УДК 534.222+539.374

О РАСПРОСТРАНЕНИИ КВАЗИАКУСТИЧЕСКИХ ИМПУЛЬСОВ В УПРУГОПЛАСТИЧЕСКОЙ СРЕДЕ

Н. Н. Мягков

Институт прикладной механики РАН, 117334 Москва

В квазиакустическом приближении получены выражения для скорости пластической ударной волны и фазовой скорости продольных волн в упругопластической среде с упрочнением. Построено аналитическое решение задачи о затухании ударного импульса. Особенность затухания амплитуды пластической ударной волны состоит в том, что она достигает амплитуды упругого предвестника за конечное время, в то время как в гидродинамике амплитуда квазиакустического ударного импульса стремится к нулю асимптотически.

Ключевые слова: упругопластическая среда, изотропное упрочнение, нелинейные волны, ударная волна.

Введение. Исследование эволюции нелинейных волн, порожденных взрывным или ударным нагружением материалов и конструкций, представляет научный и практический интерес. Исследования такого рода обычно проводятся в условиях импульсного нагружения с амплитудами давлений в материале от нескольких единиц до десятков гигапаскалей [1]. Как правило, в этом случае возникающие волны можно считать слабыми в смысле малости отношения давления к модулю объемного сжатия материала и соответственно использовать приближение нелинейной акустики [2, 3] для моделирования ударно-волновых процессов.

В настоящей работе распространение нелинейных акустических волн в упругопластической среде рассматривается в рамках модели, предложенной в [4].

1. Стационарные ударные волны. Рассмотрим распространение плоских продольных волн при одноосной деформации. При распространении таких волн все величины являются функциями только одной переменной $X - D_{rm}t$ ($X = x_1|_{t=0}$; D_{rm} — лагранжева фазовая скорость распространения волны). Пусть среда переводится волной сжатия из состояния $(\rho, u_1, \sigma_1, \tau)_r$ при $t \to -\infty$ в состояние $(\rho, u_1, \sigma_1, \tau)_m$ при $t \to \infty$. Здесь $\tau = -(\sigma_1 - \sigma_2)/2$; σ_i — главные напряжения; u_1 — скорость перемещения среды; ρ — плотность. Из законов сохранения следуют соотношения (вязкостью внутреннего трения и теплопроводностью пренебрегаем)

$$u_1 - (u_1)_r = \rho_0 D_{rm} (1/\rho_r - 1/\rho), \quad \sigma_1 - (\sigma_1)_r = -(\rho_0 D_{rm})^2 (1/\rho_r - 1/\rho),$$

$$E - E_r + (\sigma_1 + (\sigma_1)_r)(1/\rho_r - 1/\rho)/2 = 0,$$
(1)

где E — внутренняя энергия. Уравнения (1) описывают как гладкие, так и разрывные скачкообразные изменения величин в волне. Как известно, внутренняя энергия для изотропной среды является функцией инвариантов тензора деформаций и энтропии S. Эту зависимость удобно представить в виде $E = E(\rho, D, \Delta, S)$, где D, Δ — инварианты девиатора тензора эффективных упругих деформаций [5].

Введем малые параметры ε (отношение амплитуды напряжения к модулю объемного сжатия) и $\nu = (C_l^2 - C_0^2)/(2C_0^2) = 2G/(3\rho_0 C_0^2)$ (G — модуль сдвига; C_l — фазовая скорость продольных упругих волн; C_0 — объемная скорость звука). Таким образом, предполагается, что компоненты девиатора напряжений рассматриваются как величины следующего

порядка малости по сравнению со средним напряжением (безразмерное среднее напряжение — величина порядка $O(\varepsilon)$). Представляя внутреннюю энергию E в виде степенного ряда по приращению плотности $\rho' = (\rho - \rho_0)/\rho_0$, энтропии $S' = T_0(S - S_0)/C_0^2$, инвариантам D и Δ с учетом $\partial E/\partial D|_0 = 2G/\rho_0$ и удерживая в гидродинамической части тензора напряжений члены до второго порядка малости включительно, получим

$$\sigma_1' = \sigma_1 / (\rho_0 C_0^2) = -[\rho' + \alpha \rho'^2 / 2 + \Gamma S' + O(\varepsilon^3 + \varepsilon^2 \nu)] - 3\nu(\psi + O(\varepsilon^2)).$$
(2)

