УДК 546.9:541.128 DOI: 10.15372/KhUR20160209

Исследование нанесенных ультрадисперсных частиц Pt с помощью хемосорбции и термодесорбции

О. А. ЯКОВИНА, А. С. ЛИСИЦЫН

Институт катализа им. Г. К. Борескова Сибирского отделения РАН, проспект Академика Лаврентьева, 5, Новосибирск 630090 (Россия)

E-mail: yakovina@catalysis.ru

Аннотация

Представлены результаты хемосорбционных измерений и экспериментов по термодесорбции водорода, выполненных на образцах Pt/γ - Al_2O_3 с нанокластерами Pt (размер ≤ 1 нм). Исследованы причины обратимого изменения адсорбционных свойств. Результаты сопоставлены с данными для наночастиц платины (с размером преимущественно 2-3 нм), нанесенных на "инертный" оксид (SiO₂). Продемонстрирована высокая чувствительность хемосорбционных методов и ТПД к изменению состояния нанесенных кластеров металла при термообработках образцов в восстановительной и нейтральной средах. Показано, что адсорбция водорода на ультрадисперсных системах является активированной, а адсорбционная емкость образцов, определяемая по кислород-водородному титрованию, может уменьшаться в процессе много-кратного титрования. Отмечено сильное влияние H_2O на термодесорбцию водорода с образцов Pt/γ - Al_2O_3 , восстановленных при высокой температуре. Представлена интерпретация полученных результатов, учитывающая структурные изменения нанокластеров в области низких температур и образование кислородных вакансий на границе раздела металл – носитель под действием H_2 при высокой температуре.

Ключевые слова: Pt/γ-Al₂O₃, Pt/SiO₂, наночастицы, нанокластеры, хемосорбция, ТПД

введение

К нанокластерам относятся частицы с размером менее 2 нм [1], которые по своим свойствам занимают промежуточное положение между обычными наночастицами и изолированными атомами металла. Предельно малый размер кластеров (квантовые эффекты) и координационная ненасыщенность атомов, составляющих такие кластеры, открывают новые возможности для применения этих объектов в самых разных областях [2]. Вместе с тем, малый размер кластеров выводит за границу применимости большинство физических методов исследования и требует использования дорогостоящего оборудования, что существенно осложняет как фундаментальные, так и прикладные исследования. Дополнительные трудности возникают при изучении процессов с участием водорода, который в большинстве каталитических процессов служит реа-

гентом, добавкой, интермедиатом или продуктом, но не детектируется спектроскопическими методами. По этим причинам привлекательны такие относительно простые и доступные методы, как хемосорбция и термодесорбция. В настоящее время хемосорбционные измерения в основном применяют для оценки дисперсности наночастиц (т. е. доли поверхностных атомов: $D = Pt_{\pi}/(Pt_{\pi} + Pt_{o})$, где Pt_{π} и Pt_{o} – число атомов платины на поверхности и в объеме наночастиц соответственно), а термодесорбцию - для получения информации о характере связи адсорбата с поверхностными атомами металла. В данной работе мы попытались оценить возможность повышения информативности этих методов для изучения ультрадисперсных Pt-катализаторов.

В качестве модельной системы выбрана Pt/γ-Al₂O₃. Гамма-оксид алюминия позволяет относительно легко получить нанесенные

нанокластеры Pt; кроме того, катализаторы Pt/γ-Al₂O₃ наиболее широко используются в промышленности. Этим обусловлено интенсивное их исследование [3], в том числе с использованием хемосорбционных методов [4] и температурно-программируемой десорбции (ТПД) [5, 6]. В то же время пока остается открытым вопрос о причинах значительных изменений каталитических свойств, которые наблюдаются при обработках образцов Pt/γ-Al₂O₃ в H₂ при высоких температурах и которые невозможно объяснить спеканием металла [7]. Цели нашего исследования: 1) получение информации об адсорбционных свойствах нанокластеров Pt по сравнению со свойствами обычных наночастиц Pt; 2) предложение способов повышения чувствительности адсорбционных методов; 3) выявление причин изменения свойств катализаторов Pt/γ-Al₂O₃ под воздействием Н₂.

