СИБИРСКОЕ ОТДЕЛЕНИЕ российской академии наук

НАУЧНЫЙ ЖУРНАЛ

ГЕОЛОГИЯ И ГЕОФИЗИКА

Геология и геофизика, 2015, т. 56, № 12, с. 2198—2211

РУДООБРАЗОВАНИЕ

УДК 549.32/33

ТВЕРДЫЕ РАСТВОРЫ Ag₂(S, Se) В РУДАХ ЗОЛОТО-СЕРЕБРЯНОГО МЕСТОРОЖДЕНИЯ РОГОВИК (*северо-восток России*) Г.А. Пальянова^{1,3}, Р.Г. Кравцова², Т.В. Журавкова³

¹ Институт геологии и минералогии им. В.С. Соболева СО РАН, 630090, Новосибирск, просп. Академика Коптюга, 3, Россия

² Институт геохимии им. А.П. Виноградова СО РАН, 664033, Иркутск, ул. Фаворского, 1а, Россия

³ Новосибирский государственный университет, 630090, Новосибирск, ул. Пирогова, 2, Россия

С целью уточнения низкотемпературной части фазовой диаграммы Ag_2S — Ag_2Se и выявления противоречий между природными и экспериментальными данными изучены взаимоотношения и химические составы сульфоселенидов серебра в рудах золото-серебряного месторождения Роговик (северо-восток России). С использованием методов оптической и сканирующей электронной микроскопии выявлены два типа взаимоотношений между фазами системы Ag_2S — Ag_2Se : 1) Se-содержащий акантит (Se-акантит) и S-содержащий науманнит (S-науманнит) встречаются как мономинеральные микровключения или заполняют трещины в зернах или в межзерновом пространстве других минералов, а также акантит (без примесей) образует каймы по Fe-содержащему сфалериту (Fe-сфалерит); 2) Se-акантит формирует каймы по S-науманниту.

Результаты рентгеноспектрального электронно-зондового микроанализа сульфоселенидов серебра в рудах месторождения Роговик показали, что концентрации селена в акантите лежат в интервале от 0 до 7.9 мас. %, а серы в науманните — от 0 до 3.2 мас. %, что соответствует акантитовому pяду Ag_2S — $Ag_2S_{0.74}Se_{0.26}$ и науманнитовому $Ag_2S_{0.28}Se_{0.72}$ — Ag_2Se . Выявленные интервалы составов акантитового и науманнитового рядов на исследуемом объекте шире, чем были определены ранее на основе анализа природных сульфоселенидов серебра для месторождений Гуанохуато (Мексика), Силвер Сити (США), Салида (Индонезия) и других (Ag_2S — $Ag_2S_{0.45}Se_{0.15}$ и $Ag_2S_{0.12}Se_{0.88}$ — $Ag_2Se_{0.77}$ — $Ag_2Se_{0.75}$

Наличие срастаний двух фаз ряда $Ag_2S - Ag_2Se$ в виде кайм Se-акантита по S-науманниту в рудах месторождения Роговик, а также отсутствие трехфазных срастаний сульфоселенидов серебра разного состава $Ag_2S_{1-x}Se_x$ на Роговике и других месторождениях не подтверждает предположение о третьем твердом растворе. Обзор и пересмотр имеющихся опубликованных данных по взаимоотношениям акантита и агвиларита с науманнитом на других месторождениях также свидетельствуют о существовании двух твердых растворов (акантитового и науманнитового) в системе Ag_2S-Ag_2Se и подтверждают экспериментальные данные. Необходимо проведение детальных исследований природных сульфоселенидов серебра, попадающих в интервал $Ag_2S_{0.4}Se_{0.6}$ и $Ag_2S_{0.3}Se_{0.7}$, с целью выявления двухфазной области несмесимости и ее границ.

Твердые растворы Ag₂(S,Se), акантит, науманнит, фазовая диаграмма Ag₂S—Ag₂Se.

Ag₂(S, Se) SOLID SOLUTIONS IN THE ORES OF THE ROGOVIK GOLD–SILVER DEPOSIT (northeastern Russia)

G.A. Pal'yanova, R.G. Kravtsova, and T.V. Zhuravkova

The relationships and chemical compositions of silver sulfoselenides in the ores of the Rogovik goldsilver deposit (northeastern Russia) were studied to refine the low-temperature region of the Ag_2S-Ag_2Se phase diagram and identify contradictions between natural and experimental data. Two types of relationships between the phases of the system Ag_2S-Ag_2Se have been recognized using optical and scanning electron microscopy: (1) Se-acanthite and S-naumannite occur as monomineral microinclusions or fill cracks in the grains or the interstices of other minerals, and acanthite (free of impurities) forms rims on Fe-sphalerite; (2) Se-acanthite forms rims on S-naumannite.

Electron probe microanalysis of silver sulfoselenides from the Rogovik ores revealed 0—7.9 wt.% Se in acanthite and 0—3.2 wt.% S in naumannite, which corresponds to the acanthite series $Ag_2S-Ag_2S_{0.74}Se_{0.26}$ and naumannite series $Ag_2S_{0.28}Se_{0.72}-Ag_2Se$. The composition ranges of the studied acanthite and naumannite series

© Г.А. Пальянова[⊠], Р.Г. Кравцова, Т.В. Журавкова, 2015

[™]e-mail: palyan@igm.nsc.ru

are wider than those of natural silver sulfoselenides from the Guanajuato (Mexico), Silver City (USA), Salida (Indonesia), and other deposits ($Ag_2S-Ag_2S_{0.85}Se_{0.15}$ and $Ag_2S_{0.12}Se_{0.88}-Ag_2Se$, respectively) but are significantly narrower than the composition ranges of the synthetic samples: $Ag_2S-Ag_2S_{0.4}Se_{0.6}$ and $Ag_2S_{0.3}Se_{0.7}-Ag_2Se$.

The presence of intergrowths of two phases of the Ag_2S-Ag_2Se series in the form of Se-acanthite rims on S-naumannite in the Rogovik ores and the absence of three-phase intergrowths of silver sulfoselenides $Ag_2S_{1-x}Se_x$ from this and other deposits do not confirm the assumption on the existence of the third solid solution. The results of earlier studies of natural solid solutions $Ag_2(S,Se)$ show the existence of two solid solutions (of the acanthite and naumannite series) in the system Ag_2S-Ag_2Se and confirm the experimental data. It is necessary to carry out a detailed examination of natural silver sulfoselenides falling in the interval from $Ag_2S_{0.4}Se_{0.6}$ to $Ag_2S_{0.3}Se_{0.7}$ in order to identify the limits of two-phase immiscibility.

