2010. Том 51, № 2

Март – апрель

C. 322 – 330

УДК 536.422:615.212.3

ТЕРМОДИНАМИКА СУБЛИМАЦИИ, ТЕРМОФИЗИЧЕСКИЕ И СТРУКТУРНЫЕ АСПЕКТЫ МОЛЕКУЛЯРНЫХ КРИСТАЛЛОВ ФЕНАМАТОВ

© 2010 А.О. Суров*, Г.Л. Перлович

Учреждение Российской академии наук Институт химии растворов РАН, Иваново

Статья поступила 2 декабря 2008 г.

С доработки — 15 апреля 2009 г.

Методом переноса инертным газом-носителем были получены температурные зависимости давлений паров и рассчитаны термодинамические функции процессов сублимации для семи молекулярных кристаллов, принадлежащих к группе нестероидных противовоспалительных средств: диклофенак, нифлюмовая, флюфенамовая, толфенамовая, мефенамовая, N-фенилантраниловая кислоты и дифениламин. Методом дифференциальной сканирующей калориметрии изучены процессы плавления выбранных веществ. Проанализированы рентгеноструктурные литературные данные для монокристаллов и проведена сравнительная характеристика с полученными нами термодинамическими и термофизическими параметрами процессов сублимации и плавления. Обнаружена корреляция между значениями энтальпии сублимации при стандартных условиях и температурой плавления. Изучено влияние различных заместителей на энергию кристаллической решетки данного класса соединений.

Ключевые слова: фенаматы, термодинамика сублимации, энергия кристаллической решетки, кристаллическая структура, рентгеноструктурный анализ, ДСК.

введение

Нестероидные противовоспалительные средства широко используются в медицинской практике. Как правило, соединения данного класса плохо растворимы в воде и водных буферах, что существенно ограничивает эффективность применения отмеченных лекарственных препаратов. Одним из путей разрешения проблемы является структурная модификация соединений, приводящая к уменьшению энергии кристаллических решеток без нарушения фармакологических свойств. Для оптимизации поиска наиболее подходящих структур необходимы экспериментальные методы оценки энергии кристаллических решеток и анализ связи этого параметра с кристаллической структурой вещества. Хорошо известно, что энергию кристаллической решетки в молекулярных кристаллах можно количественно оценить по значению теплоты сублимации. Поэтому основной целью работы было изучение термодинамических аспектов процессов сублимации и плавления молекулярных кристаллов и их связь со структурными характеристиками соединений.

В качестве объектов исследования были выбраны соединения с подобной структурой (фенаматы, рис. 1): диклофенак (I), нифлюмовая кислота (II), флюфенамовая кислота (III), толфенамовая кислота (IV), мефенамовая кислота (V), N-фенилантраниловая кислота (VI) и дифениламин (VII). Первые пять веществ обычно используются в качестве эффективных нестероидных противовоспалительных средств. В литературе имеются некоторые данные по температуре и энтальпии плавления молекулярных кристаллов выбранных соединений [1—4]. Однако вопросы, связанные с термодинамическими аспектами изучения процессов сублимации, остались

