УДК 535.232.65

Низкотемпературная кювета для исследования спектров поглощения парниковых газов

В.И. Сердюков, Л.Н. Синица, А.А. Луговской, Н.М. Емельянов*

Институт оптики атмосферы им. В.Е. Зуева СО РАН 634055, г. Томск, пл. Академика Зуева, 1

Поступила в редакцию 28.06.2018 г.

Разработана низкотемпературная вакуумная кювета длиной 2200 мм со сменными окнами из кварца, ZnSe и KBr для работы с Фурье-спектрометром высокого разрешения Bruker IFS 125M, обеспечивающая пороговую чувствительность к поглощению порядка 10⁻⁷ см⁻¹. Кювета позволяет регистрировать спектры поглощения газов в диапазоне температур от 200 до 296 К с погрешностью контроля температуры 0,9 К в области 1000–20000 см⁻¹.

Ключевые слова: Фурье-спектроскопия, спектр поглощения, метан; Fourier spectroscopy, absorption spectrum, methane.

Введение

В настоящее время важное значение приобретает информация о спектрах поглощения парниковых газов при низкой температуре, соответствующей условиям верхней атмосферы. Особенно это относится к высокосимметричным молекулам, таким как CH₄, NF₃, CF₄, SF₆.

Метан (CH₄) является вторым по важности антропогенным парниковым газом после углекислого газа (CO₂) [1]. В 1960—1970-е гг. количество метана в атмосфере возрастало со скоростью 1% в год, это объяснялось хозяйственной деятельностью человечества. Увеличение содержания метана в атмосфере способствует усилению парникового эффекта, так как метан интенсивно поглощает тепловое излучение Земли в ИК-спектре.

Спектр метана имеет весьма сложную структуру, поскольку состоит из большого количества перекрывающихся полос. Только первые десять полиад метана, находящиеся в области до 14000 см⁻¹, содержат 70 уровней и более 1880 подуровней, что усложняет идентификацию регистрируемых спектров. Регистрация спектров высокого разрешения при низких температурах позволяет эффективно разделять вращательные уровни, разрешать структуру мультиплетов в результате уменьшения допплеровской ширины линии, определять значения квантового числа Jнижнего состояния из температурной зависимости интенсивностей линий. Температурные зависимости параметров спектральных линий метана и других высокосимметричных молекул необходимы для моделирования атмосферы, температура которой может быть ниже 100 К [2–8].

Для исследования спектров молекул при низкой температуре разработаны однопроходные и многоходовые низкотемпературные кюветы. Кюветы К. Sung и A.W. Mantz [9, 10] представляют собой однопроходные низкотемпературные ячейки, работающие при температурах 66-300 К в спектральной области ~1200-1800 см⁻¹ с длиной пути 24,29 и 20,38 см. Охлаждение достигалось при помощи гелиевого криостата с замкнутым циклом. Конструкция ячеек не предусматривает работу в высокочастотной спектральной области из-за их малого размера. Холодильная система с замкнутым циклом приводит к значительным механическим колебаниям ячейки [11, 12], поэтому качество регистрируемых спектров ухудшается вкладом механических колебаний криостата, от которых не удалось избавиться полностью.

В работах [13, 14] приведено описание разработанной кюветы длиной 1400 мм, которую охлаждают жидким азотом. Конструкция кюветы не позволяет плавно изменять температуру. Спектры регистрировали с использованием 23 волоконных диодных лазеров в качестве источника света при температурах до 77 К в спектральных областях 5850-6190 и 6700-7700 см⁻¹, за исключением небольшого зазора между 6958,2 и 6962,1 см⁻¹, что соответствует тетрадекаде и икосаде. Температура составила (81 ± 1) К, что соответствует температуре жидкого азота. Для сравнения на той же экспериментальной установке регистрировался спектр при комнатной температуре. Полученный набор данных состоит из 9389 линий с интенсивностью от ~ 1 \cdot 10⁻²⁶ до 3,6 \cdot 10⁻²² см⁻¹/мол. для метана при 81 К.

^{*} Виктор Иванович Сердюков (serd49@mail.ru); Леонид Никифорович Синица (sln@iao.ru); Алексей Александрович Луговской (laa@iao.ru); Никита Михайлович Емельянов (nikita.emelyanov.92@mail.ru).