Ag₂(S,Se) solid solutions, acanthite, naumannite, Ag₂S-Ag₂Se phase diagram

введение

Акантит (Ag₂S), науманнит (Ag₂Se) и сульфоселениды серебра Ag₂(S,Se) типичны для гидротермальных месторождений серебра и золота [Синдеева, 1959; www.mindat.org]. В природных условиях устойчивы их низкотемпературные модификации, реже параморфозы. Поскольку эти халькогениды серебра Ag₂(S,Se) характеризуются наличием фазовых переходов и структурных фазовых превращений, то они представляют интерес как минералы-геотермометры и индикаторы физико-химических условий рудообразования. Существуют противоречия между природными и экспериментальными данными относительно низкотемпературной части фазовой диаграммы Ag₂S—Ag₂Se. Авторы работы [Petruk et al., 1974], детально исследовавшие текстурные взаимоотношения и составы природных сульфоселенидов серебра, установили предельные содержания примесей селена для акантита (Ag₂S—Ag₂Se_{0.85}Se_{0.15}) и серы для науманнита (Ag₂S_{0.15}Se_{0.88}—Ag₂Se), а также вариации концентраций этих элементов в агвиларите — Ag₄S_{0.95}Se_{1.05}—Ag₄S_{1.10}Se_{0.90} (или Ag₂S_{0.475}Se_{0.525}—Ag₂S_{0.55}Se_{0.45}). В экспериментальных работах [Bontschewa-Mladenowa, Zaneva, 1977; Bontschewa-Mladenowa, Vassilev, 1984] установлены два твердых раствора — акантитовый (Ag₂S—Ag₂So_{.5}Se_{0.5}) и науманнитовый (Ag₂S—Ag₂So_{.5}Se) с разрывом смесимости при 50 мол. % Ag₂Se и наличие индивидуальной фазы состава Ag₄Se. По результатам экспериментальных исследований фазовой диаграммы Ag₂S—Ag₂So_{.3}Se_{0.7}—Ag₂So_{.6} (моноклинная сингония, пространственная группа $P2_1/c$) и науманнитовый Ag₂So_{.3}Se_{0.7}—Ag₂So_{.4}Se_{0.4}Se (ромбическая сингония, пространственная группа $P2_1/c$). Недавние исследования [Bindi, Pingitore, 2013] показали, что агвиларит моноклинный и его пространственная группа, $P2_1/n$, a = 4.2478(2), b = 6.9432(3), c = 8.0042(5) Å, $\beta = 100.103(2)^\circ$, V = 232.41(2) Å³, Z = 4 и он изоструктурен акантито.

Необходимость исследования химического состава сульфоселенидов серебра с целью выявления изоморфизма сера—селен в природных твердых растворах и уточнения низкотемпературной части фазовой диаграммы Ag₂S—Ag₂Se обоснована во многих работах [Новоселов и др., 2009; Bindi, Pingitore, 2013; Cocker et al., 2013; Pal'yanova et al., 2014]. Данные по химическому составу этих минералов довольно часто приводятся в литературе и требуют обобщения и анализа [Синдеева, 1959; Petruk et al., 1974; Shikazono, 1978; Вассало-Моралес, Бородаев, 1982; Сахарова и др., 1993; Некрасов, 1997]. Поскольку агвиларит является фазой акантитового ряда и не относится к отдельному минеральному виду [Bindi, Pingitore, 2013], то требуется пересмотр опубликованных данных в отношении агвиларита [Petruk et al., 1974; Сахарова и др., 1993; Некрасов, 1997; Warmada et al., 2003; Казаченко и др., 2008]. Цель настоящей работы — изучить составы акантита и науманнита и взаимоотношения этих минералов в рудах золото-серебряного месторождения Роговик (северо-восток России) и выявить особенности изоморфного замещения серы и селена ряда Ag,S—Ag,Se природных твердых растворов. Одна из задач исследований — изучить природные парагенезисы сульфоселенидов серебра с позиций фазовой диаграммы Ag₂S—Ag₂Se и найти подтверждение или опровержение результатов экспериментальных исследований Ag₂(S,Se) [Pingitore et al., 1992, 1993] и природных данных [Petruk et al., 1974] о существовании двух или трех твердых растворов при температурах окружающей среды.

МЕТОДЫ ИССЛЕДОВАНИЯ

Для выявления неоднородностей природных образцов, содержащих минералы системы Ag₂S— Ag₂Se, использованы методы оптической и сканирующей электронной микроскопии. Для определения состава микровключений и выявления примесных элементов применяли метод электронно-зондового рентгеноспектрального микроанализа (РСМА), проводившийся с помощью микроанализатора JXA-8200, JEOL Ltd, Япония (г. Иркутск, ИГХ СО РАН, аналитик Л.А. Павлова). Дальнейшее детальное исследование химического состава минералов осуществляли на сканирующем электронном микроскопе MIRA 3 LMU (Tescan Orsay Holding), оборудованном системой микроанализа INCA Energy 450+ и волновым спектрометром INCA Wave 500, Oxford Instruments Nanoanalysis Ltd (г. Новосибирск, ИГМ СО РАН, аналитик H.C. Карманов). Анализы на MIRA 3 LMU выполнены при ускоряющем напряжении 20 кВ и токе пучка электронов (probe current) 1.5 нА, большинство с применением SEM-EDS, при этом время набора спектров составляло 15—20 с. Набор спектра осуществлялся в режиме малого растра с размером площади сканирования от 0.5×0.5 мкм² на мелких фазах и до 2×2 мкм² на более крупных фазах, при этом пучок электронов был слегка дефокусирован. Такой режим позволяет, с одной стороны, снизить влияние на качество анализа микрорельефа образца в месте набора спектра, с другой, — уменьшить деструктивное воздействие электронного пучка на неустойчивые сульфиды и селениды Ag.

В качестве эталонов использованы: на Ag — чистый металл Ag; на S, Cu, Fe — CuFeS₂; Se, Pb — PbSe; Zn — ZnS. Изучали преимущественно относительно крупные зерна размером больше 5 мкм, чтобы избежать фоновых количеств элементов, присутствующих в окружающих фазах. При данных условиях анализа пределы обнаружения элементов составляли десятые доли процента. Погрешность определения основных компонентов (> 10—15 мас. %) не превышала 1 отн. %, а компонентов с концентрациями 1—10 мас. % составляла < 2 отн. %.

Несколько образцов трех типов руд золото-серебряного месторождения Роговик были проанализированы на Au, Ag, Se и S в аналитических лабораториях ИГХ СО РАН, г. Иркутск. Для выявления концентраций Au применяли атомно-абсорбционный метод [Торгов, Хлебникова, 1977] (аналитик П.Т. Долгих). Определение Ag осуществлялось спектральным приближенно-количественным анализом (СПКА, метод просыпки) и приближенно-количественным атомно-эмиссионным спектральным анализом (ПКА-ЭСА, метод испарения) [Васильева и др., 1997] (аналитик Н.Е. Смолянская). Анализ на Se выполнен флуорометрическим методом [Govindaraju, 1984] (аналитик Н.Н. Брюханова). Общие содержания S определялись объемным йодометрическим методом [Инструкция..., 1965] (аналитик Т.Н. Галкина).

КРАТКАЯ ХАРАКТЕРИСТИКА МЕСТОРОЖДЕНИЯ

Золото-серебряное месторождение Роговик находится в центральной части Охотско-Чукотского вулканогенного пояса в северном замыкании Балыгычано-Сугойского прогиба, на территории крупнейшего по запасам золота и серебра Омсукчанского рудного района. Ранее это месторождение относили к золото-аргентитовому типу золото-серебряной эпитермальной формации [Кузнецов и др., 1992]. Дальнейшие исследования показали, что рудная минерализация месторождения Роговик имеет значительно более сложный вещественный состав и полиформационный характер формирования [Кравцова и др., 2012, 2015]. С ранним вулканогенным этапом связано формирование собственно эпитермальных золото-серебряных руд, для которых типичен бедный минеральный и элементный состав. Среди рудных минералов преобладает пирит, редко присутствуют галенит, сфалерит и халькопирит. Из минералов серебра широко проявлены акантит (Ag_2S), сульфосоли серебра (прустит, Ag_3AsS_3 ; пираргирит, Ag_3SbS_3) и кюстелит, реже встречаются самородное серебро и науманнит (Ag_2Se). Блеклые руды ряда теннантит—тетраэдрит (Cu_3AsS_3 — Cu_3SbS_3) иногда содержат серебро. Самородное золото (пробность 600— 700 ‰) находится в виде микровключений и сростков с другими рудными минералами, перечисленными выше.