Основные эксперименты проведены с образцами 0.5 % Pt/γ - Al_2O_3 и 1 % Pt/γ - Al_2O_3 , в которых содержались исключительно кластеры Pt с размером менее 1 нм. Их свойства сопоставлены со свойствами наночастиц Pt обычного размера на инертном (SiO₂) и восстанавливаемом оксиде (TiO₂). Для повышения точности хемосорбционных измерений и результатов TIIД содержание Pt в таких образцах увеличено до 2.5 мас. % по причине пониженной дисперсности наночастиц.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Образцы Pt/γ-Al₂O₃ получали методами, которые используются при синтезе катализаторов риформинга и обеспечивают наиболее высокую дисперсность металла [8]. В качестве носителя выбраны образцы ү-Al₂O₃ $(S_{\text{BET}} = 190-220 \text{ м}^2/\text{г}; фракция 100-200 мкм),$ которые практически не содержали минеральных примесей (рентгенофлуоресцентный анализ показал только наличие следующих соединений, мас. %: SiO₂ <0.1, Fe₂O₃ <0.04, CaO <0.04, ZnO <0.2, Ga₂O₃ <0.02). Предшественник металла (H₂PtCl₆, водный раствор) равномерно адсорбировали на поверхности носителя (проверка по распределению предшественника на исходном, экструдированном носителе; размер экструдатов 1.5×5 мм), далее образцы сушили на воздухе. Последующие обработки проводили *in situ*. Стандартная обработка включала прокаливание в токе O_2 (25 см³/мин, 770 K, 1 ч), восстановление в токе H_2 (25 см³/мин, 670 K, 1 ч) и дегазирование в токе инертного газа (Ar, 25 см³/мин, 770 K, 0.5 ч). Образцы Pt/SiO₂ и Pt/TiO₂, использованные для сравнения, готовили методом пропитки носителя по влагоемкости (на данных носителях H_2PtCl_6 не адсорбируется или адсорбируется слабо). После сушки образцов до воздушно-сухого состояния их обрабатывали *in situ* так же, как и образцы Pt/ γ -Al₂O₃.

Эксперименты по хемосорбции и ТПД-H₂ проводились на проточной установке AutoChem II 2920 (Micromeritics), оснащенной детектором по теплопроводности (ДТП). Образец (массой 400 мг) загружали в U-образный кварцевый реактор на подложку из кварцевой ваты. Использовали газы и газовые смеси особой чистоты (He, H₂, 99.9999%) или после дополнительной очистки (Ar, O₂, 99.999%, дополнительная очистка на колонках VICI).

Хемосорбционные измерения проводили в импульсном режиме. Образец предварительно дегазировали и охлаждали до комнатной температуры в токе аргона. Адсорбтив дозировали с помощью шестиходового крана, с интервалом 2-3 мин, используя газовые смеси состава 10 % H₂/Ar, 10 % O₂/He или 10 % CO/Не (объем петли 1 см³). Количество поглощенного адсорбтива V_а рассчитывали по формуле: $V_{\rm a}$ = A(N – $\Sigma S_i/S_{\rm e})$, где $S_{\rm e}$ – площадь пика при насыщении; ΣS_i – сумма всех пиков; А - объем адсорбтива при одном импульсе; *N* – число импульсов. Аналогично проводили титрование адсорбированного водорода кислородом (OT). При многократном титровании водород и кислород подавали из разных газовых линий с промежуточной продувкой реактора в инертном газе в течение 3 мин.

Эксперимент по ТПД- H_2 состоял из следующих стадий: 1) дегазирование образца (Ar, 770 K, 15–30 мин) и охлаждение до требуемой температуры; 2) обработка водородом (импульсами или в токе); 3) продувка при 300 K в токе Ar (15–20 мин) для удаления слабосвязанного водорода и стабилизации нулевой линии; 4) нагрев в токе Ar до 770 K (50 K/мин) и мониторинг выделяющегося H_2 . По достижении конечной температуры (770 K) опыт продолжали в изотермическом режиме (примерно 5 мин). Воспроизводимость данных хемосорбционных измерений (соотношение H/ Pt) соответствовала ±3 отн. %, для ТПД-H₂ ±10 отн. %. В экспериментах по ТПД-H₂O в качестве газа-носителя использовали гелий, калибровку проводили по Ar.

