УДК 539.3, 534.1

ОБ УЧЕТЕ ВЛИЯНИЯ ПОПЕРЕЧНЫХ СДВИГОВ НА СЛОЖНЫЕ НЕЛИНЕЙНЫЕ КОЛЕБАНИЯ УПРУГИХ БАЛОК

В. А. Крысько, М. В. Жигалов, О. А. Салтыкова, А. В. Крысько

Саратовский государственный технический университет, 410054 Саратов E-mails: tak@san.ru, zhigalovm@yandex.ru

С помощью вариационного принципа и метода гипотез построены модели геометрически нелинейных балок Эйлера — Бернулли, Тимошенко и Шереметьева — Пелеха при воздействии поперечной знакопеременной нагрузки. На основе нелинейной динамики и качественной теории дифференциальных уравнений с использованием метода конечных разностей с аппроксимацией $O(h^2)$ и метода конечных элементов в форме Бубнова — Галеркина проводится анализ полученных систем дифференциальных уравнений. Показано, что при относительной толщине $\lambda \leqslant 50$ учет поворота и искривления нормали приводит к существенному изменению режимов колебаний.

Ключевые слова: гибкие балки, нелинейная динамика, хаос, математическое моделирование, метод конечных разностей, метод конечных элементов.

Введение. Многочисленные работы по хаотической динамике в основном посвящены исследованию радиофизических систем, систем сверхпроводниковой и лазерной электроники, радиотехнических систем и в значительно меньшей степени механических систем. В последнее время изучению хаотических режимов колебаний механических систем уделяется большое внимание [1–11]. В настоящей работе, являющейся продолжением работ [12–14], известные идеи и методы хаотической динамики используются для балочных конструкций с учетом кинематических моделей Бернулли — Эйлера, Тимошенко, Шереметьева — Пелеха. Рассматривается вопрос о влиянии кинематической модели на характер нелинейных колебаний балок.

Постановка задачи. Для построения математических моделей и вывода разрешающих уравнений рассмотрим в декартовой системе координат прямоугольную область $\Omega = \{x \in [0, a]; -h \leq z \leq h\}$, определяющую балку. Ось *ОХ* представляет собой срединную линию балки. Зависимость между деформацией и перемещениями точки срединной линии примем в форме [15]

$$\varepsilon_x = u_z' + (w_z')^2 / 2,$$

где $w_z(x,t)$ — прогиб балки; $u_z(x,t)$ — перемещение; штрих обозначает производную по координате x. Балку считаем тонкой (размер по оси OX существенно превышает размер по оси OZ) и упругой.

При исследовании тонкостенных элементов конструкций используется метод гипотез, понижающий размерность исходных дифференциальных уравнений. Рассмотрим три гипотезы: Эйлера — Бернулли [16], Тимошенко [17] и Шереметьева — Пелеха [18].

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (код проекта 06-08-01357).

При использовании гипотезы Эйлера — Бернулли [16] предполагается, что нормаль, перпендикулярная срединной линии до момента начала деформации, остается перпендикулярной ей в процессе деформирования балки, но поворачивается относительно положения в недеформированном состоянии на угол, равный w'. Перемещения произвольной точки балки определяются следующим образом:

$$u_z = u - zw', \qquad w_z = w_z$$

Для балки Тимошенко [17] вводится предположение о том, что нормаль не остается перпендикулярной срединной линии и поворачивается на угол, равный γ_x , оставаясь прямолинейной. Выражения для перемещений произвольной точки имеют вид

$$u_z = u + z\gamma_x, \qquad w_z = w.$$

В математической модели Шереметьева — Пелеха [18] учитываются и поворот нормали, и ее искривление. Выражения для перемещений произвольной точки балки записываются в виде

$$u_z = u + z\gamma_x + f(z), \qquad w_z = w,$$

где γ_x — угол поворота нормали относительно срединной поверхности; $f(z) = z^2 u^T + z^3 \gamma^T$; u^T , γ^T — неизвестные функции. Для нахождения этих функций используем условия на лицевых поверхностях балки

$$\sigma_{xz}\big|_{z=-h} = 0, \qquad \sigma_{xz}\big|_{z=h} = 0$$

определяющие систему уравнений

$$w' + \gamma_x + 2hu^T + 3h^2\gamma_x^T = 0, \qquad w' + \gamma_x - 2hu^T + 3h^2\gamma_x^T = 0,$$

решением которой являются функции

$$u^T = 0, \qquad \gamma_x^T = -(w' + \gamma_x)/(3h^2).$$

Следовательно, выражения для перемещений однослойной балки в соответствии с моделью Шереметьева — Пелеха имеют вид

$$u_z = u + z\gamma_x - \frac{z^3}{3h^2} (w' + \gamma_x), \qquad w_z = w.$$

Последний член в разложении для u_z определяет искривление нормали после деформации.

