УДК 697.978

ЭКСПЕРИМЕНТАЛЬНОЕ ИССЛЕДОВАНИЕ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ТЕПЛООБМЕНА В ТЕРМОАККУМУЛИРУЮЩИХ СРЕДАХ^{*}

И.В. МЕЗЕНЦЕВ¹, Н.В. ВЕРНИКОВСКАЯ², Ю.И. АРИСТОВ², В.А. МУХИН³

¹Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск,

²Институт катализа им. Г.К. Борескова СО РАН, Новосибирск,

³Сибирский государственный университет путей сообщений, Новосибирск

Представлены результаты экспериментального исследования реверсивного нестационарного теплообмена при фильтрации потока воздуха через неподвижную теплоаккумулирующую среду, в качестве которой использовали свинцовые (D = 2,0, 3,5 и 4,5 мм) и стеклянные шары (D = 3.2 мм). Исследованное устройство имитировало циклические режимы регенерации теплоты в системе вентиляции бытовых и офисных помещений. Для исследованных засыпок измерена зависимость времени переключения потока от числа Рейнольдса. Разработана математическая модель процесса, описывающая теплообмен между газовым потоком и неподвижным слоем шаров. Хорошее согласование экспериментальных данных с расчетными наблюдается при больших числах Рейнольдса, в то время как при малых сказывается влияние тепловых потерь, в результате чего экспериментальное время переключения оказывается меньше расчетного.

введение

Существуют определенные нестационарные режимы проведения каталитических реакций, значительно превосходящие по своей эффективности стационарные [1, 2]. Одним из способов реализации такого режима может быть переключение направления подачи газа в слой катализатора [3, 4]. Исследования [5, 6] показывают, что такая организация химических реакций позволяет удерживать зону с высокой температурой внутри зернистого слоя при низкой входной температуре. В этом случае наличие катализатора позволяет не только увеличивать скорость реакции, но и выполнять роль регенератора теплоты, т. е. дает возможность осуществлять химические реакции (например, окисление диоксида серы, синтез аммиака) без дополнительного подвода энергии. Реверсивные режимы без адсорбции газа или его химической реакции с материалом слоя исследуются в регенеративных теплообменниках для нагрева воздуха с непористыми теплоаккумулирующими элементами [7–11].

В настоящей работе экспериментальными и численными методами исследованы реверсивные режимы фильтрации воздуха через слой теплоаккумулирующей среды, в которых коэффициенты теплоотдачи от поверхности зерна имеют

^{*} Работа выполнена при финансовой поддержке Президента (НШ 6526.2006.3), РФФИ (грант № 06-08-00982), фонда "Глобальная энергия" и программы "Энергосбережение СО РАН".

[©] Мезенцев И.В., Верниковская Н.В., Аристов Ю.И., Мухин В.А., 2006

невысокие значения, и термическое сопротивление на внешней поверхности является основным. Именно такие режимы реализуются в недавно предложенном устройстве для регенерации теплоты и влаги в системе вентиляции бытовых и офисных помещений [12].

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И МЕТОДИКА ИЗМЕРЕНИЙ

Опыты проводили на установке, подробно описанной в [13]. Рабочий участок представлял собой полиэтиленовую трубу диаметром 210 мм и длиной 800 мм (рис. 1). Внутрь трубы помещали кассеты с теплоаккумулирующим материалом — свинцовыми (D = 2,0, 3,5 и 4,5 мм) и стеклянными (D = 3,2 мм) шарами. Общая длина слоя шаров составляла 166 мм. Источником воздуха служил сжатый воздух из лабораторной сети. Для создания потока холодного воздуха ($T = -5 \div -20$ °C) применяли трубку Ранка. Такая схема позволяла независимо регулировать температуру и объемную скорость воздуха на входе в устройство. Среднемассовую температуру воздуха измеряли хромель-копелевыми термопарами, показания которых автоматически регистрировали каждые четыре секунды. Внешний вид установки представлен на рис. 2. Для уменьшения теплопотерь кассеты изолировали от корпуса с помощью материала изолон ($\lambda = 0,034$ BT/(м·K)), а корпус от окружающей среды — слоем синтепона толщиной 50 мм ($\lambda = 0,04$ BT/(м·K)).

