УДК 533.6.011

Моделирование структуры течения в составной струе за двумя двигателями, расположенными около корпуса космического аппарата

Ю.И. Герасимов¹, В.Н. Ярыгин², А.Н. Крылов¹, Б.А. Сагдуллин³

¹РКК «Энергия» им. С.П. Королева, Королев ²Институт теплофизики им. С.С. Кутателадзе СО РАН, Новосибирск ³Московский физико-технический институт, Долгопрудный

E-mail: yarygin@itp.nsc.ru

Экспериментально и численно исследуется газодинамическая структура течения в зоне взаимодействия струй, истекающих с сильной степенью недорасширения из двух сверхзвуковых сопел, расположенных около корпуса космического аппарата. Методом электронного пучка получены продольные и поперечные распределения плотности. Проведено их сравнение с результатами расчета невязкого газа. Получены обобщенные зависимости для определения величины плотности газа в области взаимодействия двух струй и положения границы этой зоны.

Ключевые слова: космические аппараты, двигатели ориентации и управления, выхлопные факелы, взаимодействие струй, структура течения, моделирование в вакуумных камерах.

введение

В процедурах управления движением в автономном полете и при стыковкахрасстыковках космических кораблей (КК) используются режимы одновременной работы двух ракетных двигателей малой тяги. В частности, такие режимы реализованы в проектах кораблей типа «Союз» и «Прогресс», которые доставляют на Международную космическую станцию (МКС) сменные экипажи, оборудование и грузы.

Типовая схема размещения таких двигателей на космическом корабле показана на рис. 1. Для торможения активного корабля перед стыковкой с орбитальной станцией включаются два двигателя 1 и 2, которые установлены по разные стороны от корпуса корабля 3. При работе двигателей в результате взаимодействия струй с поверхностью КК, а затем и между собой реализуется структура течения, представленная в общем виде на рис. 2. Здесь выделены области свободного расширения струй (a), зоны вторичного расширения (b) за скачками уплотнения S_1 и приосевая зона взаимодействия струй (c), ограниченная скачками уплотнения S_2 .

© Герасимов Ю.И., Ярыгин В.Н., Крылов А.Н., Сагдуллин Б.А., 2009

Рис. 1. Схема размещения двигателей около корпуса КА.

В настоящее время структура течения при взаимодействии двух струй без центрального тела достаточно хорошо изучена (см., например, работу [1] и библиографию к ней). Наличие центрального тела приводит к необходимости учета влияния весьма многочисленных (таких как L_K , R_K , φ , α_K , h, см. рис. 1) геометрических параметров модели, что несколько усложняет анализ и обобщение результатов исследования. В то же время проведение подобных исследований, в первую очередь экспериментальных, является важным и необходимым этапом термогазодинамического обоснования при разработке и создании новых космических аппаратов.

В настоящей работе представлены результаты исследований структуры и параметров течения указанного класса составных струй, проведенных на вакуумных стендах ИТ СО РАН [2], в основном, в 80-х годах прошлого столетия, в рамках проектов создания ряда новых космических аппаратов. Актуальность этой задачи сохранилась до настоящего времени, поэтому ее исследование было продолжено и расширено с привлечением численных экспериментов, проведенных с использованием программного комплекса «AeroShape 3D» [3].

1. ЭКСПЕРИМЕНТАЛЬНОЕ МОДЕЛИРОВАНИЕ СТРУЙ ДВИГАТЕЛЕЙ КОСМИЧЕСКИХ АППАРАТОВ

При постановке экспериментов по моделированию натурных струй космических кораблей возникают вопросы о выборе условий моделирования по параметрам сверхзвукового сопла — геометрии, числа Маха, рода газа, его температуры и расхода или давления торможения. Конечно, речь может идти только о приближенном моделировании натурного процесса истечения. В настоящей работе принята концепция моделирования по характерному углу расширения струи $\theta_+ = \operatorname{arctg} \sqrt{(1-\overline{J})/\overline{J}}$ [4], определяемому через относительный импульс струи $\overline{J} = J_a / (GV_{\text{max}}) = \overline{J}(M_a, \gamma)$ [5], где J_a , G, V_{max} — импульс газа на срезе сопла,

Рис. 2. Система угловых параметров задачи, зоны свободного (*a*) и вторичного (*b*) расширения струй, (*c*) — зона взаимодействия струй.