Так как рассматривается упругая балка, зависимость между деформациями и напряжениями является линейной и в случае применения гипотезы Эйлера — Бернулли имеет вид

$$\sigma_{xx} = E\varepsilon_{xx},\tag{1}$$

где *Е* — модуль упругости. При использовании гипотез Тимошенко и Шереметьева — Пелеха к выражению (1) добавляется соотношение

$$\sigma_{xz} = G\varepsilon_{xz},$$

где *G* — модуль сдвига.

С учетом данных гипотез уравнение движения балки, а также соответствующие ему граничные условия можно получить из условия для кинетической и потенциальной энергий и работы внешних сил [19]. Истинные траектории отличаются от других возможных (совместимых со связями) траекторий тем, что для них должно выполняться условие

$$\int_{t_0}^{t_1} (\delta K - \delta \Pi + \delta' A) \, dt = 0.$$

Здесь δK , $\delta \Pi$ — вариации кинетической и потенциальной энергий системы соответственно; $\delta' A$ — сумма элементарных работ внешних сил. На основе данного вариационного принципа получаем уравнения движения с учетом диссипации энергии.

Система нелинейных дифференциальных уравнений движения балки Эйлера — Бернулли имеет шестой порядок и может быть записана в безразмерном виде:

$$\frac{1}{\lambda^2} \Big[L_2(w, w) + L_1(u, w) - \frac{1}{12} w''' \Big] + q - \ddot{w} - \varepsilon_1 \dot{w} = 0,$$

$$u'' + L_3(w, w) - \ddot{u} - \varepsilon_2 \dot{u} = 0,$$
(2)

где $L_1(u, w) = u''w' + w''u'; L_2(w, w) = (3/2)w''(w')^2; L_3(w, w) = w''w'; \varepsilon_1, \varepsilon_2$ — коэффициенты диссипации; $q = q(x, t) = q_0 \sin(\omega_p t)$ — поперечная нагрузка; точка обозначает производную по переменной t.

В (2) и далее используются следующие безразмерные величины (штрихи над безразмерными параметрами в уравнениях для простоты опущены):

$$\bar{w} = \frac{w}{2h}, \quad \bar{u} = \frac{ua}{(2h)^2}, \quad \bar{\gamma} = \frac{\gamma a}{2h}, \quad \bar{x} = \frac{x}{a}, \quad \lambda = \frac{a}{2h}, \quad \bar{q} = \frac{qa^4}{(2h)^4 E},$$
$$D = \frac{G}{E} \quad \bar{t} = \frac{t}{\tau}, \quad \tau = \frac{a}{c}, \quad c = \sqrt{\frac{Eg}{\gamma}}, \quad \bar{\varepsilon}_i = \frac{\varepsilon_i a}{c} \quad (i = 1, 2).$$

К системе (2) нелинейных дифференциальных уравнений внутри области добавим условия на границе балки:

$$w(0,t) = w(a,t) = u(0,t) = u(a,t) = w'(0,t) = w'(a,t) = 0,$$

а также начальные условия

$$w(x,t)\big|_{t=0} = \dot{w}(x,t)\big|_{t=0} = u(x,t)\big|_{t=0} = \dot{u}(x,t)\big|_{t=0} = 0.$$

Балка Тимошенко описывается системой дифференциальных уравнений также шестого порядка

$$Dk^{2}(w'' + \gamma'_{x}) + [L_{1}(w, u) + L_{2}(w, w)]/\lambda^{2} + q - \ddot{w} - \varepsilon_{1}\dot{w} = 0,$$

$$u'' + L_{3}(w, w) - \ddot{u} - \varepsilon_{2}\dot{u} = 0,$$

$$\gamma''_{x} - 12Dk^{2}\lambda^{2}(w' + \gamma_{x}) - \ddot{\gamma}_{x} - \varepsilon_{3}\dot{\gamma}_{x} = 0.$$