Реверсивные режимы теплообмена (регенерации теплоты) осуществляли по двум методикам. По первой методике переключения потока воздуха проводили следующим образом: в каждом нечетном полуцикле — при достижении фиксированного падения температуры $\Delta T_{\rm T}$ на теплом конце регенератора, а в каждом четном — по длительности предыдущего нечетного полуцикла. По второй методике переключения осуществляли при достижении фиксированного падения температуры на теплом $\Delta T_{\rm T}$ и холодном $\Delta T_{\rm X}$ концах регенератора ($\Delta T_{\rm T} = \Delta T_{\rm X}$).

Первая методика заключалась в том, что на холодный вход установки подавали воздух при температуре $T_X = -8$ °C. Проходя через засыпку шаров, воздух нагревался до $T_T = 20,5$ °C (исходная температура засыпки). По мере охлаждения

Рис. 1. Схема рабочего участка экспериментальной установки. *1* — труба, *2* — термопары, *3* — кассеты с теплоаккумулирующей средой, *4* — теплоизоляция, *5* — АЦП, *6* — компьютер.

Рис. 2. Внешний вид установки для исследования реверсивных процессов теплообмена (без теплоизоляции).

шаров температура воздуха на теплом конце начинала постепенно понижаться. Когда она уменьшалась на заданную величину $\Delta T_{\rm T} = 2,5$, 5,0, 7,5 или 10,0 °C (через время $\Delta \tau_1$), направление потока переключали. На теплый вход подавали воздух при $T_T = 20,5$ °C и продували его в течении такого же времени $\Delta \tau_1$. Затем поток вновь переключали, и на холодный вход регенератора подавали воздух при $T_X = -8$ °C. Через время $\Delta \tau_2 < \Delta \tau_1$, когда температура воздуха на теплом конце регенератора понижалась на $\Delta T_{\rm T} = 2,5, 5,0, 7,5$ или 10,0 °C, направление потока снова переключали и т. д. (рис. 3).

Рис. 3. Установление периодического режима для свинцовых шаров D = 4,5 мм по первой методике. $\Delta T = 2,5$ °C. Расход воздуха 10,7 м³/ч.

l— температура $T_{\rm T}$ на теплом конце, 2 — температура между кассетами, 3 — температура $T_{\rm X}$ на холодном конце.

Рис. 4. Установление периодического режима для свинцовых шаров D = 4,5 мм по второй методике. $\Delta T = 2,5$ °C. Расход воздуха 10,7 м³/ч.

I — температура $T_{\rm T}$ на теплом конце, 2 — температура между кассетами, 3 — температура $T_{\rm X}$ на холодном конце.

Вторая методика отличалась от первой тем, что потоки переключали, когда падение температуры как на теплом, так и холодном конце регенератора достигало заданной величины $\Delta T = 2,5, 5,0, 7,5$ или 10,0 °C (рис. 4).

В обоих случаях каждый четный полуцикл соответствовал передаче тепла от теплого воздуха засыпке шаров, играющей роль теплоаккумулирующей среды (стадия запасания). В каждом нечетном полуцикле часть запасенного тепла передавалась холодному воздуху, который нагревался и возвращал теплоту в помещение (стадия возврата).

АНАЛИЗ РЕЗУЛЬТАТОВ

Процесс установления повторяющегося режима для каждой методики представлен на рис. 3 и 4. Отметим, что при переключении по первой методике перепад температур на холодном конце оказывался гораздо больше, чем на теплом (рис. 3). Это соответствует "проскоку" части теплого воздуха мимо шаров и уменьшению степени регенерации теплоты. Так, для свинцовых шаров при $\Delta T = 2,5$ °C коэффициент теплоутилизации по второй методике оказался 0,91 вместо 0,88 — по первой. Если по второй методике увеличить перепад температуры до величины, которая соответствует коэффициенту теплоутилизации 0,88, то время полуцикла возрастет до 96 секунд, т. е. увеличится на 13 % по сравнению с первой методикой [12]. Таким образом, вторая методика переключения воздушных потоков (рис. 4) приводит к повышению коэффициента теплоутилизации либо к увеличению времени полуцикла.

Обобщенные графики зависимости времени полуцикла от числа Re для исследованных засыпок представлены на рис. 5–8. При близких размерах шаров время полуцикла для стеклянных примерно в 1,5–2,5 раза больше, чем для свинцовых (рис. 5 и табл. 1). Это в основном связано с бо́льшей объемной теплоемкостью

Рис. 5. Зависимость времени переключения по первой методике от числа Re для различных засыпок при $\Delta T_{\rm T} = 2,5$ °C. Шары — стекло D 3,2 (1) мм, шары — свинец D 3,5 (2), 4,5 (3) мм.