Таким образом, возможности большинства имеющихся кювет ограничиваются областью до 8000 см⁻¹. Это связано с небольшой длиной кюветы и малой интенсивностью линий в более высокоэнергетических областях. Увеличение длины поглощающего пути и интенсивности возбуждающего излучения (для увеличения отношения сигнал-шум) позволит проводить исследования в более высокоэнергетических областях.

Целью настоящей работы является разработка и изготовление низкотемпературной газовой кюветы с изменяемой температурой, которая позволит регистрировать спектры метана в более высокоэнергетических областях вплоть до 20000 см⁻¹.

Конструкция кюветы

Кювета предназначена для использования с Фурье-спектрометром Bruker IFS 125M, апертура входного луча которого составляет 50 мм, и представляет собой трубку 1 из тонкостенной (0,2 мм) нержавеющей стали внутренним диаметром 40 мм (рис. 1). Кювету предполагается использовать как в ИК-, так и в видимой области спектра. Если в ИКобласти интенсивности линий молекул типа CH₄ достаточно велики (10^{-20} см⁻¹/мол.), то в ближней ИК- и видимой областях интенсивности линий менее 10^{-25} см⁻¹/мол., поэтому длина кюветы составляет 2200 мм. Этого достаточно для регистрации слабого поглощения в видимой области (10^{-7} см⁻¹). Рабочий объем кюветы — 2,765 л.

Рис. 1. Схема низкотемпературной кюветы: 1 — рабочий объем кюветы; 2, 5 — оптические окна; 3, 4 — охлаждающий и вакуумный кожухи соответственно; 6 — тонкостенная трубка для подачи исследуемого газа

Кювета помещена в кожух 3 диаметром 60 мм, выполненный из нержавеющей стали толщиной 0,2 мм, через который происходит циркуляция охлаждающей жидкости.

Подача исследуемого газа в кювету осуществляется по тонкостенной стальной трубке 6 диаметром 6 мм. Давление в системе при напуске контролируется датчиком АИР-20М с точностью до 0,03 мбар. Для этого при комнатной температуре в дополнительный буферный объем емкостью 20 л с датчиком давления нагнетается необходимое количество газа. Давление фиксируется, а затем соединение между кюветой и буфером перекрывается вакуумным клапаном. При понижении температуры давление в кювете высчитывается с помощью объединенного газового закона $P_1V_1/T_1 = P_2V_2/T_2$. Снаружи корпус кожуха 3 экранирован тремя слоями алукрафта для Минимизации потерь из-за излучения. Для теплоизоляции кюветы предусмотрен дополнительный вакуумный кожух 4. Фиксация коветы в кожухе осуществлена посредством стопорных гаек на двух патрубках, через которые производится циркуляция охлаждающей жидкости. Все патрубки, включая весь тракт подачи хладагента, а также кожух 4 экранированы алукрафтом и двойным слоем листового поролона толщиной 20 мм. Внутри входного и выходного патрубков кожуха 3установлены жидкостные электронные термометры ЛТ-300-Н корпорации «Термекс» (г. Томск) с разрешением 0,01 К и погрешностью \pm 0,05 К (класс С по ASTM E2877).

Чтобы перекрыть максимально широкий спектральный диапазон, в кювете применены два набора оптических окон. Для ИК-области внутренние окна 2 кюветы диаметром 50 мм изготовлены из ZnSe. Толщина окна составила 4 мм для обеспечения необходимой прочности при вакуумизации рабочего объема. Внешние окна 5 изготовлены из КВг толщиной 16 мм. Чтобы устранить интерференцию, окна выполнены в виде клина с углом 0,5°. Суммарное ослабление проходящего излучения окнами не превышает 10% в области 1000–4000 см⁻¹.

В ближней ИК- и видимой областях спектра использовались внутренние и внешние окна из кварца диаметром 50 и толщиной 4 мм. Кварцевые окна позволяют работать в видимом и ИК-диапазоне вплоть до 3000 см⁻¹. Подробнее характеристики использованных окон представлены в табл. 1.