расход и максимальная скорость газа в струе соответственно, M_a — число Маха, γ — отношение удельных теплоемкостей.

При таком подходе в эксперименте необходимо воспроизвести величину относительного импульса натурного двигателя комбинацией γ и M_a .

В рамках этой модели распределение плотности газа в свободно расширяющейся струе идеального газа (при $\bar{r} = r/r_a > 10$) определяется зависимостью

$$\frac{\rho}{\rho_0} \approx \frac{0.21(\gamma - 1)^{0.5}}{\overline{F} \ \overline{r}^2 \theta_+^2} \exp\left(-0.5 \cdot \overline{\theta}^2\right),\tag{1}$$

где $\overline{\theta} = \theta/\theta_+$, *r* и θ — координаты полярной системы, ρ_0 — плотность газа в форкамере, $\overline{F} = (r_a / r_*)^2$ — степень расширения сопла, r_a и r_* — радиусы выходного и критического сечений сопла соответственно.

Было показано [4], что ~ 95–99 % от суммарного расхода газа струи идеального газа истекает внутрь конуса с величиной полуугла раствора $\theta \approx 3\theta_+$, что придает параметру θ_+ реальный физический смысл. Положение плоскости взаимодействия или неограниченной пластины относительно поля течения струи определяется значением безразмерного параметра $\overline{\varphi} = \varphi / (3\theta_+ \cdot \overline{J}^{0.5})$, φ — угол между осью сопла и поверхностью. Это значит, что при $\overline{\varphi} \sim 1$ пластина расположена вблизи границы струи и струя практически не оказывает воздействия на ее поверхность.

Введение в рассмотрение характерного угла расширения струи θ_+ позволяет перейти от пяти геометрических параметров задачи: L_K , R_K , φ , α_K , h или R_C (см. рис. 1) к трем угловым параметрам, характеризующим положение в расширяющейся струе края корпуса модели $\overline{\theta}_K = \theta_K / \theta_+$, а также положение оси сопла относительно продольной оси модели $X_K - \overline{\varphi}_X = \varphi / (3\theta_+ \cdot \overline{J}^{0,5})$ и относительно образующей корпуса модели $- \overline{\varphi}_w = (\varphi - \alpha_K) / (3\theta_+ \cdot \overline{J}^{0,5})$ (см. рис. 2). Эти три угловых параметра и были использованы при анализе и обобщении результатов исследований.

В экспериментах (таблица) варьировались геометрические характеристики моделей R_{K}/h , $\overline{L}_{K} = L_{K}/r_{a}$ и параметры сопел по степени расширения \overline{F} (при

		-					
Модель	Газ	\overline{F}	$ heta_{\!\scriptscriptstyle +}$	φ	\overline{h}	$\overline{L_K}$	R_K/h
1,7	N_2	2,25	28,3°	15°	3	16	14
1,8	Ar	2,25	27°	15°	3	25	14
3,2	N_2	20	19°	0	23,5	0	0
4,1	CO ₂	16	23,1°	15°	28	0	0
4,2	CO ₂	16	23,1°	15°	3	5	8,3
4,3	CO_2	16	23,1°	15°	3	7	8,3
4,4	CO ₂	16	23,1°	15°	3	11	8,3
4,5	CO_2	16	23,1°	15°	3	19	8,3
4,6	CO ₂	16	23,1°	15°	3	35	8,3
4,7	CO_2	16	23,1°	15°	3	70	8,3
4,10	CO ₂	16	23,1°	0	1,5	0	0
4,11	CO ₂	16	23,1°	0	3	0	0
4,12	CO ₂	16	23,1°	0	5	0	0

Условия проведения модельных экспериментов

Таблица

Рис. 3. Изменение плотности газа вдоль продольных осей моделей (обозначения соответствуют номерам экспериментов в табл. 1).

размерах их критических сечений r_* , равных 0,25–0,6 мм) и по геометрическим характеристикам моделей R_K/h , $\overline{L}_K = L_K / r_a$. Углы наклона осей сопел φ к продольной оси корпуса составляли 15°, при высоте установки сопел над ним $\overline{h} = h/r_a = 3$. Угол наклона образующей корпуса $\alpha_K = 0^\circ$. Для моделей без корпуса ($\overline{L}_K = 0$) углы установки осей сопел относительно продольной оси блока равнялись 0° и 15° при значениях \overline{h} от 1,5 до 28.