Здесь $\psi = 2\tau/(3G)$; параметр $\alpha = 4 + \rho_0^3 E_{\rho\rho\rho}|_S/C_0^2$ определяется из уравнения состояния и может быть вычислен, например, через адиабатическую производную от модуля объемного сжатия по давлению, определяемую на основе известных экспериментов [6]; T_0 начальная температура; Γ — коэффициент Грюнайзена. Амплитуда ψ определяется величиной Y/(3G) (Y — предел текучести при растяжении). Для металлов $Y/(3G) \sim 10^{-3}$, поэтому, несмотря на то что введенный малый параметр ν для металлов является достаточно "большим" ($\nu \leq 0.3$), член $3\nu\psi$ в (2) будет мал по сравнению с основным членом разложения $|\rho'| \sim \varepsilon$. При напряжениях, наблюдающихся в обычных ударно-волновых экспериментах, $\varepsilon \sim 0.1$.

Из системы (1), (2) можно получить соотношения для приращения энтропии, скорости D_{rm} и зависимости $\psi(\rho')$:

$$[S'] = (\alpha + 2)[\rho']^3/12 + (9/4)\nu(\psi_m + \psi_r)[2\rho'/3 - \psi] + O(\varepsilon^4 + \varepsilon^3\nu);$$
(3)

$$(D_{rm}/C_0)^2 = 1 + (\alpha + 2)(\rho'_r + \rho'_m)/2 + 3\nu[\psi]/[\rho'] + O(\varepsilon^2 + \varepsilon\nu);$$
(4)

$$3\nu(\psi - \psi_r)/2 = \delta(\rho' - \rho_r') - (\alpha + 2)(\rho'^2 - \rho_r'^2)/4 + O(\varepsilon^2 + \varepsilon\nu),$$
(5)

где $[\cdot] = (\cdot)_m - (\cdot)_r; \delta = (D_{rm}^2/C_0^2 - 1)/2$. Первый член в правой части (3) определяет приращение энтропии за счет изменения плотности в ударной волне, второй член характеризует приращение энтропии за счет работы пластических деформаций. Зависимость (5) описывает возможные состояния внутри волны и определяет зависимость напряжения сдвига $(9/4)\nu(\psi - \psi_r)$ от истинной деформации ρ' . Для получения стационарных решений к соотношению (5) необходимо добавить определяющее уравнение, связывающее ψ и ρ' .

При малых деформациях ψ связана с пластической деформацией соотношением

$$\dot{\varepsilon}_1^p = -2\dot{\rho}'/3 + \dot{\psi} \tag{6}$$

(точка означает дифференцирование по времени).

Рассмотрим модель упругопластической среды типа Прандтля — Рейсса и условие текучести Мизеса для случая одноосной деформации. В принятых обозначениях определяющие уравнения имеют вид

$$\psi = 2\dot{\rho}/3 \quad \text{при} \quad |\psi| \leqslant \psi_*, \qquad \psi = \psi_* \operatorname{sign} \psi \quad \text{при} \quad |\psi| > \psi_*. \tag{7}$$

Здесь $\psi_* = Y/(3G)$. Сначала рассмотрим случай постоянного предела текучести (Y = const). Элементарное исследование уравнений (5) и (7) дает следующие результаты. При $\rho'_r = \psi_r = 0$ (волна распространяется по невозмущенной среде) возможно единственное стационарное решение для $\rho'_m > \rho'_*$ ($\rho'_* = 3\psi_*/2$) в виде последовательности двух сильных разрывов (ударных волн). В упругой ударной волне среда переводится скачком из состояния (0,0) в состояние (ρ'_*, ψ_*), в пластической ударной волне — из состояния (ρ'_*, ψ_*) в состояние ($4\nu/(\alpha+2), \psi_*$), т. е. амплитуда стационарной волны $\rho'_m = 4\nu/(\alpha+2)$ и $\psi_m = \psi_*$. При этом $\delta = (\alpha+2)\rho'_*/4 + \nu$. На рис. 1 приведена зависимость $\psi(\rho')$ (формула (5)). Сдвиг фаз между скачками не определен (он может быть произвольным), определена только последовательность скачков. Если $\rho'_m > 4\nu/(\alpha+2)$, то пластическая ударная волна догоняет упругую ударную волну, в противном случае отстает от нее.