Таблица 1 Характеристики используемых оптических окон

Парамотр	Материал					
параметр	ZnSe	KBr	Кварц			
Лиомотр мал	50/0	50/0	50/0			
диаметр, мм	(+0,0/-0,2)	(+0,0/-0,2)	(+0,0/-0,2)			
Клин, мин	$30(\pm 5)$	$30(\pm 5)$	$30(\pm 5)$			
Толщина, мм	$4,0(\pm 0,1)$	$16,0(\pm 0,1)$	$4,0(\pm 0,1)$			
Класс чистоты						
полировки	PV	PV	PV			
Спектральный						
диапазон, см ⁻¹	1000-4000	200 - 4000	3000-20000			

В качестве вакуумных прокладок применялась проволока из металлического индия марки ИН-0. Такой выбор обусловлен тем, что данный материал имеет минимальный коэффициент теплового расширения и не теряет пластичности при многократных перепадах температуры.

Охлаждение кюветы обеспечивается путем прокачки 95%-го этилового спирта с помощью криостата замкнутого цикла КРИО-ВТ-05-02 корпорации «Термекс». Скорость прокачки хладагента составляет 12 л/мин, а температура на выходе из криостата достигает 193 К.

Тестирование градиента температуры внутри рабочего объема кюветы показало, что высокая скорость прокачки хладагента вкупе с разработанной теплоизоляцией сводит теплопотери к минимуму: максимальное отличие температуры в кювете от показаний криостата достигает 2 К при температуре 197 К. При этом возникает незначительный градиент температуры между патрубками входа и выхода хладагента. Максимальный градиент достигает 0,008 К/см при температуре 197 К и при ее повышении значительно снижается. Таким образом, даже при самых низких температурах в районе 200 К разность температур на торцах кюветы от центра не превышает 0,9 К. Характеристики кюветы представлены ниже.

Материал окон	ZnSe, KBr, кварц
Спектральный диапазон	1000-20000 см ⁻¹
Объем кюветы	2,765 л
Хладагент	. этиловый спирт
Рабочая температура	199–296 К
Градиент	< 0,008 К/см
Длина	2200 мм
Диаметр	40 мм
Время выхода на режим	60 мин
Материал прокладок индий мет	галлический ИН-0

Наблюдаемое снижение градиента температуры объясняется тем, что при увеличении температуры уменьшается вязкость используемого в качестве хладагента 95% этанола и, следовательно, скорость прокачки охладителя через кожух 3. Кроме того, конструкция используемого криостата не исключает постепенного разбавления этанола атмосферными парами воды, что также приводит к повышению вязкости хладагента при низких температурах.

Регистрация спектра поглощения CH₄ с использованием кюветы

Изменение температуры газа приводит к изменению заселенности вращательных уровней основного колебательного состояния и, следовательно, к изменению интенсивности линий. Отношение интенсивностей колебательно-вращательного перехода $S(T_2)/S(T_1)$, начинающегося на уровне E при изменении температуры от T_1 до T_2 , определяется выражением [14]:

$$\ln\left(\frac{S_{v_0}(T_2)T_2^{3/2}}{S_{v_0}(T_1)T_1^{3/2}}\right) = E\left(\frac{1}{kT_1} - \frac{1}{kT_2}\right).$$
 (1)

Изменения интенсивности колебательно-вращательных переходов для пяти значений энергии нижнего состояния $E(E(J_0) = 10,48 \text{ см}^{-1}, E(J_1) =$ $= 31,28 \text{ см}^{-1}, E(J_6) = 291,98 \text{ см}^{-1}, E(J_7) = 375,4 \text{ см}^{-1},$ $E(J_9) = 573,54 \text{ см}^{-1})$ метана представлены на рис. 2. При понижении температуры интенсивность высоковозбужденных (J_6, J_7, J_9) состояний уменьшается, а низковозбужденных (J_0, J_1) – увеличивается. Эти закономерности можно использовать для определения энергии нижнего состояния перехода (или значения вращательного квантового состояния нижнего уровня перехода). Спектры поглощения CH₄ в области 6000–9200–см⁻¹ были зарегистрированы при трех температурах, обозначенных на графике пунктирной линией.