В более поздний вулканоплутоногенный этап под влиянием внедрения гранитоидной интрузии формируются преимущественно серебряные руды, а на участках совмещения золото-серебряной и серебряной минерализации на более глубоких горизонтах образуются полиформационные руды [Кравцова и др., 2012, 2015]. Для серебряных руд характерно широкое распространение самородного серебра, кюстелита, сульфосолей серебра (преимущественно пираргирита), S-науманнита, реже встречаются Seакантит, штернбергит (AgFe₂S₃), штромейерит (CuAgS), полибазит ((Ag,Cu)₁₆Sb₂S₁₁), фрейбергит (Ag₆Cu₄Fe₂Sb₄S₁₃), еще реже миаргирит (AgSbS₂). Из простых сульфидов преобладает пирит, в меньших количествах присутствуют галенит, сфалерит и халькопирит.

Еще более сложным элементным и минеральным составом характеризуются полиформационные руды. Им свойственны все ранее перечисленные рудные минералы, а также гессит (Ag_2Te), аргиродит (Ag_8GeS_6), канфильдит (Ag_8SnS_6), ртутистое золото и серебро, имитерит (Ag_2HgS_2), халькостибит ($CuSbS_2$), Se-стефанит ($AgSbS_4$). Наибольшее количество сульфоселенидов серебра установлено именно в этом типе руд.

Полиформационные золото-серебряные руды, имеющие сложный состав, в целом характерны для месторождений Омсукчанского рудного района. Здесь, например, находится крупнейшее в мире Дукатское золото-серебряное месторождение, полиформационные руды которого по минеральному составу и большому количеству сульфоселенидов серебра близки аналогичной минерализации месторождения Роговик [Константинов и др., 1998, 2003; Кравцова, 2010; Кравцова и др., 2012, 2015; Таусон и др., 2014].

Содержание Ац, Аg, Se и S в рудах золото-сереоряного месторождения Роговик					
№ проб	Абс. отм., м*	Аи, г/т	Аg(Ag)**, г/т	Se, г/т	S, мас. %
Золото-серебряные руды раннего вулканогенного этапа					
500/11	300	1.50	20(10)	8.2	0.81
724/11	310	0.57	20(20)	7.4	0.11
155003	320	2.21	10(10)	9.2	0.25
155025	300	1.05	30(25)	10.3	0.17
155033	295	2.52	20(15)	10.6	0.44
155035	295	4.33	30(10)	10.1	0.50
155037	295	2.16	30(15)	10.2	0.57
155045	290	1.18	30(15)	8.8	0.50
Преимущественно серебряные руды позднего вулканоплутоногенного этапа					
220/11	250	0.07	30(500)	21.7	2.13
222/11	240	0.18	50(100)	132.8	15.43
223/11	240	0.10	30(50)	67.2	10.71
750/11	260	0.11	> 100(1000)	71.3	1.65
781/11	200	0.03	> 100(1000)	17.1	2.51
808/11	150	0.06	> 100(600)	69.4	1.97
38399	185	0.06	100(80)	16.0	2.51
MH-157914	220	0.14	> 100(500)	57.0	1.36
Полиформационные золото-серебряные руды позднего вулканоплутоногенного этапа					
MH-628/11	240	260.10	> 100(6000)	25.1	3.81
820/11	125	3.10	> 100(600)	29.1	1.08
822/11	120	31.09	> 100 (4000)	141.5	1.11
830/11	105	88.13	> 100(10000)	23.1	2.60
156125	240	2.16	> 100(4000)	320.2	1.12
156572	220	1.88	> 100(2000)	120.1	1.62
MH-156572	220	0.36	> 100(2000)	128.3	1.76
MH-156954	240	0.47	> 100(3000)	119.4	1.50
MH-159425	100	2.61	> 100(6000)	436.1	1.59

Примечание. Относительно условно: интервал 290—320 м — верхнерудный, 150—260 м — среднерудный, 100—240 м — нижний — среднерудный.

* Приведены абсолютные отметки, с какого горизонта отобрана проба.

**Ag(Ag) — Ад определялось методом СПКА (Ад определялось методом ПКАЭСА).

В таблице приведены концентрации Ag, Au, S и Se в разных типах руд исследуемого месторождения Роговик. По содержанию серы золото-серебряные и полиформационные руды являются малосульфидными (от 0.1 до 3.8 мас. % S), в преимущественно серебряных рудах количество серы достигает 15 мас. % и их следует отнести к сульфидным. Количество селена в рудах возрастает от 8—11 в золотосеребряных до 16—133 г/т в преимущественно серебряных и достигает максимальных значений 23— 440 г/т в полиформационных. По уровню содержаний Ад (до 10000 г/т) все три типа руд могут быть отнесены к серебро-полиметаллической формации [Константинов и др., 2003], широко проявленной на территории Омсукчанского рудного района [Кравцова и др., 1996; Константинов, 1998; Кравцова, 2000, 2010].

Наиболее крупные зерна халькогенидов серебра размером 2—200 мкм установлены для полиформационных руд. В золото-серебряных и преимущественно серебряных они меньше < 10 мкм. Исследованию полиформационных руд и встречающихся в них сульфоселенидов серебра посвящен следующий раздел.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ СОСТАВОВ И ВЗАИМООТНОШЕНИЙ СУЛЬФОСЕЛЕНИДОВ СЕРЕБРА В РУДАХ МЕСТОРОЖДЕНИЯ РОГОВИК

Детальные исследования образцов полиформационных Au-Ag руд с повышенными содержаниями селена позволили изучить вариации S и Se в Se-акантите и S-науманните и выявить взаимоотношения между сульфоселенидами серебра и составы минералов, ассоциирующих с ними. Установлено, что акантит и науманнит в рудах Роговика встречаются как мономинеральные микровключения ксеноморфной формы в пирите и аргиродите, а также в виде прожилков и трещин заполнения в зернах или межзерновом пространстве кристаллов пирита, кварца, мусковита и калиевого полевого шпата (рис. 1, 2).

На рис. 1, *а* видно, что науманнит образует микровключения в аргиродите и пирите, находящихся в Q-Mu-Kfs* матрице. В науманните установлены примеси серы 0.3—0.4 мас. %, в аргиродите (Ag₈GeS₆) присутствует селен (3.1 мас. %), примеси Se в пирите не обнаружены. Рис. 1, *б* демонстрирует, что науманнит (примеси 0.3 мас. %) и имитерит (Ag₂HgS₂)) присутствуют в краевых частях аргиродита (примеси Se or 4.4 до 4.8 мас. %), во внутренней части которого наблюдаются прожилки акантита (примеси Se и других элементов не установлены). Акантит (примеси Se 2.6 мас. %) часто расположен на контакте Se-аргиродита и ртутистого серебра (состав Ag_{0.85}Au_{0.05}Hg_{0.10}) (см. рис. 1, *в*) и имеет пористое строение. Исследование состава крупных зерен науманнита, расположенных во внутренних и краевых частях, а также в межзерновом пространстве кристаллов пирита (см. рис. 1, *г*), выявило вариации серы в интервале 0.3—3.2 мас. % и селена от 13.6 до 23.4 мас. %) находится в срастании с идиоморфными микрокристаллами пирита (см. рис. 1, *д*, *е*) или ртутистым кюстелитом (состав Ag_{0.7}Au_{0.2}Hg_{0.1}) (см. рис. 1, *д*), расположенными в интерстициях кварца и калиевого полевого шпата.