^{*} E-mail: aos@isc-ras.ru

Рис. 1. Структурные формулы изучаемых соединений

полностью за пределами внимания исследователей. Одно из объяснений сложившейся ситуации может быть связано с трудностями проведения экспериментов в области температурной стабильности соединений. Следует также отметить, что сублимационные функции являются важнейшими экспериментальными характеристиками твердых соединений, используемых для нормировки функций парных потенциалов для теоретических оценок энергии кристаллических решеток [5].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Вещества. Флюфенамовая кислота 2-(3-трифторметил)фениламинобензойная кислота ($C_{14}H_{10}F_3NO_2$, мол. масса 281,23, Lot 122K1018), нифлюмовая кислота 2-(3-трифторметил)анилиноникотиновая кислота ($C_{13}H_9F_3N_2O_2$, мол. масса 282,2, Lot 12K1486), мефенамовая кислота 2-(2,3-диметилфенил)аминобензойная кислота ($C_{15}H_{15}NO_2$, мол. масса 241,29, Lot 052K1611), толфенамовая кислота 2-(3-хлор-2-метил-фенил)аминобензойная кислота ($C_{14}H_{12}CINO_2$, мол. масса 261,7, Lot 110H0469) получены по каталогу Sigma Chemical Co, St. Louis, USA. Диклофенак 2-(2,6-дихлорфенил)аминофенилуксусная кислота ($C_{14}H_{11}Cl_2NO_2$, мол. масса 296,15, Lot DFA/303002) получен по каталогу Alchemie USA, INC (Plantsville). N-фенилантраниловая кислота ($C_{13}H_{11}NO_2$, мол. масса 213,24, Lot 78150), дифениламин ($C_{12}H_{11}N$, мол. масса 169,23, Lot 1164708) получены от Fluka. Чистота всех соединений была не хуже, чем 99,8 %.

Сублимационный эксперимент. Давление насыщенного пара изучаемых соединений было получено методом переноса инертным газом-носителем, подробно описанным в статье [6]. Калибровку установки проводили бензойной кислотой. Полученное значение энтальпии сублимации ΔH_{sub}^T в температурном интервале 307,3—354,5 К составляло 90,5 ± 0,3 кДж·моль⁻¹, что находится в хорошем соответствии с рекомендованным ИЮПАК стандартным значением 89,7 ± 0,5 кДж·моль⁻¹ [7]. Давление насыщенного пара определяли при 7—15 различных значениях температуры с шагом 1—10 К. Экспериментальные значения давления пара аппроксимировали прямолинейной зависимостью в координатах (ln*p* – 1/*T*) методом наименьших квадратов по уравнению

$$\ln(P) = A + B / T. \tag{1}$$

Значение энтальпии сублимации рассчитывали по уравнению Клапейрона-Клаузиуса:

$$\Delta H_{\rm sub}^{T} = -R \left(\frac{\partial (\ln P)}{\partial (1/T)} \right).$$
⁽²⁾

Величину изменения энтропии сублимации ΔH_{sub}^T при данной температуре рассчитывали из соотношения

$$\Delta S_{\text{sub}}^{T} = \frac{(\Delta H_{\text{sub}}^{T} - \Delta G_{\text{sub}}^{T})}{T},\tag{3}$$

где $\Delta G_{\text{sub}}^T = -RT \ln(p/p_0)$ и $p_0 = 1,013 \times 10^5$ Па.

Измерения давления насыщенных паров проводили при повышенных температурах, поэтому мы использовали уравнение (4) для коррекции энтальпии сублимации на 298 К [8]:

$$\Delta H_{\rm sub}^{298} = \Delta H_{\rm sub}^T + \Delta H_{\rm cor} = \Delta H_{\rm sub}^T + (0,75 + 0,15C_{p_c}^{298}) \cdot (T - 298,15), \tag{4}$$

где ΔH_{sub}^T — энтальпия сублимации при средней температуре эксперимента; $C_{p_c}^{298}$ — теплоемкость вещества при 298 К. Величину $C_{p_c}^{298}$ рассчитывали методом аддитивных вкладов [8].

Дифференциальная сканирующая калориметрия. Температуру и энтальпию плавления измеряли на дифференциальном сканирующем калориметре теплового потока DSC 204 F1 "Foenix" фирмы Netzsch, Германия. Калориметрический эксперимент проводили в атмосфере сухого аргона марки ОСЧ (содержание аргона 99,998 %) при скорости пропускания 25 мл·мин⁻¹ с использованием стандартных алюминиевых тиглей. Скорость нагрева составляла 10 К · мин⁻¹. Калибровку калориметра проводили по температурам плавления пяти эталонов (ртуть, дифенил, индий, олово, висмут) и чувствительности прибора. Точность взвешивания была ±0,001 мг (весы марки Sartorius M2P).