Рис. 1

Далее примем модель изотропного упрочнения, в которой предел текучести зависит от скалярного параметра Л. Закон течения запишем в виде

$$d\varepsilon_{ij}^p = (3/4)s_{ij} \, d\Lambda / \sqrt{(3/8)s_{kl}s_{kl}}.\tag{8}$$

Здесь ε_{ij}^p — компоненты тензора пластических деформаций; s_{ij} — компоненты девиатора напряжений. Из (8) следует, что параметр Λ связан с параметром упрочнения W^p , равным работе пластических деформаций, преобразованием $dW^p = Y(\Lambda) d\Lambda$. Интегрируя и подставляя $W^p = \varphi(\Lambda)$ в известную зависимость $Y_s(W^p)$, найдем $Y(\Lambda) = Y_s(\varphi(\Lambda))$. Аналогичное преобразование использовалось в работе [7]. Из (6) и (8) для пластической волны получим $\dot{\Lambda} = 2\dot{\rho}'/3 - \dot{Y}/(3G)$. Интегрируя это уравнение с начальными условиями $\Lambda = 0$, $\rho' = \rho'_*, Y(0) = Y_0$ и учитывая, что $\rho'_* = Y_0/(2G)$, получим

$$\Lambda = 2\rho'/3 - Y/(3G). \tag{9}$$

Таким образом, при заданной зависимости $Y = Y(\Lambda)$ стационарное решение для упругопластической волны можно получить как результат решения уравнений (9) и (5), принимая в последнем уравнении $\rho_r = \rho_*, \psi_r = \psi_*, \delta = (\alpha+2)\rho'_*/4+\nu$. В частности, из (5) следует соотношение $Y_m - Y_0 = 2G(\rho'_m - \rho'_*)(1 - (\alpha+2)\rho'_m/(4\nu))$, означающее, что в упрочняющейся среде $Y_m > Y_0$ возможны стационарные волны с амплитудой $\rho'_* < \rho'_m < 4\nu/(\alpha+2)$. В случае $Y(\Lambda) = Y_0 + Y_1\Lambda$ (Y_0, Y_1 — постоянные) для $\rho' > \rho'_*$ можно построить решение в виде пластической ударной волны, переводящей скачком среду из состояния (ρ'_*, ψ_*) в состояние с параметрами $\rho'_m = 4\nu(1-k)/(\alpha+2), \psi_m = \psi_* + k(2\rho'_m/3 - \psi_*)$, где $k = (1+3G/Y_1)^{-1}, 0 < k < 1 - (\alpha+2)\rho'_*/(4\nu); \rho'_* = Y_0/(2G); \psi_* = Y_0/(3G).$

Соотношение (4) справедливо для скачкообразных изменений величин в любой продольной волне (в этом случае индексами m и r отмечены соответственно величины непосредственно за и перед скачком) для любой упругопластической среды, поскольку при выводе (4) определяющее уравнение не использовалось. Возникновение разрывных решений в виде ударных волн связано с неоднозначностью профиля волны, возникающей в результате опрокидывания первоначально гладкого решения, когда лагранжева скорость распространения фиксированных уровней деформаций $C(\rho')$ растет с увеличением ρ' . В рассматриваемом приближении имеем

$$C^{2} = \left(\frac{dX}{dt}\right)^{2}\Big|_{\rho'} = C_{0}^{2}\left(1 + (\alpha + 2)\rho' + 3\nu\left(\frac{\partial\psi}{\partial\rho'}\right)_{X}\right) + O(\varepsilon^{2} + \varepsilon\nu).$$
(10)

Следует отметить, что (10) можно получить из (4) при одновременном стремлении к нулю $[\rho']$ и $[\psi]$, полагая при этом, что $\rho'_r \to \rho'$ и $\rho'_m \to \rho'$. В этом случае построение разрывного решения и определение положения фронта можно осуществить с помощью так

называемого правила равенства площадей [2, 3]. Покажем, что скорость фронта ударной волны, определяемая по формуле (4), удовлетворяет этому правилу. Пусть в данный момент разрыв занимает положение $t = t_p(X)$ (рис. 2). Заштрихованная площадь на рис. 2

равна интегралу $J = \int_{\rho'_1}^{\rho_2} (t(\rho', X) - t_p(X)) d\rho'$. Здесь $t(\rho', X)$ — зависимость, определяемая