Рис. 2. Зависимость интенсивности от температур при разных уровнях энергии

Измерения спектра СН₄ проводились на Фурьеспектрометре Bruker IFS 125М с разработанной кюветой. В качестве источника излучения использовалась галогеновая лампа, излучение которой после прохождения через кювету попадало на внешний вход спектрометра IFS 125М. Были использованы германиевый фотоприемник и светоделитель из CaF₂. Регистрация спектров метана проводилась со спектральным разрешением 0,03 см-1 при диафрагме диаметром 1,1 мм. Всего было сделано 1644 сканов при скорости сканера 10 кГц. Отношение сигнал-шум в зарегистрированных спектрах составило в области измерений порядка 500, что позволило определять параметры контуров линий с интенсивностью вплоть до $9.5 \cdot 10^{-26}$ см⁻¹/мол. Температура в комнате объемом 75 м³ стабилизировалась с помощью кондиционера Midea MSE-24HR с погрешностью лучше, чем 1 К, что обеспечило хорошее качество спектров при длительном времени измерения.

В результате использования разработанной кюветы и Фурье-спектрометра IFS 125М были зарегистрированы спектры поглощения основного изотопа метана при температурах 296, 253,5 и 208,5 К. При этом давление составляло 0,2941, 0,252, 0,207 атм соответственно.

На рис. З показан обзорный спектр Q- и Rветвей полосы (0030)—(0000) при температурах 296 (1) и 208,5 К (2) на уровнях j = 1 (слева), j == 10 (справа). Максимальное ослабление излучения составляет 8%, что соответствует интенсивности линий $3 \cdot 10^{-24}$ см⁻¹/мол. При низкой температуре вращательные уровни с малым J имеют более высокую интенсивность, а с увеличением температуры интенсивность линий уменьшается в 2 раза. Линии с высоким значением J ведут себя при изменении температуры обратным образом: при низкой температуре вращательные уровни с высоким J (порядка 10) имеют малую интенсивность, а с увеличением температуры их интенсивность увеличивается в несколько раз.

Обработка зарегистрированных спектров проводилась с помощью программы VxSpe. Был составлен список линий с интенсивностями для каждой температуры.

Рис. 3. Спектр пропускания CH₄ при *I* = 296 (1) и 208,5 К (2)

Вращательное квантовое число J определяется из величин энергии перехода E и основной вращательной постоянной B_0 как

$$J = \sqrt{\frac{1}{4} + \frac{E}{B_0}} - \frac{1}{2}.$$
 (2)

Продифференцировав формулу (2), получаем выражение $dJ = dE(1/\sqrt{E})$, из которого видна зависимость относительной погрешности определения квантового числа J от энергии. Чем больше значение J, тем меньше относительная погрешность его определения. Поскольку энергии нижних состояний малы, то погрешность определения J по формуле (2) велика, как и показано в табл. 2, где, например, J = 0 определяется как 5,7. Напротив, энергии высоковозбужденных переходов больше и погрешность определения J снижается (J = 10 определяется как 10,7). Однако переходы с низковозбужденных состояний имеют большую интенсивность, а соответствующие им линии поглощения хорошо разрешены. С другой стороны, спектр в высокочастотной области триаконтады сложен в результате многочисленных вращательных взаимодействий. Это приводит к перекрыванию линий поглощения и создает проблемы идентификации. В этом случае отнесение линий поглощения к конкретному переходу возможно только с использованием формул (1) и (2).

После составления списка линий и определения их параметров, таких как центр линии и интенсивность, из формулы (2) были вычислены вращательные квантовые числа J. При этом значение вращательной постоянной для метана $B_0 = 5,214 \text{ см}^{-1}$ было взято из [14].

В табл. 2 представлены результаты отнесения линий *R*-ветви полосы (0030)–(0000) к вращатель-

ным квантовым числам J. Хорошо видно, что в случае высоких J расчет оказывается довольно точным, тогда как при малых J погрешность идентификации сильно возрастает. При этом расчет оказывается более точным при отнесении спектров, зарегистрированных при температурах 296 и 210 К.