Рис. 6. Зависимость времени переключения по второй методике от числа Re для свинцовых шаров D = 2,0 мм.

l — расчет по уравнениям (1)–(4), $\Delta T = 10$ (2), 7,5 (3) 5,0 (4), 2,5 (5) °С.

стекла (1960 кДж/($M^3 \cdot K$)) по сравнению со свинцом (1450 кДж/($M^3 \cdot K$)), которые отличаются в 1,35 раза. Некоторое дополнительное уменьшение времени полуцикла для свинцовых шаров может быть связано с тем, что их теплопроводность λ больше, чем у стеклянных. В результате возрастает поток тепла в слой шаров через стенки установки из окружающей среды, и слой прогревается быстрее, чем при его нагреве только фильтрующимся воздухом. Этот эффект особенно заметен при малых потоках, которым соответствуют большие времена контакта воздуха с засыпкой (см. табл. 1).

Таким образом, в качестве теплоаккумулирующей среды перспективно использовать материалы с высокой теплоемкостью и относительно низкой теплопроводностью, которая, тем не менее, должна быть достаточной, чтобы обеспечить быструю передачу тепла от внешней поверхности в объем отдельной частицы среды. Это условие выполняется, если термическое сопротивление внутри единичной частицы засыпки (условно в форме шара радиуса *R*), которое можно оценить как *R*/ λ , гораздо меньше, чем термическое сопротивление при передаче теплоты от воздуха к внешней поверхности шара 1/ α . При $\alpha \approx 50$ Bt/(m^2 ·K) и *R* = 2·10⁻³ м достаточно, чтобы теплопроводность материала теплоаккумулирующей среды была гораздо больше 0,01 Bt/(м·K), что с запасом выполняется для стекла ($\lambda = 1,1$ Bt/(м·K)).

Таблица 1

Расход. $\Delta \tau (d = 3,2 \text{ MM})/$ Шары — свинец, Шары — стекло, *d* = 3,5 мм *d* = 3,2 мм м³/ч $\Delta \tau (d = 3,5 \text{ mm})$ 5,0 375 735 1,96 10,7 248 612 2,47 14,6 230 490 2,13 18,6 210 390 1,86 24,9 170 1,88 320 31,3 138 210 1,52

Зависимость времени переключения $\Delta \tau$ при $\Delta T = 2,5$ °C (методика 1) для свинцовых и стеклянных шаров от расхода воздуха (экспериментальные данные, длина засыпки 166 мм)

Расход, м ³ /ч	$\Delta au \left(d=2,0 ext{ mm} ight) / \Delta au \left(d=4,5 ext{ mm} ight)$		
	$\Delta T = 5,0$ °C	$\Delta T = 7,5 \ ^{\circ}\mathrm{C}$	$\Delta T = 10,0 \ ^{\circ}\mathrm{C}$
5,0	1,24	1,09	1,05
10,7	1,12	1,08	1,09
14,6	1,18	1,20	1,20
18,6	1,48	1,36	1,23
24,9	1,58	1,42	1,27
31,3	1,39	1,21	1,31

Зависимость отношения времен переключения $\Delta \tau$ для свинцовых шаров разного диаметра от расхода воздуха при разных ΔT (методика 2, экспериментальные данные, длина засыпки 166 мм)

Характер изменения времени полуцикла в зависимости от Re и ΔT для свинцовых шаров диаметром 2,0 и 4,5 мм практически одинаков: при малых ΔT время полуцикла слабо зависит от Re, в то время как при больших ΔT оно резко уменьшается с увеличением числа Re (табл. 2, рис. 5 и 6). Вместе с тем следует отметить, что время полуцикла для шаров диаметром 2,0 мм несколько больше (от 5 до 58 %) по сравнению с шарами диаметром 4,5 мм. Это можно объяснить более высоким значением коэффициента теплоотдачи при меньшем диаметре шара (приблизительно на 24 %), что, соответственно, делает тепловой фронт более резким.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ РЕВЕРСИВНОГО ПРОЦЕССА ТЕПЛООБМЕНА