S-науманнит (примеси S 0.4—0.8 мас. %) в срастании с галенитом (см. рис. 2, *a*—*e*), пираргиритом (Ag₃SbS₃) (см. рис. 2, *e*, *d*) и Se-стефанитом (см. рис. 2, *d*) заполняет прожилки и пустоты в пирите. В галените установлены примеси селена (~2.6 мас. %) и железа (~0.7 мас. %), в прустите также содержатся примеси этих же элементов (Se \approx 1.3 мас. %, Fe \approx 5 мас. %), в стефаните присутствует только селен (3.8—6.8 мас. %). На рис. 2, *e* акантит образует сплошные каймы по сфалериту (примеси Fe = 1.2 мас. %) и является одним из поздних минералов. В его составе присутствуют примеси железа (2.3 мас. %). Ширина кайм акантита от 5 до 20 мкм. Размеры зерен S-науманнита составляют 2—30, реже 50—100 мкм. Следует отметить, что фазы акантитового и науманнитового рядов не контактируют друг с другом (см. рис. 1, 2).

Кроме мономинеральных микровключений сульфоселенидов серебра в рудах Роговика обнаружены срастания двух минеральных фаз системы Ag_2S — Ag_2Se в виде кайм Se-акантита по S-науманниту. На рис. 3, *а* хорошо видно, что науманнит (голубовато-серый, анизотропия от голубового до коричневосерого цвета) окружен каймой из акантита (цвет свинцово-серый), а также находится в срастании с пиритом и халькопиритом. На рис. 3, *б*—*и* показано распределение Ag, Se, S и других элементов по площади сканирования этого участка аншлифа (см. рис. 3, *a*). На рис. 3, *б*, *д*, *ж* проиллюстрировано, что науманнит содержит ламелли галенита (3—5 мкм), а на рис. 3, *e*, *u* различимы микровключения халькостибита (примеси мышьяка 1.7 мас. %).

Фрагмент зерна (см. рис. 3, δ , площадь, обведенная красной линией), содержащий S-науманнит с каймой Se-акантита, был исследован детально с целью выявления вариаций серы и селена в этих двух сульфоселенидах серебра (рис. 4, a). Рис. 4, δ показывает постоянство концентраций этих элементов в каждом из сульфоселенитов в пределах точности определения РСМА. Примеси селена в акантите составляют 4.8—5.2 мас. % (11.3—11.7 мас. % S), а серы в науманните 1.7—2.3 мас. % (21.8—22.4 мас. % Se). Присутствие третьего сульфоселенида серебра на контакте акантита и науманнита не установлено. На оптическом фото (см. рис. 3, a) четко видна резкая граница между двумя этими фазами. Рис. 3, c, d показывает распределение серы и селена по площади сканирования и резкую границу между сульфоселенидами серебра. По результатам проведенных анализов можно утверждать, что переход от S-науманнита к Se-акантиту не плавный и не постепенный, промежуточная фаза между ними отсутствует. Повидимому, акантит — более поздний по отношению к науманниту, и сульфоселениды серебра не являются продуктами распада высокотемпературного твердого раствора Ag₂(S,Se).

На рис. 5 представлены данные о составах сульфоселенидов серебра месторождения Роговик, полученные ранее [Кузнецов и др., 1992], и наши результаты исследования количеств серы и селена в акантите и науманните. Максимальные концентрации серы в науманните Роговика составляют 3.2 мас. %, а максимальные концентрации селена в акантите не превышают 7.9 мас. %.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Представленные выше результаты исследований состава сульфоселенидов серебра месторождения Роговик выявили следующие интервалы изоморфного замещения серы и селена в акантите и науманните (в пересчете на 3 ф.ед.): Ag_2S — $Ag_2S_{0.74}Se_{0.26}$ и $Ag_2S_{0.28}Se_{0.72}$ — Ag_2Se (рис. 5, 6). Полученные ин-

^{*} Ac — акантит, Ag(Hg,Au) — ртутистый кюстелит, Nmt — науманнит, Argd — аргиродит, Ccp — халькопирит, Ga — галенит, Sp — сфалерит, Pr — прустит, Py — пирит, Imt — имитерит, Stf — стефанит, Csb — халькостибит, Q — кварц, Kfs — калиевые полевые шпаты, Mu — мусковит.

Рис. 1. Формы нахождения акантита и науманнита в рудах Роговика.

a - S-науманнит в виде отдельных микровключений в Se-аргиродите и пирите; δ - Se-аргиродит в срастании с науманнитом, акантитом и имитеритом в кварце; e - Se-акантит на контакте с Se-аргиродитом и ртутистым кюстелитом; e - крупные и мелкие зерна S-науманнита, расположенные во внутренней и краевых частях, а также в межзерновом пространстве кристаллов пирита; d - S-науманнит и пирит в срастании с ртутистым кюстелитом и Kfs; e - S-науманнит в срастании с пиритом и Kfs.

Рис. 2. Формы нахождения науманнита в рудах Роговика.

a - s — S-науманнит в виде отдельных микровключений и прожилков в пирите в срастании с галенитом; c — S-науманнит и прустит заполняют трещины в пирите; ∂ — S-науманнит в срастании с пруститом и Se-стефанитом в кварце; e — акантитовые каймы по Fe-сфалериту и прожилки в пирите в Q-Kfs arperate.

Рис. 3. Оптическое (в отраженном свете) (*a*), СЭМ (δ) фото кайм Se-акантита по S-науманниту и халькопириту и распределение элементов по площади сканирования аншлифа в характеристических лучах AgL_{a1}, SeL_{a1}, SK_{a1}, SbK_{a1}, PbK_{a1}, FeK_{a1}, CuK_{a1} соответственно (*b*)—(*u*).

тервалы составов акантитового и науманнитового рядов шире, чем были определены ранее на основе анализа природных сульфоселенидов серебра для месторождений Гуанохуато (Мексика), Силвер Сити (США), Салида (Индонезия) и других: $Ag_2S - Ag_2S_{0.85}Se_{0.15}$ и $Ag_2S_{0.12}Se_{0.88}$ — Ag_2Se соответственно [Petruk et al., 1974], но заметно уже, чем для синтетических образцов по данным [Pingitore et al., 1992, 1993]: $Ag_2S - Ag_2S_{0.4}Se_{0.6}$ и $Ag_2S_{0.3}Se_{0.7} - Ag_2Se$. Между фазами акантитового и науманнитового рядов в рудах месторождения Роговик установлено только два типа взаимоотношений: 1) когда отсутствует контакт или срастания двух сульфоселенидов серебра разного состава; 2) когда два сульфоселенида серебра (один обогащен селеном, другой — серой) контактируют и замещают друг друга. Трехфазные срастания сульфоселенидов серебра в выявлены.

Авторы работы [Petruk et al., 1974] наблюдали в рудах месторождений Силвер Сити и Гуанохуато срастания трех фаз: 1) массивный науманнит содержал ламелли агвиларита (размер < 2 мкм), в которых присутствовали включения акантита, 2) акантит с включениями агвиларита (размер < 2 мкм) окружен науманнитом. Однако эти данные базируются на основании характера травления (акантит травится сильно, агвиларит умеренно, а науманнит совсем не травится) и данных микрозондового анализа, полу-

а — увеличенный фрагмент (красный прямоугольник, см. рис. 3, *б*) с каймой Se-акантита по S-науманниту; *б* — разрез, показывающий изменение концентраций элементов в составе сульфоселенидов серебра вдоль линии с точками a(1)—a(11) на рис. 4, *а*.