В табл. З приведены частоты линий полосы Зу₃, полученные в разных работах. Еще в начале 1970-гг. К. Fox и другие регистрировали спектры планет в области до 14000 см⁻¹ [15]. В работе [16] с помощью Фурье-интерферометра были зарегистрированы ИК-спектры планет, подобных Юпитеру, в области от 12000 до 4000 см⁻¹. Эти же авторы записали лабораторные спектры метана полосы 3v₃ в области 9000-9500 см⁻¹ с точностью ±0,005 см⁻¹. Спектр метана был зарегистрирован с высокой чувствительностью на ВР-спектрометре [17] в области 9040-9170 см⁻¹. Полученные в настоящей работе частоты линий хорошо согласуются с данными [15], расхождение не превышает 0,004 см⁻¹ даже для высоковозбужденных состояний, а с данными [17], полученными на внутрирезонаторном спектрометре высокой чувствительности, расхождение достигает 0,04 см⁻¹. Следует отметить, что в работах [15, 16] были идентифицированы линии только до состояний J = 7, тогда как использование разработанной кюветы совместно с новыми методами обработки контуров линий позволило нам провести идентификацию более высоковозбужденных переходов, сравнимую с измерениями на внутререзонаторном спектрометре.

Заключение

Разработана низкотемпературная вакуумная кювета, позволяющая регистрировать спектры поглощения газов в диапазоне температур от 200 до 296 К. Точность измерения температуры на торцах

Таблица 2

		Интенсивность при различных			Рассчитанные		
Частота, см ^{-1} J		температурах, см 1/мол.		по форм	уле (2) зн	ачения Ј	
		296 K	208,5 K	253,5 К	J_1	J_2	$J_{ m cpeднee}$
9057,77	0	1,48E-24	2,29E-24	1,58E-24	2,4	5,7	4,05
9068,57	1	1,44E-24	2,14E-24	1,54E-24	3,1	5,8	4,45
9079,15	2	1,74E-24	2,54E-24	1,87E-24	3,3	5,7	4,5
9089,83	3	1,75E-24	2,69E-24	2,07E-24	2,5	3,5	3
9099,73	4	1,74E-24	2,44E-24	1,98E-24	3,7	4,4	4,05
9100,20	4	1,26E-24	1,74E-24	1,43E-24	3,9	4,5	4,2
9100,31	4	1,77E-24	2,49E-24	2,03E-24	3,7	4,3	4
9100,47	4	3,15E-24	4,48E-24	3,65E-24	3,5	3,9	3,7
9110,01	5	1,63E-24	2,08E-24	1,81E-24	4,7	5	4,85
9110,11	5	1,15E-24	1,50E-24	1,29E-24	4,5	4,9	4,7
9110,76	5	1,90E-24	2,29E-24	2,08E-24	5,2	5,4	5,3
9110,95	5	1,91E-24	2,41E-24	2,13E-24	4,8	4,9	4,85
9120,14	6	2,56E-24	2,88E-24	2,66E-24	5,7	6,3	6
9120,33	6	1,55E-24	1,76E-24	1,59E-24	5,6	6,4	6
9120,53	6	1,51E-24	1,71E-24	1,58E-24	5,7	6,2	5,95
9121,29	6	2,78E-24	3,06E-24	2,97E-24	5,9	5,8	5,85
9130,58	7	2,01E-24	1,94E-24	2,01E-24	6,8	6,9	6,85
9130,97	7	2,32E-24	2,22E-24	2,29E-24	6,8	7,1	6,95
9131,34	7	6,46E-25	6,11E-25	6,20E-25	6,9	7,5	7,2
9132,03	7	6,10E-25	5,61E-25	5,99E-25	7,1	7,2	7,15
9132,30	7	1,30E-24	1,18E-24	1,27E-24	7,2	7,3	7,25
9141,06	8	9,85E-25	7,66E-25	8,51E-25	8,1	9	8,55
9142,87	8	5,49E-25	4,33E-25	4,92E-25	8	8,5	8,25
9143,73	8	1,59E-24	1,30E-24	1,47E-24	7,8	8,1	7,95
9144,16	8	6,60E-25	5,50E-25	6,02E-25	7,7	8,3	8
9152,57	9	6,47E-25	3,76E-25	5,26E-25	9,5	9,7	9,6
9152,69	9	6,98E-25	3,94E-25	5,93E-25	9,7	9,1	9,4
9152,79	9	9,10E-25	5,59E-25	7,35E-25	9,3	9,8	9,55
9154,21	9	4,02E-25	2,54E-25	3,64E-25	9,1	8,3	8,7
9154,73	9	3,32E-26	2,51E-26	3,00E-26	8,2	8,4	8,3
9154,98	9	7,48E-25	4,87E-25	6,83E-25	9	8,2	8,6
9156,88	9	3,64E-26	2,28E-26	3,19E-26	9,2	8,8	9
9163,80	10	2,61E-25	1,35E-25	2,20E-25	10,1	9,3	9,7
9168,10	10	3,10E-25	1,31E-25	2,47E-25	10,9	9,9	10,4
9168,40	10	3,42E-25	2,12E-25	2,59E-25	9,2	10,5	9,85
9168,577	10	6,21E-25	3,58E-25	4,56E-25	9,6	10,8	10,2