Теплообмен между газовым потоком и неподвижным слоем зернистого материала описывается системой уравнений [14]:

$$\rho_{\rm H}c_{\rm H}(1-\varepsilon)\frac{d\theta}{dt} = \alpha S(T-\theta),\tag{1}$$

$$Gc'_{\rm B}\frac{dT}{dl} = \alpha S(\theta - T),$$
 (2)

с начальными и граничными условиями $t = 0 \Rightarrow \theta(l) = \theta_{init}(l)$,

$$l = 0 \implies T = T_{in}$$

Для описания циклического процесса, реализованного в эксперименте, использовали процедуру реверса потока, которая описывается операцией

$$\theta^+(l) = \theta^-(L-l),\tag{3}$$

где θ^- и θ^+ соответствуют распределению температур до и после переключения потока, *L* — полная длина слоя.

Для численного решения уравнений (1)–(3) использовали неявный метод Эйлера с постоянным шагом по длине и по времени [15]. Температура на входе в слой зернистого материала T_{in} в общем случае не равна температуре на входе в установку, так как подводящие воздух коммуникации обладают тепловой инерционностью, поэтому T_{in} находили из уравнения

$$dT_{in}/dt = C(T_0 - T_{in}).$$
 (4)

440

Рис. 7. Зависимость времени полуцикла от числа Re для свинцовых шаров D = 4,5 мм.

Рис. 8. Зависимость времени полуцикла от числа Re для стеклянных шаров D = 3,2 мм.

I — расчет по уравнениям (1)–(4), $\Delta T = 10$ (2), 7,5 (3) °C.

В уравнении (4) коэффициент *С* зависит от таких параметров, как скорость фильтрации, теплоемкость воздуха и подводящие коммуникации [16, 17]. Значение *С* рассчитывали для каждого расхода, исходя из экспериментальных данных по изменению во времени температуры воздуха на входе в установку при прямом и обратном направлении течения. Так, например, при расходе 18,6 м³/ч этот коэффициент для охлаждения составлял $C = 0,009 \text{ c}^{-1}$. Пористость ε принимали как для хаотической упаковки шаров $\varepsilon = 0,4$. Значения $c_{\rm H}$ и $\rho_{\rm H}$ брали равными 125 и 740 Дж/(кг-К), 11340 и 2650 кг/м³ для свинца и стекла соответственно [18]. Для вычисления числа Nu в диапазоне Re > 20 использовали зависимость Тимофеева [19]:

$$Nu = 0.61 \cdot Re^{0.67}$$

На рис. 6–8 представлены результаты расчета времени полуцикла в зависимости от числа Re для шаров различного диаметра при различных ΔT и проведено его сравнение с опытными данными. Из рисунков видно, что наблюдается удовлетворительное совпадение времен при больших значениях чисел Re и больших ΔT . При малых значениях Re заметно сказывается влияние подвода теплоты из окружающего пространства, который не учитывается уравнениями (1)–(3). В результате дополнительного теплоподвода экспериментальные значения времени полуцикла оказываются меньше расчетных.

выводы

Представлены результаты экспериментального исследования циклического теплообмена при фильтрации потока воздуха через неподвижную теплоаккумулирующую среду, в качестве которой использовали свинцовые (D = 2,0, 3,5 и 4,5 мм) и стеклянные шары (D = 3,2 мм). Исследованное устройство имитировало циклические режимы регенерации теплоты в системе вентиляции бытовых и офисных помещений. Для исследованных засыпок измерены зависимости времени полуцикла от числа Рейнольдса. Разработана математическая модель, описывающая теплообмен между газовым потоком и неподвижным слоем шаров. Показано, что хорошее согласие экспериментальных данных с расчетными наблюдается при больших числах Рейнольдса. При малых Re сказывается влияние тепловых потерь, в результате чего экспериментальное время полуцикла оказывается меньше расчетного.