В качестве рабочих газов использовались Ar, N₂ и CO₂. Для устранения конденсации CO₂ подогревался до температуры ≈ 600 K. Для получения больших расходов газа при низких давлениях в вакуумной камере использовалась азотная и гелиевая криооткачка. Значения числа Рейнольдса, определенного по параметрам газа в критическом сечении сопла Re_{*}, соответствовали диапазону от 0,5·10⁵ до 0,9·10⁵. Значения числа Re_L = Re_{*}/ $\sqrt{P_0/P_H}$, характеризующего эффекты вязкого взаимодействия струй с окружающим газом, лежали в диапазоне от 7 до 15. Здесь P_0 и P_{μ} — давления в форкамере сопла и в вакуумной камере соответственно.

В экспериментах с использованием электронно-пучковой диагностики измерялись продольные и поперечные распределения плотности, а также осуществля-

лась визуализация структуры поля течения. Результаты по распределениям относительной плотности газа вдоль продольных осей моделей X_K приведены на рис. 3, в поперечных сечениях при X_K = const — на рис. 4.

Рис. 4. Изменение плотности газа в сечении $\overline{X}_{K} = 150$, I — одиночная струя, 2 — результаты расчета для условий эксперимента модели 4.1 (см. табл.), остальные обозначения соответствуют номерам экспериментов.

Рис. 5. Визуализация структуры течения без центрального тела (эксперимент 3.2).

Представленные данные показывают, что взаимодействие двух струй приводит к образованию системы скачков уплотнения, за которыми плотность газа существенно увеличивается. Распределение плотности газа вдоль продольной оси компоновки имеет четко выраженный максимум (рис. 3), а в поперечных сечениях при X_K = const (рис. 4) значения плотности в зоне взаимодействия струй, расположенной около плоскости симметрии (Y_K = 0), в 2-5 раз превышают уровни, которые реализуются в этой зоне в одиночной невозмущенной струе (см. рис. 4, 1).

Примеры электронно-пучковой визуализации структуры течения в поперечных сечениях приведены на рис. 5 для модели без центрального тела, на рис. 6 — с центральным телом (корпуса КК). Здесь нужно отметить, что более светлые зоны на фотографиях соответствуют большим значениям плотности газа. Видно, что в эксперименте 3.2 возникновение области взаимодействия струй зафиксировано на фотографии в сечении $\overline{X}_{\kappa} = 40$, и далее по течению эта область увеличивается в размерах. Наличие корпуса космического корабля вносит изменение в характер формирования области взаимодействия струй, рис. 6. Видно, что взаимодействие струй с корпусом КК приводит к нарушению осесимметричного характера распределения плотности в струях. Кроме того, увеличение длины корпуса КК приводит при прочих равных условиях к уменьшению плотности в зоне столкновения струй, а положение максимума смещается вниз по течению. В эксперименте 4.1 ($\overline{L}_{\kappa} = 0$; см. рис. 3) положение максимума в распределении плотности максимума определяется координатой $\overline{X}_{\kappa} \approx 110$.

2. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ СТРУЙ БОЛЬШОЙ НЕРАСЧЕТНОСТИ

Хотя проведенные эксперименты позволили получить новые результаты о структуре течения составных струй, влияние ряда параметров, таких как φ , α_K , θ_+ , не было исследовано достаточно подробно, что ограничивало возможности обобщения полученных данных для практических приложений.

Рис. 6. Визуализация структуры течения с центральным телом (эксперимент 4.5).

Частично это пробел устранился проведением расчетов невязкого газа для различных вариантов рассматриваемой задачи с использованием программы AeroShape-3D [3], которая является аналогом продуктов CFD (Computational Fluid Dynamics) семейства FloEFD фирмы NIKA soft.

Здесь необходимо заметить, что как в натурных условиях, так и в условиях проведенных экспериментов роль эффектов вязкости и разреженности в формировании структуры течения в целом за блоком сопел, конечно, существенна. Тем не менее, проведенные расчеты течения даже в невязкой постановке позволили лучше интерпретировать и обобщить результаты экспериментов, особенно в дальнем поле струи. Выбор данного программного комплекса обусловлен его доступностью как коммерческого продукта и простотой использования.