Результаты идентификации линий

П р и м е ч а н и е. J_1 вычислено по спектрам при температурах 208,5 и 296 К, J_2- по температурам 253,5 и 296 К.

Таблица З

Сравнение полученных частот с частотами из разных работ

J	Частота, см ⁻¹	Данные [15] при давлении 200 торр и температуре 294 К		Margolis-Fox, 75 торр, 294 К [16]		ВР-спектрометр [17]	
		Частота, см ⁻¹	Δ , cm ⁻¹	Частота, см-1	Δ , cm ⁻¹	Частота, см ⁻¹	Δ , cm^{-1}
1	2	3	4	5	6	7	8
0	9057,765	9057,764	0,001	9057,58	0,19	9057,77	0
1	9068,567	9068,566	0,001	9068,44	0,13	9068,57	0
2	9079,152	9079,151	0,001	9079,08	0,07	9079,16	0,01
3	9089,832	9089,831	0,001	9089,67	0,16	9089,84	0,01
4	9099,73	9099,729	0,001	9099,55	0,18	9099,71	0,02
4	9100,196	9100,196	0,001	9100,00	0,20	9100,20	0
4	9100,310	9100,310	0,001	9100,12	0,19	9100,32	0,01
4	9100,469	9100,468	0,001	9100,27	0,20	9100,47	0

Сердюков В.И., Синица Л.Н., Луговской А.А., Емельянов Н.М.

Окончание табл.	- 3
-----------------	-----

1	2	3	4	5	6	7	8
5	9110,005	9110,004	0,001	9109,81	0,20	9110,01	0
5	9110,114	9110,113	0,001	9109,91	0,20	9110,12	0,01
5	9110,763	9110,761	0,001	9110,59	0,17	9110,77	0,01
5	9110,946	9110,944	0,001	9110,76	0,19	9110,95	0
6	9120,137	9120,136	0,001	9119,95	0,19	9120,14	0
6	9120,328	9120,326	0,002	9120,13	0,20	9120,33	0
6	9120,531	9120,530	0	9120,35	0,18	9120,54	0,01
6	9121,294	9121,293	0,001	9121,09	0,20	9121,30	0,01
7	9130,58	9130,581	0,001	9130,41	0,17	9130,59	0,01
7	9130,972	9130,972	0	9130,79	0,18	9130,98	0,01
7	9131,341	9131,341	0	9131,17	0,17	9131,35	0,01
7	9132,027	9132,027	0	9131,84	0,19	9132,03	0
7	9132,298	9132,294	0,004	9132,11	0,19	9132,30	0
8	9141,060					9141,07	0,01
8	9142,870					9142,88	0,01
8	9143,730					9143,74	0,01
8	9144,160					9144,18	0,02
9	9152,570					9152,55	0,02
9	9152,690					9152,70	0,01
9	9152,790					9152,82	0,03
9	9154,210					9154,23	0,02
9	9154,730					9154,74	0,01
9	9154,980					9154,99	0,01
9	9156,880					9156,88	0
10	9163,800					9163,77	0,03
10	9168,100					9168,07	0,03
10	9168,400					9168,36	0,04

рабочего объема кюветы определяется электронным блоком и составляет $\pm 0,01$ К. При этом градиент температуры по длине кюветы не превышает 0,008 К/см. Она предназначена для работы с Фурье-спектрометром высокого разрешения Bruker IFS 125М. Созданная кювета длиной 2200 мм со сменными окнами из кварца, ZnSe и KBr позволяет регистрировать низкотемпературные спектры молекулярных газов в диапазоне 1000–20000 см⁻¹.

Работа выполнена при поддержке РНФ (грант № 17-17-01170).