При исследовании образцов методом ПЭМ использован электронный микроскоп JEM-2010 (JEOL) с разрешением по решетке 0.14 нм и напряжением 200 кВ; энергодисперсионный рентгеновский микроанализ (ЭРМ) выполнен на спектрометре Phoenix с Si (Li)детектором (разрешение 130 эВ).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

На рис. 1 приведены репрезентативные снимки ПЭМ для образцов на основе γ -Al₂O₃, SiO₂ и TiO₂. В двух последних случаях (см. рис. 1, б, в) проявляются контрастные частицы Pt со средним размером $\langle d_N \rangle$, равным 2.7 и 1.9 нм соответственно. Напротив, на снимках ПЭМ образца 2.5%Pt/ γ -Al₂O₃ видны только отдельные кластеры Pt с размером не более 1 нм (см. рис. 1, а). Из-за малого размера кластеры слабо различаются на фоне носителя, а их концентрация не соответствует расчетным данным элементного рентгенофлуоресцентного анализа и ЭРМ. Еще менее заметны кластеры Pt на снимках ПЭМ образца 1 % Pt/γ - Al_2O_3 , а в образце 0.5 % Pt/γ - Al_2O_3 они практически не детектировались данным методом. Таким образом, размер большинства частиц Pt в этих образцах достигает доли нанометра, а сами частицы состоят всего из нескольких атомов или нескольких десятков атомов.

Данные ЭРМ подтвердили равномерное распределение платины по носителю, а результаты РФА – отсутствие крупных частиц платины в образцах (0.5-2.5 %)Pt/γ-Al₂O₃. Наличие нано- и субнанокластеров Pt характерно для катализаторов риформинга и обусловлено сильным взаимодействием с поверхностью ү-Al₂O₃ предшественника металла и образующихся кластеров [9]. Последнее обеспечивает устойчивость кластеров к спеканию в процессе высокотемпературных обработок в восстановительной и инертной средах. Как свидетельствуют недавно опубликованные данные HAADF-STEM, кластеры Pt в образцах γ -Al₂O₃ сохраняют размер менее 2 нм даже при 970 К (под H₂) [10].

В табл. 1 (образцы № 1-3) приведены хемосорбционные данные для образцов, приготовленных на трех оксидных носителях при одинаковых содержании Pt и температуре восстановления. Видно, что для образцов 2.5 % Pt/SiO₂ и 2.5 % Pt/Al₂O₃ при использовании водорода в качестве адсорбата полученные результаты хорошо согласуются с

Рис. 1. Снимки ПЭМ и гистограммы распределения частиц Pt по размеру в образцах на основе Al_2O_3 (a), SiO_2 (б), TiO_2 (в). Содержание Pt во всех образцах 2.5 мас. %.

ТАБЛИЦА 1

Результаты хемосорбционных измерений для образцов с различными носителем и температурой

восстановительной обработки

Номер образца	Образцы	Т _в , К	H/Pt	O/Pt	CO/Pt
1	$2.5~\%~\mathrm{Pt}/\mathrm{SiO}_2$	670	0.38	0.29	0.31
2	$2.5~\%~\mathrm{Pt/TiO_2}$	670	0.10	-	-
3	$2.5~\%~\mathrm{Pt}/\mathrm{Al_2O_3}$	670	0.94	0.40	0.62
4	$0.5~\%~Pt/Al_2O_3$	570	1.35	0.36	0.75
5	$0.5~\%~Pt/Al_2O_3$	670	1.16	0.40	0.74
6	$0.5~\%~Pt/Al_2O_3$	770	0.88	-	0.69
7	$0.5~\%~\mathrm{Pt}/\mathrm{Al_2O_3}$	870	0.57	0.50	0.53

