунин Ю. О., Желяев Е. В. // Кристаллография. 2006. Т. 51, № 2. С. 376–382.
- 29 Изатулина А. Р., Голованова О. А., Пунин Ю. О., Войтенко Н. Н., Дроздов В. А. // Вестн. Омск. ун-та. 2006. № 3. С. 45-47.
- 30 Grases F., March J. G., Bibiloni F., Amat E. // J. Cryst. Growth. 1988. Vol. 87. P. 299.
- 31 Изатулина А. Р., Голованова О. А., Пунин Ю. О., Штукенберг А. Г. Влияние аминокислот на формирование оксалатных почечных камней // Минералогия и жизнь. Сыктывкар, 2007. С. 45–47.
- 32 Тиктинский О. Л., Александров В. П. Мочекаменная болезнь. СПб.: Медицина, 2000. 384 с.
- 33 Васильев В. П. Аналитическая химия. Гравиметрический и титриметрический методы анализа. ч. 1. М.: Высш. шк., 1989. 320 с.
- 34 Brown Ch. M., Ackermanu D. K., Purich D. L., Finloyson B. //J. Cryst. Growth. 1991. Vol. 108. P. 455.
- 35 Marcović M., Komunjer Lj., Füredi-Milhofer H., Škrtić D. J. // J. Cryst. Growth. 1987. Vol. 80, No. 1. P. 118.
- 36 Пятанова П. А. Физико-химическое исследование почечных камней, формальный генезис: Дис. ... канд. хим. наук. Омск, 2004. 18 с.
- 37 Guo S., Ward M., Wesson O. // J. Am. Chem. Soc. 2002. No. 18. P. 1156–1165.
- 38 Fleming D. E., Bronswijk W., Ryall R. L. // J. Clin. Sci. 2001. Vol. 101. P. 159–168.
- 39 Билобров В. М. // Тез. Первой межгос. конф. "Биоминералогия-92". Сыктывкар, 1992. С. 52–54.
- 40 Биохимия / Под ред. Е. С. Северина. М.: ГЭОТАР Мед., 2003. 365 с.
- 41 Левковский С. Н. Мочекаменная болезнь: прогнозирование течения и метафилактика. СПб.: Береста, 2010. 120 с.
- 42 Grases F., March J. G., Bibiloni F., Amat E. // J. Cryst. Growth. 1988. Vol. 87. P. 299–304.