Прежде всего, было проведено тестирование используемого метода расчета на результатах экспериментальных исследований. Проведены серии расчетов, в которых для случая взаимодействия струи с пластиной (или двух струй между собой) были воспроизведены условия истечения, реализованные в наших экспериментах и в известных экспериментальных и численных исследованиях других авторов [1, 6, 7].

При проведении тестовых расчетов получено [8], что их результаты хорошо согласуются с данными, приведенными в работах [6, 7], по распределениям давления газа в ближней зоне взаимодействия струй (в области максимума). При этом следует отметить, что в экспериментах [7] характер взаимодействия газа с поверхностью пластины соответствовал режиму сплошного невязкого течения, а в работе [6] влияние вязких эффектов, так же, как и в наших расчетах, не учитывалось.

Влияние эффектов вязкости на характер взаимодействия двух спутных сильно недорасширенных струй экспериментально исследовано в [1]. В этой работе показано, что распределения относительной плотности газа в ближней зоне взаимодействия струй (величины максимума ρ_{max} и координаты его положения X_{max}) существенным образом зависят от условий истечения газа по числу Рейнольдса Re_L, а именно — по мере уменьшения величины Re_L значение плотности в максимуме уменьшается, а его положение сдвигается вниз по течению струи. Соответствующие результаты по данным [1] для чисел Re_L = 5, 12 и 48 приведены на рис. 7 (*1*–3). На рис. 7 приведены также результаты расчетов в невязкой постановке для условий экспериментов [1].

Рис. 7. Сравнение результатов расчета и экспериментов: *1*, 2 и 3 — эксперименты [1] для Re_L = 5, 12 и 48, 4 – расчет для условий экспериментов [1], 5 — эксперимент модели 3.2, (см. табл.), 6 — расчет для условий эксперимента 3.2.

Можно видеть, что в ближнем поле течения (при $X/2h \le 1,5$) расчетные данные весьма удовлетворительно согласуются с результатами экспериментов [1], проведенных при значении $\text{Re}_L = 48$, соответствующего режиму слабого влияния вязких эффектов в слое смешения на границе струи. С уменьшением числа Re_L рассогласование экспериментальных и расчетных данных увеличивается. В то же время в дальнем поле течения (при $X/2h \ge 1,5$) результаты экспериментов [1] и проведенных расчетов сходятся в единую зависимость.

Отмеченные тенденции подтверждаются также экспериментальными и расчетными данными, приведенными на рис. 7 для условий эксперимента 3.2.

Кроме влияния эффектов вязкости на структуру течения взаимодействующих струй в условиях проведенных экспериментов возможно проявление эффектов разреженности, особенно в дальнем поле течения. Для лучшего понимания ситуации были оценены числа Кнудсена Kn = λ / Y_{S2} , где λ — средняя длина свободного пробега молекул перед фронтом скачка S₂ (см. рис. 2), а Y_{S2} — характерный размер, за который принята величина отхода скачка от плоскости взаимодействия. Оценки, проведенные для различных сечений, показали, что как для экспериментов настоящей работы, так и для экспериментов в работе [1], определенные таким образом числа Kn по порядку величины близки к 1, что соответствует "размытой" структуре скачка. Экспериментальные данные, приведенные на рис. 4, подтверждают этот вывод. Можно видеть, что, например, результаты эксперимента модели 4.1 (см. табл.), в отличие от результатов расчета для этого эксперимента (см. рис. 4, 2), демонстрируют примерно одинаковый уровень плотности за фронтом скачка. Другой вывод, который можно сделать из этого сравнения, состоит в том, что имеет место хорошая корреляция между средними значениями расчетных и экспериментальных величин плотности по ширине зоны взаимодействия.

Отмеченная корреляция имеет важное методологическое значение с точки зрения обобщения экспериментальных данных с целью создания инженерной методики расчетов плотности, особенно в дальнем поле течения составных струй.

3. РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ АНАЛИЗ

Как уже отмечалось, основная цель работы состояла в получении обобщенных зависимостей, пригодных для газодинамического обоснования разрабатываемых космических аппаратов. Экспериментальная часть программы исследований (см. табл.) носила базовый характер, а проведенные расчеты позволили выйти за пределы изменения режимных параметров, исследованных в экспериментах. При этом обобщения проводились, в основном, с использованием трех угловых параметров (нормированных на характерный угол расширения струи), определяющих относительное расположение и размеры сопел двигателей и корпуса космического аппарата.