Здесь операторы $L_1(w, u)$, $L_2(w, w)$, $L_3(w, u)$ имеют тот же вид, что и в уравнениях Бернулли — Эйлера. Граничные и начальные условия записываются в виде

$$w(0,t) = w(a,t) = u(0,t) = u(a,t) = \gamma_x(0,t) = \gamma_x(a,t) = 0;$$
(3)

$$w(x,t)\big|_{t=0} = u(x,t)\big|_{t=0} = \gamma(x,t)\big|_{t=0} = 0, \qquad \dot{w}(x,t)\big|_{t=0} = \dot{u}(x,t)\big|_{t=0} = \dot{\gamma}(x,t)\big|_{t=0} = 0.$$
(4)

В модели Пелеха — Шереметьева система нелинейных дифференциальных уравнений имеет восьмой порядок:

$$\frac{1}{63\lambda^2} \left(\frac{4}{5}\gamma''' - \frac{1}{4}w''''_x\right) + Dk^2(w'' + \gamma'_x) + \frac{1}{\lambda^2} \left[L_1(w, u) + L_2(w, w)\right] + q - \ddot{w} - \varepsilon_1 \dot{w} = 0,$$

$$u'' + L_3(w, w) - \ddot{u} - \varepsilon_2 \dot{u} = 0,$$

$$\frac{136}{315}\gamma''_x + \frac{32}{315}w''' - 12Dk^2\lambda^2(w' + \gamma_x) - \ddot{\gamma}_x - \varepsilon_3\dot{\gamma}_x = 0.$$

Начальные условия те же, что и для модели Тимошенко (4). Граничные условия имеют вид

$$w(0,t) = w(a,t) = w'(0,t) = w'(a,t) = u(0,t) = u(a,t) = \gamma_x(0,t) = \gamma_x(a,t) = 0.$$

Результаты численных расчетов. Уравнения в частных производных сводятся к обыкновенным дифференциальным уравнениям по временной переменной с помощью метода конечных разностей (МКР) с аппроксимацией $O(h^2)$ и метода конечных элементов (МКЭ) в форме Бубнова — Галеркина. Для решения системы обыкновенных дифференциальных уравнений по времени используется метод Рунге — Кутты четвертого порядка точности. Исследование сходимости приведенных математических моделей с помощью МКР и МКЭ показывает, что шаги по времени и по пространственной координате, выбираемые согласно принципу Рунге, равны $\Delta t = 3,9052 \cdot 10^{-3}, h = 1,25 \cdot 10^{-2}$ соответственно. Результаты, полученные при этих значениях с использованием двух указанных методов, практически совпадают.

В данной работе для исследования нелинейной динамики балок разработаны алгоритмы и пакет программ, с помощью которого на основе решений задач динамики возможны построение и анализ сигнала, спектра мощности, фазового портрета, сечения Пуанкаре и ляпуновских показателей для каждого набора значений q_0 , ω_p , что позволяет определять следующие типы колебаний: гармонические, колебания, соответствующие бифуркациям удвоения периода, колебания на независимых частотах, хаотические колебания и др. Результаты анализа представлены на рис. 1, 2 в виде карт режимов колебаний в зависимости от управляющих параметров q_0 , ω_p .

Поскольку на карте графически отображена информация о характере колебаний, важным показателем является количество на ней точек (вариантов счета) — разрешение карты. Для нахождения оптимального разрешения были получены и проанализированы карты со следующими разрешениями ($q_0 \times \omega_p$): 100 × 100, 200 × 200, 300 × 300, 400 × 400. На основании анализа зависимости качества отображения информации от времени счета было выбрано разрешение 300×300 . Для получения карты с таким разрешением необходимо просчитать и проанализировать $9 \cdot 10^4$ вариантов. Время расчета с помощью МКР на компьютере с процессором Celeron-1700 при количестве разбиений n = 40 составляет приблизительно 70 сут, с помощью МКЭ при том же количестве разбиений — в 1,5 ÷ 1,7 раза больше.

Результат исследования сложных нелинейных динамических задач зависит от используемой гипотезы понижения размерности решаемой задачи. Рассмотрим задачу о колебаниях однослойных изотропных балок (D = G/E = 0.384, $\lambda = a/(2h) = 50$). На рис. 1 приведены результаты, полученные с помощью МКЭ.

Анализ карт режимов колебаний показывает, что учет поворота нормали (сопоставление гипотез Бернулли — Эйлера и Тимошенко, Бернулли — Эйлера и Пелеха — Шереметьева) обусловливает существенное изменение режимов колебаний на всех частотах, в то время как учет искривления нормали (сопоставление гипотез Тимошенко и Пелеха — Шереметьева) — изменение режимов в основном на высоких частотах. При этом имеется сходимость по аппроксимации u_z (1)–(3). С уменьшением толщины балки эта сходимость улучшается, а с увеличением — ухудшается.