данными ПЭМ (см. рис. 1). Расчет дисперсности Pt по формуле: $D_{\Pi \supseteq M} = 1.08/{<}d_{\rm S}{>}$ [11] (<d_S> - средний объемно-поверхностный размер, нм; $<\!\!d_{\rm S}\!\!> = \Sigma N_i d_i^{\ 3} / \Sigma N_i d_i^{\ 2}$, где N_i – число частиц с размером d_i) дает для образца $2.5~\%~{\rm Pt/SiO}_2$ значение $D_{\Pi \rm \overline{OM}}=0.34,$ что близко к значению H/Pt = 0.38 для этого образца (см. табл. 1). Малый размер кластеров в образцах Pt/Al₂O₃ обусловливает высокую долю поверхностных атомов металла и, следовательно, повышенную адсорбционную емкость: соотношение H/Pt (0.94) для образца № 3 (см. табл. 1) близко к значению, ожидаемому для атомарно-дисперсного состояния. Низкие значения H/Pt для Pt/TiO₂ (образец № 2, который содержит более мелкие частицы Pt по сравнению с образцом Pt/SiO₂, см. рис. 1, б, в), по-видимому, связаны с проявлением известного эффекта блокировки поверхности платины субоксидами титана в процессе восстановительной обработки при 670 К [12].

Сопоставление отношений адсорбат/Pt, полученных для образца Pt/SiO_2 с использованием трех адсорбатов, показывает, что адсорбционная емкость уменьшается в ряду: H/Pt > CO/Pt > O/Pt. Такое соотношение типично для адсорбции на наночастицах платины и отражает зависимость стехиометрии адсорбции (число атомов/молекул адсорбата в расчете на поверхностный атом металла) от типа адсорбата. Так, на платиновой черни соотношение $H/Pt_{\pi} = 1$, а $O/Pt_{\pi} \le 0.7$ [13]. Как следует из данных для образца N_{\odot} 3 (см. табл. 1), ряд H/Pt > CO/Pt > O/Pt справедлив и для нанесенных нанокластеров Pt, причем зависимость адсорбционной емкости от типа адсорбата усиливается. Особенно ярко это проявляется в случае образцов с пониженным содержанием Pt, для которых следует ожидать уменьшения размера нанесенных кластеров. Если для образца Pt/SiO₂ (№ 1, см. табл. 1) соотношение $H_{agc}/O_{agc} = 1.3$, то для образца 0.5 % Pt/Al₂O₃ (№ 5), восстановленного при той же температуре, оно возрастает до 2.9. Увеличение отношения H/Pt_п и одновременное снижение значений O/Pt_п для высокодисперсных Pt-катализаторов наблюдалось и ранее [14], хотя эффект был выражен слабее ($H_{acc}/O_{acc} = 2$). Предполагается также, что на поверхности γ-Al₂O₃ реализуется особое состояние платины (так называемая Pt^o [15]), для которого характерна стехиометрия адсорбции кислорода O/Pt = 0.5, а соотношение H/Pt может достигать 2 [4, 15].

На рис. 2 представлены результаты хемосорбционных измерений, выполненных при различной температуре. Видно, что адсорбционная емкость образца Pt/SiO_2 монотонно увеличивается при понижении температуры, а это типично для адсорбции водорода на наночастицах Pt [14] и указывает на протекание адсорбции без активационного барьера [16]. В области повышенных температур (T > 300 K) для образца Pt/Al_2O_3 наблюдаются те же закономерности, однако адсорбционная емкость при 300 и 215 K одинаковая. Хемосорбционные измерения при 300 и 215 K

Рис. 2. Адсорбционная емкость образцов 1 % Pt/Al₂O₃ и 2.5 % Pt/SiO₂, восстановленных при 670 К, в зависимости от температуры (адсорбционные измерения в импульсном режиме).

ТАБЛИЦА 2

Объем адсорбированного водорода на образце 1 % $\rm Pt/Al_2O_3$ в зависимости от условий обработки

Номер опыта	Условия обработки водородом	H/Pt (OT)	H/Pt (TPD)
1	Импульсный режим, 295 К	1.00	0.89
2	Ток H ₂ , 295 К, 15 мин*	1.33	1.15
3	Ток H ₂ , 370 К, 15 мин*	1.54	1.29
4	Ток $\rm H_2,\ 420\ K,\ 15\ мин^*$	1.56	1.31

*Последующее охлаждение в $\rm H_2$ до 295 К (при необходимости) и продувка в токе Ar (20 мин).