СПИСОК ОБОЗНАЧЕНИЙ

C — коэффициент в уравнении (4), c ^{-1} ,	$C_{\rm H}$ — массовая удельная теплоемкость насадки, $\Pi_{\rm MC}/(m_{\rm P}K)$	
<i>D</i> — диаметр, мм,	Дж/(кі к),	
G — линейная скорость, м/с,	$c'_{\rm B}$ — объемная удельная теплоемкость воздуха,	
L — общая длина слоя, мм,	Дж/(м ³ ·K),	
<i>R</i> — радиус шара, мм,	<i>l</i> — текущая длина слоя, мм,	
S — удельная поверхность слоя зернистого мате-	<i>т</i> — масса насадки, кг,	
риала, м ⁻¹ ,	t — время процесса, мин,	
<i>T</i> — температура воздуха, °С,	α — коэффициент теплоотдачи, Вт/(м ² ·K),	
T_{in} — входная температура воздуха в слое, °C,	ε — пористость слоя,	
T_0 — входная температура воздуха в установке, °C,	θ — температура насадки, °C,	
$T_{\rm T}$ — температура на теплом конце регенератора, °C,	$ heta_{init}$ — начальная температура насадки, °С,	
T_{y} — температура на холодном конце регенерато-	λ — коэффициент теплопроводности Вт/(м·К),	
na °C	$\rho_{\rm H}$ — плотность насадки, кг/м ³ ,	
ΛT изменение температуры возлуха °C	τ — время контакта, с,	
	$\Delta \tau$ — время переключения, с.	

СПИСОК ЛИТЕРАТУРЫ

- **1. Матрос Ю.Ш.** Катализаторы и каталитические процессы. Новосибирск: Ин-т катализа СО АН СССР. 1977. С. 111–134.
- **2. Матрос Ю.Ш.** Реакторы с неподвижным слоем катализатора // Кинетика и катализ. 1981. Т. 22, № 2. С. 505-512.
- **3. Франк-Каменецкий** Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1967. 426 с.
- 4. Ruthven D.M., Farooq S., Knaebel K.S. Pressure Swing Adsorption. New York. 1994. 352 p.
- 5. Боресков Г.К., Матрос Ю.Ш., Киселев О.В., Бунимович Г.А. Осуществление гетерогенного каталитического процесса в нестационарном режиме // Докл. АН СССР. — 1977. — Т. 237, № 1. — С. 160–163.
- **6.** Боресков Г.К., Бунимович Г.А., Матрос Ю.Ш., Иванов А.А. Осуществление каталитических процессов в нестационарных условиях // Кинетика и катализ. 1982. Т. 23, № 2. С. 402–406.
- 7. Теплотехника металлургического производства. М: МИСИС. 2002. Т. 2. С. 246–253.
- 8. Теплотехника / Под ред. В.Н. Луканина. М.: Высшая школа, 1999. 671 с.
- 9. Поз М. Я., Сенатова В. И., Грановский В. Л. Утилизация тепла и холода вытяжного воздуха в системах вентиляции и кондиционирования воздуха (конструкции и методы расчета). М.: ВНИИИС, 1980. (Обзорная информация, № 1). 97 с.
- 10. Бялый Б. И., Динцин В.А., Щекин И.Р., Розенштейн И.Л. Оборудование для утилизации тепловой энергии вентиляционных выбросов // Водоснабжение и санитарная техника. 1982. № 5. С. 10–13.
- Богословский В.Н., Поз М.Я. Теплофизика аппаратов утилизации тепла систем отопления, вентиляции и кондиционирования воздуха. — М.: Стройиздат, 1983. — С. 208–225.
- 12. Аристов Ю.И., Мезенцев И.В., Мухин В.А. Новый подход к регенерации теплоты и влаги в системе вентиляции помещений. 1. Лабораторный прототип регенератора // ИФЖ. — 2006. — Т. 79, № 3. — С. 143–150.
- **13.** Аристов Ю.И., Мезенцев И.В., Мухин В.А. Новый подход к регенерации теплоты и влаги в системе вентиляции помещений. 2. Прототип реального устройства // ИФЖ. 2006. Т. 79, № 3. С. 151–157.
- Schuman T.E.W. Heat transfer a liquid flowing trough a porous prism // J. Franklin Inst. 1929. Vol. 208, No. 3. — P. 405–416.
- Хайрер Э., Ваннер Г. Решение обыкновенных дифференциальных уравнений. Жесткие и дифференциально-алгебраические задачи. М.: Мир, 1999. 390 с.
- **16. Иоффе И.И., Письмен Л.М.** Инженерная химия гетерогенного катализа. М.: Химия, 1965. 456 с.
- 17. Левеншпиль О. Инженерное оформление химических процессов. М.: Химия, 1969. 621 с.
- 18. Гува А. Я. Краткий теплофизический справочник. Новосибирск, 2002. 300 с.
- 19. Тимофеев В.Н. Теплообмен в слое // Известия ВТИ им. Ф. Э. Дзержинского. 1949. № 7. 12 с.

Статья поступила в редакцию 25 июля 2006 г.