соотношением (10). На рис. 2 заштрихованные площади слева и справа от прямой $t = t_p(X)$ равны. Продифференцируем выражение для J по X с учетом (4) и (10). В результате получим

$$\frac{\partial}{\partial X}J = \int_{\rho_1'}^{\rho_2'} \left(\frac{1}{C(\rho')} - \frac{1}{D_{12}}\right)d\rho' = O(\varepsilon^3 + \varepsilon^2\nu).$$

В точке образования разрыва X_p заштрихованная площадь, очевидно, равна нулю. Следовательно, при $X > X_p$ в силу проведенных вычислений правило равенства площадей выполнено асимптотически, по крайней мере на расстояниях $X - X_p \leq O(\varepsilon^{-1})$.

Определим скорости ударных волн и скорости $C(\rho')$ для различных определяющих уравнений. Для упругой деформации из (4), (6), (10) имеем

$$D_{rm}^2 = C_l^2 + C_0^2(\alpha + 2)(\rho'_r + \rho'_m)/2, \qquad C^2 = C_l^2 + C_0^2(\alpha + 2)\rho', \tag{11}$$

где C_l — фазовая скорость продольных упругих волн в невозмущенной среде. Для среды Прандтля — Рейсса с условием текучести Мизеса из (6) и (8) для пластического скачка получим

$$[\Lambda] = 2[\rho']/3 - [Y]/(3G), \qquad [\Lambda] \ge 0.$$
(12)

Подставляя (12) в (4) и (10), получим выражения для скорости пластической ударной волны и лагранжевой скорости распространения возмущений при активном нагружении $(\dot{\rho}' > 0)$, которые в модели упрочняющейся среды с условием пластичности $Y(\Lambda)$ имеют вид

$$\rho_0 D_{rm}^2 = \rho_0 C_0^2 \left(1 + \frac{\alpha + 2}{2} (\rho'_r + \rho'_m) \right) + \frac{4}{3} \frac{[Y]}{3[\Lambda] + [Y]/G},$$

$$\rho_0 C^2 = \rho_0 C_0^2 (1 + (\alpha + 2)\rho') + \frac{4}{3} \frac{dY}{d\Lambda} / \left(3 + \frac{1}{G} \frac{dY}{d\Lambda} \right).$$
(13)

Таким образом, скорость ударной волны однозначно определяется известным состоянием перед фронтом и значением Λ_m ($\Lambda_m > \Lambda_r$) за фронтом с помощью (12) и известной зависимости $Y(\Lambda)$. Для малых деформаций первая формула в (13) совпадает с формулой, полученной в работе [8], если Y и Λ выразить через предел текучести при чистом сдвиге и функцию упрочнения, принятую в этой работе, соответственно. В модели идеальной пластичности, очевидно, [Y] = 0, и из (13) получим

$$D_{rm}^2 = C_0^2 (1 + (\alpha + 2)(\rho'_r + \rho'_m)/2), \quad C^2 = C_0^2 (1 + (\alpha + 2)\rho').$$
(14)

В этом случае формулы для скоростей аналогичны используемым в нелинейной акустике [2, 3]. Ударные волны должны удовлетворять условию устойчивости [9]

$$C(\rho_r') < D_{rm} < C(\rho_m'). \tag{15}$$

Физический смысл этого условия достаточно прост: ударная волна должна быть дозвуковой по отношению к частицам непосредственно за фронтом и сверхзвуковой по отношению к частицам непосредственно перед фронтом. Условие (15) справедливо для ударных волн в упругом материале (11), в идеально пластическом материале (14) и, в частности, в упрочняющемся материале (13), когда $[Y(\Lambda)] = Y_1[\Lambda]$.

2. Затухание ударного импульса в упругопластической среде с упрочнением. Импульсы напряжения, которые получаются при использовании тонких ударников, коротких лазерных импульсов, детонации слоев конденсированных взрывчатых веществ, имеют четко выраженный фронт и область пологого спадания. Рассмотрим следующую задачу. Пусть на границе z = 0, $z = X/(C_0 t_0)$ внезапно приложено давление, монотонно убывающее во времени:

$$\frac{1}{2}V(0,\xi) = \begin{cases} 0, & -\infty < \xi < 0, \\ F(\xi) \ (F(\xi) > 0, \ dF(\xi)/d\xi < 0), & 0 \le \xi < +\infty. \end{cases}$$
(16)

Здесь $V = -2\sigma'_1$. Обозначим через $V_m(z)$ текущую амплитуду волны. На границе z = 0 $F(0) = V_m(0) = V_{m0}$.