Расчетная процедура. Ван-дер-ваальсовы объемы молекул были вычислены с помощью программы GEPOL [9] на основе атомных радиусов, предложенных Китайгородским [5]. Коэффициент упаковки молекул в кристалле рассчитывали по формуле (5)

$$K = \frac{V_{\rm vdw}}{V_{\rm mol}},\tag{5}$$

где $V_{\rm vdw}$ — ван-дер-ваальсов объем молекулы; $V_{\rm mol}$ — объем, приходящийся на молекулу в элементарной ячейке, равный

$$V_{\rm mol} = \frac{V_{\rm gq}}{Z},\tag{6}$$

где V_{sy} — объем элементарной ячейки; Z — количество молекул в элементарной ячейке.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Вопросам изучения кристаллических структур выбранных соединений в литературе уделено много внимания. Прежде всего, следует отметить, что для диклофенака описаны три полиморфные модификации с пространственными группами P2₁/c [10], C2/c [10], Pcan [11]. Для экспериментов использовали полиморфную модификацию II (C2/c), полученную медленным выпариванием насыщенного раствора метанола. Структура изучаемой фазы была подтверждена рентгеноструктурным анализом [12]. Флюфенамовая и толфенамовая кислоты кристаллизуются в моноклинные решетки с пространственными группами C2/c [13], $P2_1/c$ [14] и $P2_1/c$, $P2_1/n$ [4] соответственно. Используемую в работе полиморфную модификацию флюфенамовой кислоты получали следующим образом. Определенное количество вещества выдерживали при температуре 388.2 К в течение 24 ч [15]. Полиморфная модификация толфенамовой кислоты с пространственной группой $P2_1/c$, которую использовали для экспериментов, была получена медленным испарением раствора толуола [16]. В литературе описаны только по одной кристаллической модификации для: нифлюмовой кислоты (с пространственной группой $P2_1/n$) [17], N-фенилантраниловой [18] кислоты (P1bar) и дифениламина (P1bar) [19], которые и были исследованы в работе. Низкотемпературная модификация (форма I) мефенамовой кислоты (P1bar) [20] имеет температуру энантиотропного перехода в высокотемпературную форму II при 438,2—448,2 К [21]. Поэтому рабочие температурные интервалы сублимационных экспериментов находились в области существования термодинамически стабильной формы. Структуры всех используемых полиморфных модификаций были подтверждены дифрактограммами от порошка. Экспериментальные дифрактограммы находились в хорошем соответствии с дифрактограммами, полученными в результате моделирования описанных в литературе монокристаллов.

В табл. 1 приведены рентгеноструктурные параметры изучаемых соединений (тех полиморфных модификаций, которые использованы в работе), графы водородных связей [22], ван-

Таблица 1

Параметр	Ι	II	III	IV	V	VI	VII			
Тип кристалл. ре- шетки	Моно- клинная	Моно- клинная	Моно- клинная	Моно- клинная	Три- клинная	Три- клинная	Три- клинная			
Группа симметрии	C2/c	$P2_1/n$	$P2_{1}/c$	$P2_{1}/c$	P 1bar	P 1bar	P1bar			
<i>a</i> , Å	20,226(4)	5,111(2)	12,523(4)	4,826(2)	14,556	8,099	9,853			
b, Å	6,971(3)	15,330(2)	7,868(6)	32,128(11)	6,811	9,826	9,882			
<i>c</i> , Å	20,061(4)	15,479(2)	12,874(3)	8,041(4)	7,657	14,059	37,944			
α, град.	90,00	90,00	90,00	90,00	119,57	85,96	83,85			
β, град.	109,64(2)	95,5(3)	95,2(2)	104,88(3)	103,93	88,62	88,53			
ү, град.	90,00	90,00	90,00	90,00	91,30	73,39	89,86			
V, Å ³	2664(1)	1207,22	1263,27(2)	1205(2)	631,77	1069,64	3672,0			
D_x , г·см ⁻³	1,477	1,550	1,470	1,443	1,270	1,324	1,224			
Ζ	8	4	4	4	2	4	16			
Графы водород-	R_2^2 (8);	R_2^2 (8);	R_2^2 (8);	R_2^2 (8);	R_2^2 (8);	R_2^2 (8);				
ных связей	<i>S</i> (7)	<i>S</i> (6)	<i>S</i> (6)	<i>S</i> (6)	<i>S</i> (6)	<i>S</i> (6)				
$V_{ m vdw}$, Å ³	231,03	212,7	217,47	218,37	218,92	193,58	170,60			
$V_{ m mol}$, Å ³	333,00	301,81	315,82	298,89	315,89	267,41	229,50			
$V_{\rm free}$, Å ³ *	101,97	89,11	98,35	80,52	96,97	73,83	58,90			
$V_{\rm free}/V_{\rm vdw}$, %	44,13	41,89	45,22	36,87	44,29	38,14	34,53			
Κ	0,69	0,70	0,69	0,73	0,69	0,72	0,74			