- 1. Warneck P. Chemistry of the Natural Atmosphere. San Diego: Academic Press, 1988. 757 p.
- Sepulveda E., Schneider M., Hase F. Long-term validation of tropospheric column-averaged CH₄ mole fractions obtained by mid-infrared ground-based FTIR spectrometry // Atmos. Meas. Tech. 2012. V. 5. P. 1425–1441.
- Crutzen P.J. Geophysiology of Amazonia: Vegetation and Climate Interactions. New York: Wiley, 1987. 526 p.
 Goody R. Atmospheres of major planets // J. Atmos.
- Sci. 1969. V. 26. P. 997–1001. 5. Combes M., Bergh C.D., Lecacheus J., Maillard J.P.
- Identification of ${}^{13}CH_4$ in atmosphere of Saturn // Astron. Astrophys. 1975. V. 40. P. 81–84.
- Wiedemann G., Bjoraker G.L., Jennings D.E. Detection of ¹³CH₄ in Jupiter atmosphere // J. Astrophys. 1991. V. 383. P. 29–32.
- Encrenaz T. Remote sensing analysis of solar-system objects // Phys. Scr. 2008. V. 130. P. 014037.

- Goody R.M., Yung Y.L. Atmospheric Radiation: Theoretical Basis. New York: Oxford University Press Inc., 1995. 544 p.
- 9. Sung K., Mantz A.W., Smith M.A.H. Cryogenic absorption cells operating inside a Bruker IFS 125HR: First results for ¹³CH₄ at 7 µm // J. Mol. Spectrosc. 2010. V. 262. P. 122–134.
- Mantz A.W., Sung K., Brown L.R. A cryogenic Herriott cell vacuum-coupled to a Bruker IFS 25HR // J. Mol. Spectrosc. 2014. V. 304. P. 12–24.
- Jennings D.E., Hillman J.J. Shock isolator for diodelaser operations on a closed-cycle refrigerator // Rev. Sci. Instrum. 1977. V. 48. P. 1568–1569.
- 12. Mantz A.W., Malathy D.V., Benner D.C., Smith M.A.H., Predoi-Cross A., Dulick M. A multispectrum analysis of widths and shifts in the 2010–2260 cm⁻¹ region of ¹²C¹⁶O broadened by Helium at temperatures between 80–297 K // J. Mol. Struct. 2005. V. 742. P. 99–110.
- Kassi S., Gao B., Romanini D., Campargue A. The near infrared (1.30–1.70 mm) absorption spectrum of methane down to 77 K // Phys. Chem. Chem. Phys. 2008. V. 10. P. 4410–9.
- Campargue A., Wang Le, Kassi S., Masat M., Votava O. Temperature dependence of the absorption spectrum of CH₄ by high resolution spectroscopy at 81 K: (II) The icosad region (1.49–1.30 μm) // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111. P. 1141– 1151.
- 15. Margolis J.S., Fox K. Infrared absorption spectrum of CH₄ at 9050 cm⁻¹ // J. Chem. Phys. 1968. V. 49. P. 2451-2452.

Низкотемпературная кювета для исследования спектров поглощения парниковых газов

- Maillard J.P., Combes M., Encrenaz Th., Lecacheux J. New infrared Spectra of the Jovian planets from 12000 to 4000 cm by Fourier Transform spectroscopy // Astrophys. 1973. V. 25. P. 219–232.
- 17. Синица Л.Н. Высокочувствительная лазерная спектроскопия высоких колебательно-вращательных состояний молекул: Дис. ... д-ра физ.-мат. наук. Томск: Ин-т оптики атмосф. СО РАН, 1988. 420 с.

V.I. Serdyukov, L.N. Sinitsa, A.A. Lugovskoi, N.M. Emelyanov. The low-temperature cell for studying the absorption spectra of greenhouse gases.

A low temperature vacuum cell 220 cm long with windows of quartz, ZnSe, and KBr has been developed for work with the Bruker IFS 125-M high resolution Fourier spectrometer providing a threshold sensitivity to absorption on the order of 10^{-7} cm⁻¹. The cell allows recording the absorption spectra of gases in the temperature range from 200 to 296 K with the accuracy of 0.9 K in the region 1000–20000 cm⁻¹.