ченных при расширенном диаметре зонда (15—80 мкм), превышающем размеры зерен, и характеризующих валовые составы. Авторы цитируемой работы не рассматривают, что одной из фаз, принятой за сульфоселенид серебра, могло быть самородное серебро или селен. Возможно также присутствие метастабильных фаз состава AgSe₂, AgSe и Ag₃Se₂ [Kienel, 1960]. Вывод о существовании агвиларитового (третьего) твердого раствора в системе Ag₂S—Ag₂Se вызывает сомнение. Это же подтверждают данные Л.Ф. Вассало-Моралеса с соавторами [Вассало-Моралес, Бородаев, 1982; Вассало-Моралес и др., 1982], детально изучавшими минеральные фазы Ag₂S—Ag₂Se на месторождении Гуанохуато (Мексика) и выявившими интервалы и непрерывность акантитового ряда Ag₂S—Ag₂Se_{0.5}Se_{0.5}. Они также отмечали присутствие науманнита Ag₂Se в рудах. С позиций фазовых равновесий трехфазные срастания сульфоселенидов серебра в системе Ag₂S—Ag₂Se запрещены и не должны встречаться в природе. Согласно фазовой диаграмме Ag₂S—Ag₂Se (см. рис. 6), в условиях равновесия может кристалли-

Согласно фазовой диаграмме $Ag_2S - Ag_2Se$ (см. рис. 6), в условиях равновесия может кристаллизоваться только один сульфоселенид серебра либо акантитового $Ag_2S - Ag_2S_{0.4}Se_{0.6}$, либо науманнитового ряда $Ag_2S_{0.3}Se_{0.7} - Ag_2Se$. Состав мономинеральных сульфоселенидов серебра будет определяться физико-химическими условиями рудообразования — температурой, редокс-потенциалом, pH, концент-

рациями серы и селена в рудообразующем растворе. В случаях, если температура кристаллизации выше T фазового перехода $(T_{\phi.n.})$, но ниже T плавления $(T_{nn.})$, образуется высокотемпературная фаза, с понижением температуры переходящая в низкотемпературную. Дифференциальная сканирующая калориметрия показывает, что синтезированные образцы различных составов

Рис. 5. Вариации концентраций серы и селена в сульфоселенидах серебра месторождения Роговик (по данным микрорентгеноспектрального анализа).

I — идеальные составы акантита, агвиларита и науманнита; 2 — [Кузнецов и др., 1992]; 3 — настоящая работа.

Рис. 6. Фазовая диаграмма системы Ag_2S — Ag_2Se , построенная с использованием экспериментальных результатов и дополненная собственными и литературными данными составов природных сульфоселенидов серебра (6—27).

I — [Bontschewa-Mladenowa, Zaneva, 1977], 2 — [Pingitore et al., 1993], 3 — [Vassilev, Ivanova, 2003], 4 — [Алекперова и др., 2007], 5 — [Xiao et al., 2012]; месторождения: 6 — Роговик (настоящая работа), 7 — Джульетта [Савва, Фидря, 1996], 8 — Сергеевское [Ботова и др., 1981], 9 — Ольча [Савва, Шахтыров, 2011], 10 — Кубака [Сахарова и др., 1993; Степанов, Шишакова, 1994], 11 — Юное [Пальянова, Савва, 2009] и настоящая работа, 12 — Улахан [Савва, Пальянова, 2007], 13 — Купол [Савва и др., 2012], 14 — Карамкен [Шило и др., 1992; Сахарова и др., 1993], 15 — Крутое [Савва и др., 2010], 16 — Дукат [Шило и др., 1992], 17 — Валунистое [Сахарова и др., 1993; Новоселов и др., 2009], 18 — Агатовское [Шило и др., 1992], 19 — Аметистовое [Некрасов, 1996], 20 — Альфа [Некрасов, 1997], 21 — рудопроявление Дальнегорского района [Казаченко и др., 2008], 22 — Гуанохуато (Мексика) [Реtruk et al., 1974; Вассало-Моралес, Бородаев, 1982], 23 — Силвер Сити (США) [Petruk et al., 1974], 24 — Брокен Хилл (Новая Зеландия) [Соскег et al., 2013], 25 — Айкуно, Очмидани, Сейгоши, Ятани, Тойча (Япония) [Shikazono, 1978], 26 — Понгкор (Индонезия) [Warmada et al., 2003], 27 — Дон Сихто (Аргентина) [Mugas-Lobos et al., 2011].

между Ag₂S и Ag₂Se претерпевают быстрые обратимые фазовые превращения в интервале от 70 до 178 °C [Pingitore и др., 1992, 1993]. Эти температуры зависят от состава, с максимумами для крайних — Ag₂S (178 °C) и Ag₂Se (134 °C), с минимумом — в диапазоне от Ag₂S_{0.4}Se_{0.6} к Ag₂S_{0.3}Se_{0.7} (70 °C). Температура $\alpha \leftrightarrow \beta$ фазового перехода для сульфоселенида агвиларитового состава Ag₄SSe (или Ag₂S_{0.5}Se_{0.5}) различается по данным разных авторов и охватывает интервал 75—100 °C: [Bontschewa-Mladenowa, Zaneva, 1977] — 100 ± 5 °C, [Vassilev, Ivanova, 2003] — 95 °C, [Алекперова и др., 2007] — 75 °C. В природных условиях устойчивы их низкотемпературные модификации, иногда встречаются параморфозы [Годовиков, 1983; Обушков и др., 2010]. Например, на Au-Ag месторождении Энгтери в рудах установлены сульфид, сульфоселенид серебра в виде мелких изометричных зерен размером 0.001—0.010 мм в пределах выделений блеклой руды в срастаниях с пиритом, сфалеритом и галенитом [Обушков и др., 2010]. Изометричная форма зерен позволяет предположить их кристаллизацию выше $T_{\phi.п.}$ (75—178 °C).

Одновременное образование двух сульфоселенидов серебра разного состава возможно только при наличии двухфазной области на диаграмме Ag_2S — Ag_2Se (см. рис. 6), что можно предположить только в отношении узкой области от $Ag_2S_{0.4}Se_{0.6}$ до $Ag_2S_{0.3}Se_{0.7}$, однако при этом составы фаз должны соответствовать краевым составам указанного интервала, т.е. $Ag_2S_{0.4}Se_{0.6}$ и $Ag_2S_{0.3}Se_{0.7}$. В этом случае возможно образование структур распада или двухфазных срастаний. Подобные структуры или срастания фаз состава $Ag_2S_{0.4}Se_{0.6}$ и $Ag_2S_{0.3}Se_{0.7}$, относящихся к ряду Ag_2S — Ag_2Se , в рудах Роговика мы не наблюдали.

Что касается второго типа взаимоотношений, когда Se-акантит образует каймы по S-науманниту или наоборот, то они вполне закономерны. В соответствии с фазовой диаграммой любой сульфоселенид серебра акантитового ряда (Ag₂S—Ag₂S_{0.4}Se_{0.6}) может находиться в ассоциации с любым сульфоселенидом серебра науманнитового ряда (Ag₂S_{0.3}Se_{0.7}—Ag₂Se), поскольку они представляют фазы разноструктурных твердых растворов. Согласно результатам исследования срастаний минералов и текстурных особенностей руд на других месторождениях [Бетехтин и др., 1958; Рамдор, 1962], каймы, прожилки, приуроченность сульфоселенидов серебра к краевым частям зерен пирита и других минералов на месторождении Роговик указывают на более позднее их отложение в рудообразующем процессе.