Для описания распространения ударного импульса в полупространстве используем модельное уравнение, предложенное в [4]:

$$\frac{\partial V}{\partial z'} - \frac{1}{2} V \frac{\partial V}{\partial \xi} - 3\nu' \frac{\partial \psi}{\partial \xi} = 0.$$
(17)

Здесь $\xi = t' - z$; $z' = z(\alpha + 2)/2$; $\nu' = 2\nu/(\alpha + 2)$; $t' = t/t_0$. Далее штрихи у z и ν опущены.

Примем определяющие уравнения деформационной теории пластичности и модель линейного упрочнения по схеме Прандтля без учета эффекта Баушингера в предположении, что пределы текучести при растяжении и сжатии равны. Для одноосного деформированного состояния определяющие уравнения в переменных V, ψ имеют вид (рис. 3)

$$\frac{\partial \psi}{\partial \xi} = \frac{1}{3} \frac{\partial V}{\partial \xi} \tag{18}$$

при $\psi < \psi_* = Y_0/(3G)$ и при $V_m > V > V_m - \Delta V$ в случае разгрузки,

$$\frac{\partial \psi}{\partial \xi} = \frac{1}{3} k \frac{\partial V}{\partial \xi} \tag{19}$$

при $V_* \leq V \leq V_m$ в случае нагрузки и при $V_m - \Delta V \geq V$ в случае разгрузки. В (18), (19) Y_0 — предел текучести; k = G'/G; G' — модуль линейного упрочнения материала. Очевидно, что

$$V_m - \Delta V = V_m (1 - k) - V_* (2 - k).$$
(20)

Если $V_{m0} \leq 4\nu(1-k)$, то при z > 0 волна сильного разрыва расщепляется на упругую ударную волну с амплитудой V_* (упругий предвестник) и пластическую ударную волну. Скорость последней вычисляется по формуле, аналогичной формуле, по которой вычисляется скорость ударной волны в упругой среде (см. п. 1):

$$\frac{d\xi_p}{dz} = -\left[\frac{1}{4}\left(V_m + V_*\right) + \nu k\right] \tag{21}$$

 $(\xi_p -$ координата фронта пластической ударной волны). Полагаем далее, что соотношение $V_{m0} \leq 4\nu(1-k)$ выполнено.

Из (17)–(19) для области разгрузки следует

$$\frac{dV}{dz} = 0 \quad \text{при} \quad \frac{d\xi}{dz} = \begin{cases} -(V/2 + \nu), & V_m \ge V > V_m - \Delta V, \\ -(V/2 + \nu k), & V_m - \Delta V \ge V > 0. \end{cases}$$
(22)

Рассмотрим интервал изменения амплитуды $V_m(0) \ge V_m \ge V_m(0) - \Delta V(0)$ (рис. 4). Согласно (20) $V_m(0) - \Delta V(0) = V_{m0}(1-k) - V_*(2-k)$. В соответствии с (22) на затухание амплитуды в этом интервале оказывает влияние только упругая часть профиля, заданного на границе. Пусть $\tilde{\xi}$ — координата точки на профиле (16) такая, что значение $V = 2F(\tilde{\xi})$ попадает в этот интервал: $V_m(0) \ge V \ge V_m(0) - \Delta V(0)$. Согласно (22) в последующие моменты z > 0 эта точка будет иметь координату $\xi = F^{-1}(V/2) - (V/2+\nu)z$ (F^{-1} — функция, обратная F). Подставляя в это соотношение значения переменных $\xi = \xi_p$, $V = V_m$, соответствующие моменту пересечения характеристики с фронтом ударной волны, и объединяя полученное выражение с (21), после преобразований получим уравнение для $V_m(z)$

$$\frac{dV_m}{dz} = -\frac{1}{2} \frac{V_m - V_* + 4\nu(1-k)}{z - (F^{-1}(V_m/2))'}.$$
(23)

Здесь штрих означает производную от F^{-1} по аргументу. Уравнение дополняется начальным условием z = 0, $V_m(0) = V_{m0}$. Решение строится до значения $z = z_1$ (z_1 определяется из соотношения (20): $V_m(z_1) = V_{m0}(1-k) - V_*(2-k)$). Предположим, что решение уравнения (23) найдено. Обозначим его через $V_m = f_1(z)$.