Рассмотрим на карте точку, соответствующую значениям амплитуды $q_0 = 6 \cdot 10^4$ и частоты $\omega_p = 4,98$. В случае модели Бернулли — Эйлера при указанных значениях амплитуды и частоты балка испытывает хаотические колебания, в случае модели Тимошенко — гармонические, а в случае модели Шереметьева — Пелеха — находится в режиме бифуркаций, т. е. при одинаковых значениях амплитуды и частоты режимы колебаний в зависимости от принятой модели могут существенно различаться.

Рассмотрим задачу о нелинейных колебаниях балки, имеющей относительную толщину $\lambda = 50$ и выполненной из графитопластика (D = 0.025) [20], т. е. из материала с малой сдвиговой жесткостью. Величина $k^2 = 0.9$ выбрана на основе предположения о ее изменении в зависимости от величины отношения D [19]. Граничные условия для всех карт те же,

Рис. 1. Карты режимов колебаний однослойной изотропной балки (D = 0,384), полученные с помощью МКЭ:

а — модель Бернулли — Эйлера, б — модель Тимошенко, в — модель Шереметьева — Пелеха; I — колебания на независимой частоте, II — хаотические колебания, III — гармонические колебания, IV — бифуркации

Рис. 2. Карты режимов колебаний балки из графитопластика (D = 0,025), полученные с помощью МКР:

а — модель Бернулли — Эйлера, б — модель Тимошенко, в — модель Шереметьева — Пелеха; I — колебания на независимой частоте, II — хаотические колебания, III — гармонические колебания, IV — бифуркации что и в рассмотренной выше задаче. Результаты расчетов, проведенных с использованием MKP, приведены на рис. 2. Анализ этих результатов позволяет сделать вывод, что в зависимости от используемой модели колебания конструкций, изготовленных из материала с малой сдвиговой жесткостью, происходят в принципиально разных режимах.

Учет поворота нормали приводит к более достоверным результатам, особенно для материалов с малой сдвиговой жесткостью и многослойных конструкций [14]. Из приведенных выше результатов расчетов следует, что учет искривления нормали приводит к дальнейшему уточнению этих результатов, особенно в случае колебаний на высоких частотах и при больших амплитудах возбуждающей нагрузки.

При исследовании сложных колебаний важным вопросом является определение сценария перехода от гармонических колебаний к хаотическим. В случае моделей Бернулли — Эйлера и Тимошенко для разных частот возбуждения ω_p сценарии различны [14]. Отметим, что переход от гармонических колебаний к хаотическим осуществляется по сценарию Фейхенбаума и модифицированному сценарию Рюэля — Такенса — Ньюхауза, полученному для оболочек в работах [5, 6]. Тем же свойством обладает модель Шереметьева — Пелеха.

Исследуем влияние параметра λ на статику и динамику балок для трех различных моделей: Эйлера — Бернулли, Тимошенко, Шереметьева — Пелеха (рис. 3). На рис. 3 приведены значения прогиба в центральной точке в случае статики, максимального прогиба в центре и фрагменты карты режимов колебаний в случае динамики для частоты $\omega_p = 6.9$.

Рис. 3. Зависимости $w(q_0)$ при $\bar{x} = 0,5$ для статической (a-e) и динамической (e-e) задач и шкалы режимов колебаний:

а, г — $\lambda = 40, \, 6, \, \partial - \lambda = 60, \, e, \, e - \lambda = 80; \, 1$ — решение с использованием модели Бернулли — Эйлера, 2 — решение с использованием модели Тимошенко, 3 — решение с использованием модели Шереметьева — Пелеха; I — колебания на независимой частоте, II — хаотические колебания, III — гармонические колебания, IV — бифуркации

Следует отметить, что при увеличении параметра λ решения статических задач, полученные с помощью модели Эйлера — Бернулли, становятся ближе к решениям, полученным с использованием моделей Тимошенко и Шереметьева — Пелеха.

Проведенный анализ результатов решений нелинейных динамических задач о колебаниях балки под действием знакопеременной поперечной нагрузки показывает, что при увеличении параметра λ происходит процесс сближения результатов (значений максимального прогиба w(x) и режимов колебаний) для всех трех моделей. Отметим, что при переходе к хаотическим колебаниям происходит жесткая потеря устойчивости балки, сопровождающаяся резким скачком значений максимального прогиба max w(0,5) (см. рис. $3, a, \delta, \varepsilon, \partial$) даже при действии поперечной нагрузки.