Выявленные закономерности для сульфоселенидов серебра Роговик характерны и для других объектов. Se-акантит или S-науманнит как мономинеральные ксеноморфные включения в других минералах встречаются на многих месторождениях. На Куполе ксеноморфные зерна акантита из ярозитовых брекчий содержат примеси Se до 5.5 мас. % [Савва и др., 2012]. На месторождении Крутое (северо-восток России) в зоне вторичного сульфидного обогащения [Савва и др., 2010] встречается акантит с низкими концентрациями селена (0.1 мас. %). Науманнит с примесями серы от 2.7 до 5.3 мас. % (Ag₂S_{0.4}Se_{0.6}— Ag₂S_{0.2}Se_{0.8}) установлен в рудах месторождения Мурзинское (Рудный Алтай) [Наумов, 2007]. Акантиты с примесями селена до 9 мас. % встречаются на японских месторождениях [Shikazono, 1978].

Se-акантит (от 0 до 5.19 мас. % Se, $Ag_2S - Ag_2S_{0.83}Se_{0.17}$) и S-науманнит (0.96—1.4 мас. % S, $Ag_{1.98}Se_{0.90}S_{0.11}$) установлены на эпитермальном низкосульфидном месторождении Дон Сихто, расположенном в провинции Мендоса (Аргентина) [Mugas-Lobos et al., 2011], при этом срастание двух фаз сульфоселенидов серебра не обнаружено. Акантит образует ксеноморфные зерна размером от 8 до 50 мкм и, как правило, находится в срастании с самородным золотом и ютенбогаардтитом, науманнит ассоциирует с самородным серебром. Результаты изучения составов сульфоселенидов серебра на месторождении Брокен Хиллс [Соскег et al., 2013] выявляют непрерывный акантитовый ряд между $Ag_2S_{0.97}Se_{0.03}$ — $Ag_2S_{0.75}Se_{0.25}$ и присутствие S-науманнита состава $Ag_2Se_{0.8}S_{0.2}$.

Поскольку до недавнего времени агвиларит рассматривался в качестве самостоятельного минерала [Petruk et al., 1974; Fleisher, Mandarino, 1995; www.mindat.org], а не изоструктурной фазы акантитового ряда [Pingitore et al., 1992, 1993; Bindi, Pingitore, 2013], то сульфоселениды серебра, близкие по составу к Ag₄SSe, интерпретировались как агвиларит или фазы агвиларитового твердого раствора. Например, M.C. Сахаровой с соавторами [1993] была изучена селеновая минерализация месторождений Охотско-Чукотского вулканогенного пояса (Кубака, Карамкен, Дукат, Джульетта и Валунистое), относящихся к золото-серебряной формации, и установлены три минеральных ряда — науманнитовый, агвиларитовый и акантитовый. Скорректировав данные этих авторов и включив агвиларитовые и акантитовые составы в один ряд, мы получаем сводные интервалы для фаз акантитового Ag_{1.87-2.02}(S_{0.53-1.11}Se_{0.02-0.64})_{0.93-1.11} и науманнитового ряда Ag_{1.89-2.01}(Se_{0.79-0.99}S_{0.01-0.24})_{0.8-1.23}, лежащие в пределах аналитической ошибки соответствующих рядов твердых растворов, установленных по экспериментальным результатам [Pingitore et al., 1992, 1993]. О срастаниях двух или трех фаз сульфоселенидов серебра [Сахарова и др., 1993] на этих объектах не упоминается.

На месторождении Понгкор [Warmada et al., 2003] также установлены акантит и агвиларит и вариации селена от 2.1 до 13.8 мас. %, серы от 6.2 до 12.6 мас. %, что соответствует акантитовому ряду состава Ag_2S — $Ag_2S_{0.54}Se_{0.46}$ и согласуется с экспериментальными данными [Pingitore et al., 1992, 1993]. Сульфоселеницы серебра акантитового ряда — Se-акантит состава $Ag_{1.91}(S_{0.94}Se_{0.15})_{1.09}$ и агвиларит состава $Ag_{1.90}(S_{0.49}Se_{0.61})_{1.10}$, т.е. обогащенный селеном и обедненный серебром по сравнению с принятой идеальной формулой $Ag_2S_{0.5}Se_{0.5}$ (или Ag_4SSe), присутствуют в марганцевых породах Дальнегорского района [Казаченко и др., 2008].

Науманнит-агвиларитовые прорастания, установленные И.Я. Некрасовым [1997] в рудах золотосеребряного месторождения Альфа, представляют разновременные образования фаз науманнитового и акантитового ряда: примеси серы в науманните составляют 0.5—0.8 мас. % ($Ag_2Se_{0.97}S_{0.03}$), а в агвиларите присутствует 7.4 мас. % S и 11.8 мас. % Se, что соответствует составу $Ag_2S_{0.6}Se_{0.4}$ — фазе акантитового ряда. А.Н. Шило с соавторами [1992] отмечали, что науманнит был обнаружен в виде мелких неправильных обособлений в раннем акантите. Следует отметить, что информация о двухфазных образованиях акантита и науманнита встречается в литературе значительно реже по сравнению с данными по однофазным сульфоселенидам серебра.

На фазовой диаграмме Ag_2S — Ag_2Se (см. рис. 6) представлены данные по природным составам акантита и науманнита, имеющиеся в литературе и пересчитанные нами с массовых процентов на 3 ф. ед. Хорошо видно, что они представляют непрерывный ряд точек. В интервал $Ag_2S_{0.4}Se_{0.6}$ и $Ag_2S_{0.3}Se_{0.7}$, где возможно существование двухфазной области, попали сульфоселениды серебра с месторождений Джульетта [Савва, Фидря, 1996], Сергеевское [Ботова и др., 1981] и Кубака [Шило и др., 1992; Степанов, Шишакова, 1994]. Отсутствие сведений об однородности микровключений сульфоселенидов серебра и наличии структур распада пока не позволяет делать выводы в отношении этой области. Разница в содержаниях серы в граничных фазах интервала — $Ag_2S_{0.4}Se_{0.6}$ (4.65 мас. % S) и $Ag_2S_{0.3}Se_{0.7}$ (3.43 мас. % S) — составляет 1.22 мас. %, что лежит на пределе точности РСМА. И, следовательно, необходимо про-

ведение дополнительных детальных исследований сульфоселенидов серебра и их однородности вблизи этих составов. Более точными будут, по-видимому, определения содержаний селена в сульфоселенидах серебра, поскольку они выше по сравнению с серой и охватывают интервал 17.14—19.70 мас. %. Возможно, что двухфазная область на диаграмме Ag_2S — Ag_2Se очень узкая, как и для сходной золотосодержащей системы Ag_3AuS_2 — Ag_3AuSe_2 , для которой недавно была установлена область морфотропного перехода в интервале составов Ag_3AuSeS — $Ag_3AuSe_{0.75}S_{1.25}$ [Сереткин и др., 2013; Seryotkin et al., 2013].