Используя (16) и (22), можно построить решения уравнения для области разгрузки на интервале $0 < z \leq z_1$ (рис. 4):

$$\frac{1}{2}V = \begin{cases} F(\xi + (V/2 + \nu)z), & V_m(z) \ge V \ge V_m(0) - \Delta V(0), \\ F(\xi + (V/2 + \nu)z - (1 - k)\nu z_{pe}(V)), & V_m(0) - \Delta V(0) > V > V_m(z) - \Delta V(z), \\ F(\xi + (V/2 + \nu k)z), & V_m(z) - \Delta V(z) \ge V > 0. \end{cases}$$
(24)

Здесь $z_{pe}(V)$ — момент прихода волны упругой разгрузки в точку V, первоначально находившуюся в пластической области. Второе равенство следует из соотношения

$$\xi = F^{-1}(V/2) - (V/2 + \nu k)z_{pe} - (V/2 + \nu)(z - z_{pe}),$$
(25)

которое вытекает из (22). Для вычисления $z_{pe}(V)$ необходимо рассмотреть значения $V_m(z_1) > V > V_m(z_1) - \Delta V(z_1)$. Точка V из этого интервала сначала находится в пластической, а затем в упругой области течения. Момент $z_{pe}(V)$ прохождения границы этих областей определяется из уравнения (20): $f_1(z_{pe})(1-k) - V_*(2-k) = V$, откуда

$$z_{pe} = f_1^{-1}((V + V_*(2-k))/(1-k))$$
(26)

 $(f_1^{-1} - функция, обратная f_1)$. Таким образом, известное решение для амплитуды $V_m = f_1(z)$ с учетом (20) и (26) полностью определяет волну разгрузки (24) на интервале $0 < z \leq z_1$.

Рассмотрим интервал изменения (затухания) амплитуды $V_m(z_1) > V_m > V_m(z_1) - \Delta V(z_1)$. Соотношения (25) и (26) при $\xi = \xi_p$ и $V = V_m$ и уравнение (21) дают уравнение для амплитуды ударной волны в этом интервале:

$$\frac{dV_m}{dz} = -\frac{1}{2} \frac{V_m - V_* + 4\nu(1-k)}{z - (F^{-1}(V_m/2))' - 2\nu(f_1^{-1}((V_m + V_*(2-k))/(1-k)))'}.$$
(27)

Здесь также штрихи означают производные по аргументу. Начальное условие для уравнения (27) имеет вид

$$z = z_1,$$
 $V_m(z_1) = V_{m0}(1-k) - V_*(2-k).$

Интегрирование (27) проводится до значения $z = z_2$ (z_2 определяется из соотношения (20): $V_m(z_2) = V_m(z_1)(1-k) - V_*(2-k)$). Предположим, что решение на интервале $z_1 < z \leq z_2$ найдено. Обозначим его через $V_m = f_2(z)$. Тогда решение в области разгрузки на этом интервале значений z имеет вид

$$\frac{1}{2}V = \begin{cases}
F(\xi + (V/2 + \nu)z - - (1 - k)\nu f_1^{-1}((V + V_*(2 - k))/(1 - k))), & V_m(z) \ge V \ge V_m(z_2), \\
F(\xi + (V/2 + \nu)z - (-(1 - k)\nu f_2^{-1}((V + V_*(2 - k))/(1 - k))), & V_m(z_2) > V > V_m(z) - \Delta V(z), \\
F(\xi + (V/2 + \nu k)z), & V_m(z) - \Delta V(z) \ge V > 0.
\end{cases}$$
(28)

Аналогично для *n*-го интервала $z_{n-1} < z \leq z_n$, где $z_0 = 0$ и z_n определяется из уравнения $V_m(z_n) = V_m(z_{n-1})(1-k) - V_*(2-k)$, n = 1, 2, ..., N, решение $V_m(z)$ определяется из уравнения (27), в которое вместо f_1^{-1} подставляется f_{n-1}^{-1} ($V_m = f_{n-1}(z)$ — известное решение из предыдущего (n-1)-го интервала). Решение для волны разгрузки строится аналогично (28). Длина цепочки N определяется амплитудой волны: если V_* оказывается внутри N-го интервала, то цепочка на этом номере обрывается и решение строится до значения $V_m = V_*$.