Было выполнено две серии расчетов — без центрального тела (корпуса космического аппарата) и с центральным телом. В первой серии расчетов режимные параметры варьировались в следующих диапазонах θ_+ от 19° до 30°, M_a от 2,66 до 5,0 и γ от 1,24 до 1,4. Углы установки сопел φ относительно оси блока составляли 0°, 15° и 20°, а значения \overline{h} варьировались от 3 до 29. Во второй серии расчеты проводились для трех значений характерного угла расширения струи $\theta_+ = 21,5^\circ$, ~23° и ~30° при изменении значений M_a от 2,66 до 3,79, γ от 1,24 до 1,4 при значении параметров модели $\overline{h} = 3$ ($\overline{L}_K \neq 0$), для $R_K/h = 8,33$. Варьировались значения углов установки осей сопел φ от 0 до 15° и образующей корпуса α_K относительно продольной оси компоновки от 0° до -10° . В каждой серии расчеты проведены при значениях длины корпуса $\overline{L}_K = 0, 5, 7, 11, 19$ и 35.

Не касаясь деталей, приведем основные результаты исследований и обобщений по осевым распределениям плотностей, положениям максимумов плотности и их величинам в области взаимодействия струй и размерам этой области (положение скачка уплотнения S_2).

Струя за блоком сопел без центрального тела

По результатам серии расчетов для этого варианта взаимодействия струй получено, что угловое положение максимума плотности $X_{\rm max}$ на оси компоновки с погрешностью 20 % определяется зависимостью

$$\overline{\theta}_{\max} \approx 0.58 + \gamma (\gamma - 1)^{0.5} + 1.87 \cdot \overline{\varphi}_X.$$
⁽²⁾

При этом значение максимума $\rho_{\rm max}$ с погрешностью не хуже 18 % определяется зависимостью

$$\rho_{\max} / \rho_1 \approx 10.5 \cdot (\gamma (\gamma - 1)^{0.5})^{-1} \sin \beta_m,$$
 (3)

где ρ_1 — плотность газа в этой точке в невозмущенной струе, а β_m — угол между линей тока (лучом из центра среза сопла) и осью X_K (см. рис. 2).

На рис. 8 представлены результаты обобщения экспериментов данной работы и экспериментов [1] с использованием зависимостей (2) и (3). Можно видеть, что результаты экспериментов и расчетов при значениях $X_K / X_{max} > 2$ (в дальнем поле взаимодействия струй) сходятся в единую зависимость, которую с погрешностью ~ 20 % можно представить в виде $\rho_X / \rho_{max} \sim 1/(X_K / X_{max})^2$. По результатам

Рис. 8. Результаты экспериментов в зависимости от X_K/X_{max} : 1, 2 и 3 — результаты [1] для $\operatorname{Re}_L = 48$, 10 и 5, 4 — расчетные данные AeroShape-3D (средние значения по ширине зоны взаимодействия) для условий [1], остальные обозначения соответствуют номерам экспериментов в табл.

Рис. 9. Изменение углового положения максимума распределения плотности газа на оси компоновки в зависимости от параметров схемы: *1* — результаты расчетов, *2*, *3* и *4* — результаты модельных экспериментов 4.1–4.7, 1.7 и 1.8 (см. табл.).

модельных экспериментов полученная зависимость определена до значений $X_K / X_{\text{max}} \sim 50$. В ближнем поле взаимодействия струй при $X_K / X_{\text{max}} < 2$ результаты экспериментов настоящей и работы [1] расслаиваются по значениям параметра Re_L .

Струя за блоком сопел с центральным телом

На рис. 9 представлены результаты обобщения экспериментальных данных по угловому положению максимумов в осевых распределениях плотности за блоками сопел. Здесь так же, как и ранее, можно видеть проявление эффектов вязкости на характер взаимодействия струй за центральным телом — результаты экспериментов и расчетов группируются в отдельные зависимости. При этом для каждого конкретного варианта положение максимума определяется суперпозицией всех трех угловых параметров.

Такой же характер обнаруживают и обобщенные данные по величинам максимумов плотности в следе за центральным телом: чем выше число Re_L , тем меньше разница между экспериментом и расчетом. Было найдено, что экспериментальные данные по величинам максимумов плотности при $\overline{L}_K \ge 5$ удовлетворительно обобщаются зависимостью $\rho_{\max}(L_K) / \rho_{\max}(0) = 0,39 \cdot \overline{\theta}_K - 0,29$, где $\rho_{\max}(0)$ определяется по (3).