Вариации серы и селена в мономинеральных включениях сульфоселенидов серебра в рудах Роговика подтверждают изоморфизм серы и селена, а наличие кайм Se-акантита по S-науманниту — присутствие на фазовой диаграмме Ag₂S—Ag₂Se двух твердых растворов — акантитового и науманнитового, установленных экспериментально [Pingitore et al., 1992, 1993]. Выполненный обзор взаимоотношений и составов сульфоселенидов серебра на других месторождениях не подтвердил выводы о существовании третьего агвиларитового твердого раствора [Petruk et al., 1974].

ЗАКЛЮЧЕНИЕ

Полученные данные по концентрациям серы в науманните и селена в акантите, а также взаимоотношениям этих халькогенидов серебра в полиформационных рудах Роговика выявили существование двух твердых растворов — акантитового Ag_2S — $Ag_2S_{0.74}Se_{0.26}$ и науманнитового $Ag_2S_{0.28}Se_{0.72}$ — Ag_2Se . Наличие кайм Se-акантита по S-науманниту, широкие вариации примесей серы в науманните и селена в акантите, а также отсутствие срастаний трех сульфоселенидов серебра разного состава свидетельствуют о существовании двух твердых растворов на фазовой диаграмме Ag₂S—Ag₂Se, а не трех, как было ошибочно определено ранее по природным данным [Petruk et al., 1974]. Результаты исследования природных твердых растворов Ag₂(S,Se) на Роговике и обзор данных по типам срастаний и вариациям серы и селена в сульфоселенидах серебра других месторождений согласуются с фазовой диаграммой Ag₂S-Ag₂Se, полученной экспериментально [Pingitore et al., 1992, 1993]. При наличии двухфазной области на фазовой диаграмме Ag₂S—Ag₂Se для природных ассоциаций были бы характерны структуры распада твердых растворов и, соответственно, наличие закономерно расположенных вростков одного минерала в другом с граничными составами. Подобные срастания Se-акантита с S-науманнитом не установлены в рудах Роговика и не известны из литературы. Необходимо проведение детальных исследований природных сульфоселенидов, попадающих в интервал Ag₂S_{0.4}Se_{0.6} и Ag₂S_{0.3}Se_{0.7}, с целью выявления двухфазной области несмесимости и ее границ.

Авторы благодарят Н.С. Карманова (г. Новосибирск, ИГМ СО РАН) и Л.А. Павлову (г. Иркутск, ИГХ СО РАН) за микрорентгеноспектральное определение состава минералов. Авторы признательны д.г.-м.н. М.В. Борисову (МГУ) за ценные замечания.

Работа выполнена при поддержке РФФИ (грант 14-05-00361а), СО РАН (интеграционный проект № 48).

ЛИТЕРАТУРА

Алекперова Ш.М., Ахмедов И.А., Гаджиева Г.С., Джалилова Х.Д. Гигантское магнитосопротивление и кинетические явления в *n*-Ag₄SSe в окрестности фазового перехода // Физика твердого тела, 2007, т. 49, вып. 3, с. 490—492.

Бетехтин А.Г., Генкин А.Д., Филимонова А.А., Шадлун Т.Н. Текстуры и структуры руд. М., Госгеолтехиздат, 1958, 435 с.

Ботова М.М., Бергман Ю.С., Балясников А.А., Сандомирская С.М., Чувикина Н.Г. Первая находка фишессерита в СССР // Докл. АН СССР, 1981, т. 256, № 6, с. 1465—1469.

Васильева И.Е., Кузнецов А.М., Васильев И.Л., Шабанова Е.В. Градуировка методик атомно-эмиссионного анализа с компьютерной обработкой спектров // Журнал аналитической химии, 1997, т. 52, № 12, с. 1238—1248.

Вассало-Моралес Л.Ф., Бородаев Ю.С. Новые данные о минералах серии акантит-агвиларит-науманнит // Докл. АН СССР, 1982, т. 264, № 3, с. 685—688.

Вассало-Моралес Л.Ф., Старостин В.И., Бородаев Ю.С. Структурно-петрофизический контроль на серебряно-золотом месторождении Гуанахуато в Мексике // Геология рудных месторождений, 1982, т. 24, № 2, с. 20—28.

Годовиков А.А. Минералогия. М., Недра, 1983, 647 с.

Инструкция № IX. Химические аналитические методы. Йодометрическое определение общего содержания серы. М., ВИМС, 1965, 9 с.

Казаченко В.Т., Мирошниченко Н.В., Перевозникова Е.В., Карабцов А.А. Минеральные формы благородных металлов в металлоносных отложениях триасово-юрской углеродистой толщи Сихотэ-Алиня // ДАН, 2008, т. 421, № 3, с. 383—386.

Константинов М.М., Наталенко В.Е., Калинин А.И., Стружков С.Ф. Золото-серебряное месторождение Дукат. М., Недра, 1998, 203 с.

Константинов М.М., Костин А.В., Сидоров А.А. Геология месторождений серебра. Якутск, Сахаполиграфиздат, 2003, 282 с.

Кравцова Р.Г. Минералого-геохимическая зональность эпитермальных серебряных месторождений (Северное Приохотье) // Геохимические процессы и полезные ископаемые // Вест. ГеоИГУ, 2000, вып. № 2, с. 95—104.

Кравцова Р.Г. Геохимия и условия формирования золото-серебряных рудообразующих систем Северного Приохотья. Новосибирск, Академ. изд-во «Гео», 2010, 292 с.

Кравцова Р.Г., Захаров М.Н., Иванов О.П. Комплексные геохимические исследования при прогнозе и поисках серебряного оруденения (Северо-Восток России) // Геология рудных месторождений, 1996, № 5, с. 424—436.

Кравцова Р.Г., Макшаков А.С., Тарасова Ю.И., Куликова З.И. Минералого-геохимические особенности вмещающих пород и руд золото-серебряного месторождения Роговик (Северо-Восток России) // Изв. СО Секции наук о Земле РАЕН, Геология, поиски и разведка рудных месторождений, 2012, № 2(41), с. 11—22.

Кравцова Р.Г., Макшаков А.С., Павлова Л.А. Минеральный и геохимический состав, закономерности распределения и особенности формирования рудной минерализации золото-серебряного месторождения Роговик (Северо-Восток России) // Геология и геофизика, 2015, т. 56 (10), с. 1739—1759.

Кузнецов В.М., Ливач А.Э. Строение и металлогеническое районирование Балыгычано-Сугойского прогиба // Проблемы металлогении рудных районов Северо-Востока России. Магадан, СВКНИИ ДВО РАН, 2005, с. 156—176.

Кузнецов В.М., Палымская З.А., Пузырев В.П., Пчелинцева Р.З., Степанов В.А., Щитова В.И. Золото-серебряное оруденение в криптовулканической структуре // Колыма, 1992, № 3, с. 5—8.

Наумов Е.А. Типы золото-ртутной минерализации Алтае-Саянской складчатой области и физико-химические условия их формирования: Автореф. дис. ... к.г.-м.н. Новосибирск, 2007, ИГМ СО РАН, 16 с.

Некрасов И.Я. Вулканокупольная структура Аметистового месторождения и зональность золотосеребряного оруденения // Докл. РАН, 1996, т. 346, № 4, с. 509—511.

Некрасов И.Я. Особенности золото-серебряного месторождения Альфа в хребте Улахан-Сис (бассейн реки Яны) // Докл. РАН, 1997, т. 353, № 1, с. 97—99.

Новоселов К.А., Котляров В.А., Белогуб Е.В. Сульфоселенид серебра из руд Валунистого золото-серебряного месторождения (Чукотка) // Зап. РМО, 2009, ч. 138, вып. 6, с. 56—61.