выполнены на ряде образцов Pt/γ - Al_2O_3 и демонстрируют тот же результат: для всех образцов, восстанавливавшихся при стандартной температуре (670 К), адсорбционная емкость при 215 К не превышала значений, характерных для 300 К (при точности ±3 отн. %). Полученные данные свидетельствуют о том, что адсорбция H_2 на нанокластерах Pt требует активации. В литературе редко встречаются примеры активированной адсорбции H_2 на Ptкатализаторах, хотя сам эффект отмечен давно [17] и находит подтверждение в современных исследованиях системы Pt/γ - Al_2O_3 [4, 15].

На активированный характер адсорбции Н₂ на нанокластерах Pt указывают и данные табл. 2. В этом случае образец обработан Н₂ в импульсном режиме (№ 1) либо в токе 100 % водорода при 295 К (№ 2) и повышенной температуре (№ 3 и 4). Далее слабосвязанный водород удаляли в токе инертного газа и определяли объем адсорбированного водорода по кислородному титрованию (ОТ) и с помощью ТПД-Н₂. Сопоставление значений H/Pt показывает, что образец прочно адсорбирует (учитывая продувку в Ar) значительно больше водорода при обработках в токе H₂ (режимы № 2-4) по сравнению с импульсной подачей адсорбтива (№ 1). Условия опыта № 1 те же, что и при обычных хемосорбционных измерениях, описанных в экспериментальной части. В данном случае наблюдалось полное поглощение трех импульсов Н₂ и последующее быстрое достижение насыщения. По данным ТПД, при удвоении числа импульсов (с 7 до 14) объем адсорбированного водорода практически не изменялся. Увеличение времени обработки в токе H₂ более 15 мин (30-45 мин) также слабо влияет на соотношение

H/Pt (увеличение в пределах погрешности измерений). Повышенное соотношение H/Pt в опытах № 2-4 указывает на то, что адсорбция H₂ на образцах Pt/γ-Al₂O₃ зависит как от температуры (в пределах до 370 K), так и от давления адсорбтива (в опыте № 1 парциальное давление H₂ над образцом при импульсной подаче не превышало 10 торр). В тех же условиях эксперимента в случае образца 2.5 % Pt/SiO₂ соотношение H/Pt оставалось неизменным, чего и следовало ожидать для наночастиц Pt обычного размера.

Интересно отметить, что для образцов Pt/ ү-Al₂O₃ отношение H/Pt значительно превышало 1 (см. табл. 2) и достигало 1.7 (при содержании Pt 0.5 мас. % и температуре восстановления 570 К). Это близко к H/Pt = 1.9-2.3, полученным для образцов Pt/Al₂O₃ по данным XANES [18] (при 1-21 атм H₂). Согласно расчетам [19], кластеры Pt₁₃ способны адсорбировать до 3.3 атомов водорода в расчете на один атом платины, однако для этого требуется перестройка структуры кластера из плоской (на грани (100) Al₂O₃) в трехмерную. Изменение геометрии кластеров Pt под действием Н₂ недавно подтверждено методом HERFD-XANES [20]. Необходимость преодолеть взаимодействие кластера с носителем может обусловливать активированный характер адсорбции Н₂ на нанесенных нанокластерах Pt (см. рис. 2, табл. 2). Для более крупных частиц структурные изменения менее вероятны, как по кинетическим, так и по термодинамическим причинам, что объясняет отсутствие активированной адсорбции Н₂ на большинстве Pt-катализаторов (с частицами платины обычного размера).

Данные хемосорбционных измерений для образца 0.5 % Pt/Al₂O₃ (см. табл. 1, № 4–7) свидетельствуют об изменении адсорбционных свойств нанокластеров при повышении температуры восстановления. Количество адсорбированного водорода уменьшается, тогда как поглощение кислорода растет, и при $T_{восст} =$ 870 К отношения H/Pt, O/Pt и CO/Pt становятся примерно одинаковыми. Изменение свойств нанесенных кластеров с температурой восстановления отражают и данные кислородного титрования (рис. 3, *a*).