Выводы. Анализ результатов исследований сложных нелинейных колебаний балок, выполненных с использованием моделей Бернулли — Эйлера, Тимошенко и Шереметьева — Пелеха, позволяет сделать следующие выводы: 1) полученные результаты существенно зависят от используемой модели балки; 2) с помощью карт режимов колебаний можно оптимизировать выбор материала конструкции, а также ее геометрические параметры для заданного режима работы.

ЛИТЕРАТУРА

- 1. Awrejcewicz J. Nonclassical thermoelastic problems in nonlinear dynamics of shells / J. Awrejcewicz, V. A. Krysko. Berlin: Springer, 2003.
- 2. Awrejcewicz J. Nonlinear dynamics of continuous elastic systems / J. Awrejcewicz, V. A. Krysko, A. Vakakis. Berlin: Springer, 2004.
- Awrejcewicz J. Thermo-dynamics of plates and shells / J. Awrejcewicz, V. A. Krysko, A. V. Krysko. Berlin: Springer, 2007.
- 4. Awrejcewicz J. Introduction to asymptotic methods / J. Awrejcewicz, V. A. Krysko. L.; N. Y.: Chapman and Hall/SRC, 2006. (Ser. modern mechanics and mathematics.)
- 5. Крысько В. А., Щекатурова Т. В. Хаотические колебания конических оболочек // Изв. РАН. Механика твердого тела. 2004. № 5. С. 153–163.
- 6. Крысько В. А., Кравцова И. В. Управление хаотическими колебаниями гибких сферических оболочек // Изв. РАН. Механика твердого тела. 2006. № 1. С. 161–172.
- Awrejcewicz J. Chaos in structural mechanics / J. Awrejcewicz, V. A. Krysko. Berlin: Springer, 2008.
- Lepik Ü. Application of the Haar wavelet transform to solving integral and differential equations // Proc. Estonian Acad. Sci. Phys. Math. 2007. V. 56, N 1. P. 28–46.
- Lepik Ü. Application of wavelet transform techniques to vibration studies // Proc. Estonian Acad. Sci. Phys. Math. 2001. V. 50. P. 155–168.
- Krysko V. A., Awrejcewicz J., Kusnetsova E. S., Krysko A. V. Chaotic vibrations of closed cylindrical shells in a temperature field. Pt 1 // Intern. J. Bifurcation Chaos. 2008. N 18. P. 51–59.
- Krysko V. A., Awrejcewicz J., Kusnetsova E. S., Krysko A. V. Chaotic vibrations of closed cylindrical shells in a temperature field. Pt 2 // Intern. J. Shock Vibration. 2008. N 15. P. 335–343.
- Krysko V. A., Zhigalov M. V., Saltukova O. A. Analysis of regular and chaotic dynamics of the Euler — Bernoulli using finite difference and finite element methods // Proc. of the 9th conf. on Dynamical systems — theory and application, Lodz (Poland), 17–20 Dec. 2007. Lodz: Tech. Univ. of Lodz, 2003. P. 657–668.

- Десятова А. С., Жигалов М. В., Крысько В. А., Салтыкова О. А. Диссипативная динамика нелинейных балок Бернулли — Эйлера // Изв. РАН. Механика твердого тела. 2008. № 6. С. 128–136.
- 14. Крысько В. А., Жигалов М. В., Салтыкова О. А. Нелинейная динамика балок Эйлера Бернулли и типа Тимошенко // Изв. вузов. Машиностроение. 2008. № 6. С. 140–150.
- Karman Th. Festigkeitsprobleme in Maschinenbau, Encykle // Encykl. Math. Wiss. 1910. Bd 4, N 4. S. 311–385.
- 16. Euler L. Sur la force des colones // Mem. L'Acad. Berlin. 1757. V. 13. P. 252–282.
- 17. Timoshenko S. P. On the correction for shear of differential equation for transverse vibration of prismatic bar // Philos. Mag. 1921. V. 41, N 6. P. 744–746.
- 18. Шереметьев М. П., Пелех Б. Л. К построению уточненной теории пластин // Инж. журн. 1964. Т. 4, вып. 3. С. 34–41.
- 19. Вольмир А. С. Нелинейная динамика пластинок и оболочек. М.: Наука, 1972.
- Рикардс Р. Б. Устойчивость оболочек из композитных материалов / Р. Б. Рикардс, Г. А. Тетерс. Рига: Зинатне, 1974.

Поступила в редакцию 18/XII 2008 г., в окончательном варианте — 27/X 2010 г.