Обушков А.В., Стружков С.Ф., Наталенко М.В., Рыжов О.Б., Кряжев С.Г., Радченко Ю.И. Геологическое строение и минералогия руд скрытого золото-серебряного оруденения месторождения Энгтери (Магаданская обл.) // Геология рудных месторождений, 2010, т. 52, № 6, с. 512—533.

Пальянова Г.А., Савва Н.Е. Особенности генезиса сульфидов золота и серебра месторождения Юное (Магаданская область, Россия) // Геология и геофизика, 2009, т. 50 (7), с. 759—777.

Рамдор П. Рудные минералы и их срастания. М., Изд-во иностр. лит., 1962, 1132 с.

Савва Н.Е., Фидря И.Л. Отражение региональных металлогенических особенностей территории в минералого-геохимической специализации руд золото-серебряного месторождения Джульетта // Минералогия и генетические особенности месторождений золота и серебра. Магадан, СВКНИИ ДВО РАН, 1996, с. 119—130.

Савва Н.Е., Пальянова Г.А. Генезис сульфидов золота и серебра на месторождении Улахан (северо-восток России) // Геология и геофизика, 2007, т. 48 (10), с. 1028—1042.

Савва Н.Е., Шахтыров В.Г. Золото-серебряное месторождение Ольча: тектоническая позиция, структура и минералогическая характеристика // Геология рудных месторождений, 2011, т. 53, № 5, с. 462—486.

Савва Н.Е., Пальянова Г.А., Колова Е.Е. Минералы золота и серебра в зоне вторичного сульфидного обогащения (рудопроявление Крутое, северо-восток России) // Вест. СВНЦ ДВО РАН, 2010, № 1, с. 33—45.

Савва Н.Е., Пальянова Г.А., Бянкин М.А. К проблеме генезиса сульфидов и селенидов золота и серебра на месторождении Купол (Чукотка, Россия) // Геология и геофизика, 2012, т. 53 (5), с. 597—609.

Сахарова М.С., Брызгалов И.А. Ряховская С.К. Минералогия селенидов в месторождениях вулканогенных поясов // Зап. ВМО, 1993, ч. 122, № 3, с. 1—9. Сереткин Ю.В., Пальянова Г.А., Савва Н.Е. Изоморфное замещение серы селеном и морфотропный переход в ряду Ag₃Au(Se,S)₂ // Геология и геофизика, 2013, т. 54 (6), с. 841—848.

Синдеева Н.Д. Минералогия, типы месторождений и основные черты геохимии селена и теллура. М., Изд-во АН СССР, 1959, 257 с.

Степанов В.А., Шишакова Л.Н. Кубакинское золото-серебряное месторождение. Владивосток, Дальнаука, 1994, 195 с.

Таусон В.Л., Кравцова Р.Г., Смагунов Н.В., Спиридонов А.М., Гребенщикова В.И., Будяк А.Е. Структурное и поверхностно-связанное золото в пиритах месторождений разных генетических типов // Геология и геофизика, 2014, т. 55 (2), с. 350—369.

Торгов В.Г., Хлебникова А.А. Атомно-абсорбционное определение золота в пламени и беспламенном графитовом анализаторе с предварительным выделением экстракцией сульфидами нефти // Журнал аналитической химии, 1977, т. 32, вып. 5, с. 960—964.

Шило А.Н., Сахарова М.С., Кривицкая Н.Н., Ряховская С.К., Брызгалов И.А. Минералогия и генетические особенности золото-серебряного оруденения северо-западной части Тихоокеанского обрамления. М., Наука, 1992, 256 с.

Bindi L., Pingitore N.E. On the symmetry and crystal structure of aguilarite, Ag₄SeS // Mineral. Mag., 2013, v. 77, p. 21–31.

Bontschewa-Mladenowa Z., Zaneva K. Untersuchung des Systems Ag₂Se—Ag₂S // Z. Anorg. Allg. Chem., 1977, v. 437, № 1, p. 253—262.

Bontschewa-Mladenowa Z., Vassilev V. Eigenschaften und Zustandsdiagramme einiger Silberchalkogenidsysteme // J. Therm. Anal., 1984, v. 29, № 3, p. 523—531.

Cocker H.A., Mauk J.L., Rabone S.D.C. The origin of Ag-Au-S-Se minerals in adularia-sericite epithermal deposits: constraints from the Broken Hills deposit, Hauraki Goldfield, New Zealand // Mineral. Deposita, 2013, v. 48, p. 249—266.

Fleisher M., Mandarino J. Glossary of mineral species-1995. Tucson, The Mineralogical Record Inc., 1995, 280 p.

Govindaraju K. Compilation of working values and samples description for 170 international reference samples of mainly silicate rocks and minerals // Geostand. Newslett., 1984, v. 8, Spec. Iss., p. 3—16.

Kienel G. Untersuchungen an Silber—Selen-Schichten // Ann. Physik, 1960, v. 460, i. 3–4, p. 229–236.

Mugas-Lobos A.C., Márquez-Zavalía M.F., Galliski M.Á. Selenium and precious metal-bearing minerals at Don Sixto mining project, Mendoza, Argentina // 11th SGA Biennial Meeting «Let's talk ore deposits», Antofagasta, Chile, 26–29 September 2011, v. I and II, p. 706–708.

Pal'yanova G.A., Chudnenko K.V., Zhuravkova T.V. Thermodynamic properties of solid solutions in the Ag₂S—Ag₂Se system // Thermochim. Acta, 2014, v. 575, p. 90—96.

Petruk W., Owens D.R., Stewart J.M., Murray E.J. Observations on acanthite, aguilarite and naumannite // Can. Miner., 1974, v. 12, p. 365—369.

Pingitore N.E., Ponce B.F., Eastman M.P., Moreno F., Podpora C. Solid solutions in the system Ag₂S—Ag₂Se // J. Mater. Res., 1992, v. 7, p. 2219—2224.

Pingitore N.E., Ponce B.F., Estrada L., Eastman M.P., Yuan H.L., Porter L.C., Estrada G. Calorimetric analysis of the system Ag₂S—Ag₂Se between 25 and 250 °C // J. Mater. Res., 1993, v. 8, p. 3126—3130.

Seryotkin Yu.V., Pal'yanova G.A., Bakakin V.V., Kokh K.A. Synthesis and crystal structure of goldsilver sulfoselenides: morphotropy in the $Ag_3Au(Se,S)_2$ series // Phys. Chem. Miner., 2013, v. 40, No 3, p. 229–237.

Shikazono N. Selenium content of acanthite and the chemical environments of Japanese vein-type deposits // Econ. Geol., 1978, v. 73, p. 524—533.

Vassilev V.S., Ivanova Z.G. Reversible $\alpha \leftrightarrow \beta$ phase transition in the narrow-gap semiconducting Ag₄SSe compound // Bull. Chem. Tech. Macedonia, 2003, v. 22, No 1, p. 21–24.

Warmada I.W., Lehmann B., Simandjuntak M. Polymetallic sulfides and sulfosalts of the Pongkor epithermal gold-silver deposit, West Java, Indonesia // Can. Miner., 2003, v. 41, № 1, p. 185–200.

Xiao C., Xu J., Li K., Feng J., Yang J., Xie Y. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance // J. Amer. Chem. Soc., 2012, v. 134, p. 4287—4293.

Рекомендована к печати 4 марта 2015 г. В.В. Ревердатто

Поступила в редакцию 7 июля 2014 г.