В данном случае образец после восстановления охлаждали в токе водорода, избыток

Рис. 3. Изменение "видимой" адсорбционной емкости образцов в процессе многократных кислородных титрований в импульсном режиме: $a - 0.5 \% \text{ Pt}/\text{Al}_2\text{O}_3$ после восстановления при 570 (1), 670 (2) и 770 К (3); $\delta - 2.5 \% \text{ Pt}/\text{SiO}_2$ и 2.5 % Pt/TiO₂, восстановленные при 670 К.

водорода удаляли в токе гелия. Значения O₂/Pt соответствуют объему кислорода, поглощенному при титровании. Как следует из данных рис. 3, а, значения O₂/Pt при первом титровании близки между собой, корреляция с температурой восстановления образца отсутствует. При повторных титрованиях (см. рис. 3, схема) ситуация изменяется: адсорбированный кислород титруется водородом, затем повторяется кислородное титрование. Независимо от температуры восстановления образца, значения ОТ_N меньше по сравнению с ОТ₁ и продолжают снижаться при увеличении числа циклов N. Кроме того, степень уменьшения "видимой" адсорбционной емкости зависит от температуры восстановления образца, и значение ОТ₁₀ для образца с $T_{\scriptscriptstyle\rm BOCCT}=570~{\rm K}$ составляет только 20 % от значения ОТ₁.

Это кардинально отличается картины, наблюдаемой для образца Pt/SiO_2 (см. рис. 3, б) и типичной для Pt-катализаторов в целом (постоянство значений OT_N при многократном титровании [13]), и от результатов для образца Pt/TiO_2 . Последний также характеризуется изменением значений OT (см. рис. 3, б), но только при переходе от первого ко второму циклу. Это легко объяснить появлением ионов ${\rm Ti}^{3+}$ при восстановлении образца, окисление которых и обеспечивает повышенные значения O₂/Pt при первом титровании. Чем выше температура восстановления образца Pt/TiO₂, тем больше соотношение OT₁/OT₂, тогда как для образцов Pt/Al₂O₃ наблюдается обратное (см. рис. 3, *a*).

Мы подробно исследовали образцы с помощью ТПД-Н₂ (рис. 4). Образцы предварительно восстанавливали при 670 К, дегазировали при 770 К и вновь обрабатывали в токе Н₂ при требуемой температуре (15 мин); после охлаждения в водороде до комнатной температуры и продувки аргоном (20 мин) начинали ТПД. Видно, что профили ТПД-Н2 для образца Pt/Al_2O_3 (см. рис. 4, *a*, и кривая 1 на рис. 4, б) сильно зависят от температуры предварительной обработки в H₂, с увеличением которой десорбция H₂ смещается в область более высоких температур. Подобные изменения кривых ТПД-Н2 отмечали и в других работах (например, [5]), объясняя этот эффект образованием более прочной связи

Рис. 4. Профили ТПД- H_2 образцов 1 % Pt/Al₂O₃ (*a*, *б*) (1 – после восстановления, 2 – после введения в образец ~200 мкмоль H_2O посредством O_2/H_2 титрований) и 2.5 % Pt/SiO₂ (*a*), обработанных в токе H_2 при различных температурах (указаны у кривых, К), и схема протекающих процессов (*z*).

между атомами Pt и H. Однако выделение водорода продолжается даже при 770 К (см. рис. 3, *a*), что нехарактерно для водорода, адсорбированного на поверхности платины [21].