На рис. 10 представлены результаты обобщения экспериментальных данных по распределениям плотности вдоль оси компоновки, а также положению фронта скачка уплотнения *S*₂, являющегося границей области взаимодействия двух струй.

Эти данные были аппроксимированы степенными зависимостями, справедливыми в исследованных диапазонах режимных параметров. Здесь $K \ge 1$ масштабный коэффициент, который

Рис. 10. Экспериментальные данные по распределению плотности газа вдоль оси компоновки (1) и положению фронта скачка S₂ (2).

в общем случае является функцией трех угловых параметров, а для условий наших экспериментов $\overline{\phi}_{X} = \overline{\phi}_{w} = 0,235$ при $\overline{L}_{K} \ge 6$ ($\overline{\theta}_{K} \le 1,8$) определяется по формуле

$$K \approx 4, 7-2, 5 \cdot \theta_K + 0, 82 \cdot \theta_K$$
.

ЗАКЛЮЧЕНИЕ

Хотя полученные обобщенные зависимости носят весьма сложный характер и не являются универсальными, они могут быть использованы для определения плотности в зоне взаимодействия двух струй и положения границы этой зоны при разработке новых космических аппаратов. При этом область применимости полученных результатов ограничена исследованными диапазонами режимных параметров, а именно для θ_+ от ~ 20° до 30°, γ от 1,24 до 1,4, а также Re_{*} = = 0,5 · 10⁵ – 0,9 · 10⁵ и Re_L = 7–15. Значения геометрических параметров моделей в экспериментах и расчетах лежали в диапазонах $\bar{h} = 1,5-29$ (для моделей без центрального тела), $\bar{h} = 3$ и $\bar{R}_K = R_K / r_a \ge 25$, $\bar{\theta}_K = 0,17-3,0$, $\bar{\varphi}_w = 0-0,32$ (для моделей с корпусом КК) и $\bar{\varphi}_X = 0-0,3$.

Автор выражает благодарность А.К. Реброву за полезные дискуссии и ценные замечания.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ермолов В.И., Лангран Ж.-К., Ребров А.К., Храмов Г.А. Экспериментальное исследование взаимодействия двух спутных гиперзвуковых струй // ЖПМТФ. 1983, № 3. С. 104–107.
- Серасимов Ю.И., Палопеженцев С.А., Ярыгин В.Н. Исследование газодинамической структуры блочных струй // Динамика разреженных газов. Ч. 2. (Тр. VI Всес. конф.). Новосибирск. 1980. С. 132–137.
- 3. Gavriliouk V.N., Lipatnikov A.V., Kozlyaev A.N., Odintsov E.V. et al. Computation modeling of the combustion problems with the use of "aeroshape-3d" numerical technique // Proc. 19th Inter. Symposium on Space Technology and Science. Yokohama, Japan, May 15-24, 1994 (ISTS 94-d-27).
- 4. Герасимов Ю.И. Параметры подобия в задаче о взаимодействии свободно расширяющейся струи с пластиной // Изв. АН СССР, МЖГ. 1981. № 2. С. 169–173.
- 5. Мурзинов И.Н. Параметры подобия при истечении сильно недорасширенных струй в затопленное пространство // Изв. АН СССР. МЖГ. 1971. № 4. С. 143–148.
- 6. Мирончук Н.С., Никулин А.Н., Храмов Н.Е. О расчете взаимодействия истекающей в вакуум сверхзвуковой струи с преградой // Изв. АН СССР. МЖГ. 1981. № 1. С. 157–160.
- 7. Жохов В.А. Расчет распределения давления при обтекании плоской пластины сверхзвуковой свободно расширяющейся струей газа // Уч. зап. ЦАГИ. 1973. Т. 4, № 4. С. 14–20.
- 8. Герасимов Ю.И., Сагдуллин Б.А. Особенности расчета взаимодействия сильно недорасширенной струи с пластиной или двух струй между собой // Тр. 51-й научн. конф. МФТИ "Современные проблемы фундаментальных и прикладных наук": Часть III. Аэрофизика и космические исследования. Т. 1. 2008. С. 61–64.

Статья поступила в редакцию 10 апреля 2009 г.