Рассмотрим случай, когда на границе z = 0 задан импульс треугольной формы, т. е. когда функция F в (16) определяется следующим образом:

$$F(\xi) = V_{m0}(\xi_l - \xi)/L_0$$
 при $\xi_l - L_0 \le \xi \le \xi_l$, $F(\xi) = 0$ при $\xi > \xi_l$.

Для случая n = 1 из (23) имеем

$$z = b(y_0^2/y^2 - 1), \qquad 0 < z \le z_1, \quad z_1 = b(y_0^2/[(1 - k)y_0 - \beta]^2 - 1),$$
 (29)

где $y(z) = V_m(z) - V_* + 4\nu(1-k); y_0 = y(0); b = L_0/V_{m0}; \beta = 2V_* - 4\nu k(1-k)$. Решение для волны разгрузки определяется из (24):

$$\frac{1}{2}V = \begin{cases}
(\xi_l - \xi - \nu z)/(z+b), & V_m(z) \ge V \ge V_{m0}(1-k) - V_*(2-k), \\
(\xi_l - \xi - \nu z - \nu(1-k)z_{pe}(V))/(z+b), & V_{m0}(1-k) - V_*(2-k) > V > \\
& & > V_m(z)(1-k) - V_*(2-k), \\
(\xi_l - \xi - \nu kz)/(z+b), & V_m(z)(1-k) - V_*(2-k) \ge V > 0.
\end{cases}$$
(30)

Здесь $z_{pe}(V) = b((1-k)^2 y_0^2/(V-V_* + 4\nu(1-k) + \beta)^2 - 1)$. Во внутренних граничных точках $z_{pe}(V_{m0}(1-k) - V_*(2-k)) = 0$ и $z_{pe}(V_m(z)(1-k) - V_*(2-k)) = z$, т. е. кусочное решение (30) является непрерывным при $0 < V < V_m(z)$. Однако, как нетрудно установить прямым вычислением, в этих точках первая производная $\partial V/\partial \xi$ терпит разрыв.

Для случая n = 2 имеем

$$z + b = b \frac{y_0^2}{y^2} \Big(1 + 8\nu(1-k)^3 \Big(\frac{y+\beta/2}{(y+\beta)^2} - \frac{y_1+\beta/2}{(y_1+\beta)^2} \Big) \Big), \qquad z_1 < z \leqslant z_2.$$
(31)

Здесь $y_1 = (1-k)y_0 - \beta$; z_2 определяется из (31), если вместо y подставить $y_2 = (1-k)y_1 - \beta$. Решение для волны разгрузки определяется из (28).

Если в (29) или (31) положить $V_* = \nu = 0$, то получим известное в гидродинамике (в приближении нелинейной акустики) решение [2, 9]. Особенность затухания амплитуды пластической ударной волны состоит в том, что она достигает значения амплитуды упругого предвестника V_* за конечное время (в гидродинамике амплитуда ударной волны стремится к нулю асимптотически при $z \to \infty$).

ЛИТЕРАТУРА

- 1. Shock waves in materials science / Ed. by A. B. Sawaoka. Tokyo; N. Y.: Springer-Verlag, 1993.
- 2. Руденко О. В., Солуян С. И. Теоретические основы нелинейной акустики. М.: Наука, 1975.
- 3. Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977.
- Myagkov N. N. Nonlinear waves in shock-loaded condensed matter // J. Phys. D. Appl. Phys. 1994. V. 27. P. 1678–1686.
- 5. Годунов С. К. Элементы механики сплошной среды. М.: Наука, 1978.
- Tonks D. L. The data shop: A database of weak-shock constitutive data. Rep. N LA-12068-MS. Los Alamos, 1991.
- Кукуджанов В. Н. Нелинейные волны в упругопластических средах // Волновая динамика машин. М.: Наука, 1991. С. 126–140.
- 8. Садовский В. М. Разрывные решения в задачах динамики упругопластических сред. М.: Наука, 1997.
- 9. Ландау Л. Д., Лифшиц Е. М. Гидродинамика. М.: Наука, 1986.

Поступила в редакцию 22/V 2002 г.