Для него несвойственно и сильное влияние воды на профиль ТПД-Н₂, что наблюдалось независимо от способа подачи Н₂О на образец. На рис. 4, б представлены данные для образца, обработанного водородом при 870 К, но во втором случае перед ТПД провели 20 титрований O₂/H₂, которые генерировали (суммарно) примерно 200 мкмоль H₂O (проверено в аналогичных экспериментах по ТПД-H₂O). С целью полного удаления адсорбированного кислорода образец после титрований обрабатывали в токе Н₂ (300 К, 15 мин), аналогично одному из опытов на рис. 4, а. Известно, что поверхность платины гидрофобная, поэтому Н₂О не влияет ни на адсорбцию, ни на десорбцию водорода [22]. Между тем наличие значительного количества H₂O в образце № 2 (см. рис. 4, б) кардинально изменяет профиль ТПД-Н₂, вызывая сдвиг десорбции Н₂ в низкотемпературную область. При подаче на образец H₂O в виде жидкой фазы (2–3 мкл) десорбция H_2 при 770 К также не фиксируется, но сдвиг в низкотемпературную область менее четкий. Последнее, очевидно, обусловлено тем, введенная вода задерживается в самых первых слоях образца, который ведет себя как эффективный сорбент, тогда как при генерировании H_2O посредством титрований она равномерно распределяется по всем слоям образца. Уменьшение числа титрований (до 3–5) в данном случае слабо влияло на десорбцию H_2 при 770 К, по-видимому, из-за высокой степени дегидроксилирования носителя в ходе предварительной обработки образца в H_2 при 870 К и расхода определенного количества генерированной H_2O на регидроксилирование. Это также свидетельствует о том, что сама по себе обработка образца в кислороде при низкотемпературном титровании не играет никакой роли.

Аналогичное влияние воды на кривые ТПД- H_2 для образцов Pt/Al_2O_3 наблюдалось ранее в работе [6], но было отнесено к действию примесей железа (без подробного исследования). Мы провели ряд дополнительных экспериментов, которые позволили исключить действие побочных факторов. Результаты, полученные при варьировании поверхностной концентрации Pt, предшественника металла, источника Al_2O_3 , условий синтеза образцов и ТПД, подтвердили, что закономерности, наблюдаемые на рис. 4, характерны для всех катализаторов Pt/γ - Al_2O_3 . Наиболее вероятное объяснение этому – протекание химических процессов по уравнению, которое приведено на рис. 4. При высокой температуре (>470 К) в присутствии водорода начинается образование кислородных вакансий, число которых растет с повышением температуры и которые обусловливают выделение H_2 в процессе ТПД по обратной реакции (при взаимодействии с H_2O или гидроксильными группами носителя). При обработках образцов в H_2 до 670 К наблюдаемые изменения полностью обратимы, и профили ТПД- H_2 не зависели от последовательности проведения экспериментов.

Образование кислородных вакансий на поверхности носителя катализируется Pt и хорошо известно для систем на восстанавливаемых оксидах, таких как TiO₂. В отличие от последних, образование вакансий в системе Pt/γ-Al₂O₃ происходит только на границе раздела металл - носитель и носит ограниченный характер. Последнее выражается в примерно одинаковом объеме водорода, который выделяется в процессе ТПД, а также в близких значениях ОТ при титровании образцов, обработанных водородом при разных температурах. Интересно, что аналогичные изменения кривых ТПД-Н₂ после высокотемпературных обработок имеют место и для образцов Pt/SiO₂ (см. рис. 4, в), но в данном случае этот эффект выражен в меньшей степени, как этого и следовало ожидать для наночастиц с уменьшением доли краевых атомов металла, находящихся в контакте с носителем.

ЗАКЛЮЧЕНИЕ

Методы, основанные на хемосорбции и термодесорбции, оказываются весьма чувствительными к состоянию нанесенных нанокластеров платины и значительно более информативны, чем считается в настоящее время. Полученные результаты свидетельствуют о сильных различиях в адсорбционных свойствах наночастиц и нанокластеров металла, что проявляется в усилении зависимости стехиометрических коэффициентов от природы адсорбата, достижении "сверхвысоких" значений H/Pt, активированном характере адсорбции водорода на нанокластерах и снижении их "видимой" адсорбционной емкости в процессе многократного кислородно-водородного титрования. Также установлено сильное и обратимое изменение состояния нанесенных частиц металла в зависимости от температуры и среды, что позволяет объяснить влияние высокотемпературных восстановительных обработок на каталитические свойства систем Pt/γ-Al₂O₃ и Pt/SiO₂. Изменение свойств в области высоких температур, повидимому, обусловлено образованием кислородных вакансий в структуре носителя на границе раздела с металлом и имеет место как для наночастиц, так и для нанокластеров Pt. Такие процессы оказываются возможны при температурах, которые обычно используют при синтезе и каталитических испытаниях. Уникальной особенностью нанокластеров является возможность структурных изменений самого кластера при адсорбции водорода, что объясняет активированную адсорбцию и изменение свойств Pt/γ-Al₂O₃ при восстановительных обработках в области относительно низких температур.

Работа выполнена при поддержке РАН и ФАНО России (проект № V.45.3.5).

СПИСОК ЛИТЕРАТУРЫ

- 1 Lu Y., Chen W. // Chem. Soc. Rev. 2012. Vol. 41. P. 3594–3623.
- 2 Li Y., Somorjai G. A. // Nano Lett. 2010. Vol. 10. 2289-2295.
- 3 Antos G. J., Aitani A. M. Catalytic Naphtha Reforming. Second Ed. NY: Dekker, 2004. 602 p.
- 4 Belyi A. S., Smolikov M. D., Kir'yanov D. I., Udras I. E. // Russ. J. Gen. Chem. 2007. Vol. 77. P. 2243–2254.
- 5 Menon P. G., Froment G. F. // J. Catal. 1979. Vol. 59. P. 138-147.
- 6 Ehwald H., Leibnitz U. // Catal. Lett. 1996. Vol. 38. P. 149–155.
- 7 Paal Z., Menon P. G. // Catal. Rev.-Sci. Eng. 1983. Vol. 25. P. 229–324.
- 8 Boitiaux J. P., Deves J. M., Didillon B., Marcilly C. R. // Catalytic Naphtha Reforming / Antos G. J., Aitani A. M., Parera J. M (Eds). NY: Dekker, 1995. P. 79-111.
- 9 Chizallet C., Raybaud P. // Catal. Sci. Technol. 2014. Vol. 4. P. 2797–2813.
- 10 Bradley S. A., Sinkler W., Blom D. A., Bigelow W., Voyles P. M., Allard L. F. // Catal. Lett. 2012. Vol. 142. P. 176–182.
- 11 Lemaitre J. L., Menon P. G., Delannay F. // Characterization of Heterogeneous Catalysts / Delannay F. (Ed.). NY: Dekker, 1984. P. 299-365.
- 12 Fu Q, Wagner T. // Surf. Sci. Rep. 2007. Vol. 62. P. 431–498.
- 13 Rear D. J. O., Loffler D. G., Boudart M. // J. Catal. 1990. Vol. 121. P. 131–140.
- 14 Kobayashi M., Inoue Y., Takahashi N., Burwell R. L., Jr., Butt J. B., Cohen, J. B. // J. Catal 1980. Vol. 64. P. 74–83.

- 15 Белый А. С. Научные основы конструирования катализаторов риформинга бензиновых фракций. Технология производства и эксплуатации новых катализаторов. Развитие технологии процесса: дис. ... д-ра хим. наук. Омск, 2002. 329 с.
- 16 Hammer B., Norskov J. K. // Nature 1995. Vol. 376. P. 238–240.
- 17 Dixon L. T., Barth R., Kokes R. J., Gryder J. W. // J. Catal 1975. Vol. 37. P. 376–382.
- 18 Mistry H., Behafarid F., Bare S.R., Cuenya B.R. // ChemCatChem 2014. Vol. 6. P. 348–352.
- 19 Mager-Maury C., Bonnard G., Chizallet C., Sautet P., Raybaud P. // ChemCatChem 2011. Vol. 3. P. 200-207.
- 20 Gorczyca A., Moizan V., Chizallet C., Proux O., Net W. D., Lahera E., Hazemann J.-L., Raybaud P., Joly Y. // Angew. Chem. Int. Ed. 2014. Vol. 53. P. 12426-12429.
- 21 Thomas V. D., Schwank J. W., Gland J. L. // Surf. Sci. 2002. Vol. 501. P. 214–234.
- 22 den Dunnen A., van der Niet M. J. T. C., Koper M. T. M., Juurlink L. B. F. // J. Phys. Chem. C. 2012. Vol. 116. P. 18706–18712.