Некоторые рентгеноструктурные параметры изучаемых соединений

* $V_{\text{free}} = V_{\text{mol}} - V_{\text{vdw}}$.

дер-ваальсовы объемы, а также коэффициенты упаковки (*K*) молекул в кристалле. Из таблицы видно, что коэффициенты упаковки изучаемых соединений изменяются от 0,69 до 0,74, что характерно для подавляющего большинства кристаллов, т.е. близки к коэффициенту плотной упаковки шаров и эллипсоидов. Наибольшее значение коэффициента упаковки имеет VII, вероятно, отсутствие заместителей и благоприятное конформационное сопряжение молекул позволяет им подходить ближе друг к другу и образовывать более плотную упаковку.

В табл. 2 приведены температурные зависимости давлений насыщенных паров изучаемых соединений и корреляционные уравнения, описывающие эти зависимости. Термодинамические параметры сублимации, плавления и испарения представлены в табл. 3. Стабильность и отсутствие фазовых переходов в исследуемом интервале температур для данных соединений были доказаны с помощью ДСК эксперимента и электронных спектров поглощения. При расчетах использовали допущение, что молекулы изучаемых веществ в газовой фазе находятся в мономолекулярном состоянии. Доказательством этого служили следующие аргументы. Во-первых, давление насыщенного пара всех соединений в соответствующем температурном интервале имеет очень низкие значения (0,001—1 Па) (см. табл. 2) и не отклоняется от линейной функции при повышенных температурах. Во-вторых, нами были проведены термогравиметрические эксперименты кинетики потери веса (сублимации) при низких скоростях нагрева для выбранных и структурно родственных соединений. Изменение убыли массы было описано кинетическим уравнением первого порядка с энергией активации процесса, хорошо согласующимся (в пределах экспериментальных ошибок) с энергией сублимации.

Термодинамические функции процесса сублимации зависят от многих параметров: структуры и топологии молекул, природы атомов, архитектуры упаковки молекул в кристалле, кон-

Таблица 2

Т, К	<i>Р</i> , Па	Т, К	<i>P</i> , Па	Т, К	<i>Р</i> , Па	Т, К	<i>P</i> , Па	Т, К	<i>Р</i> , Па	
I^a										
323,2	$9,19 \cdot 10^{-3}$	333,2	$2,87 \cdot 10^{-2}$	341,2	$7,73 \cdot 10^{-2}$	347,2	$1,79 \cdot 10^{-1}$	355,2	$4,11 \cdot 10^{-1}$	
329,2	$1,94 \cdot 10^{-2}$	335,2	$4,12 \cdot 10^{-2}$	344,2	$1,11 \cdot 10^{-1}$	350,7	$2,49 \cdot 10^{-1}$	357,7	$4,07 \cdot 10^{-1}$	
330,2	$2,09 \cdot 10^{-2}$	338,2	$4,98 \cdot 10^{-2}$	345,2	$1,31 \cdot 10^{-1}$	352,2	$2,89 \cdot 10^{-1}$			
II^b										
368,2	$3,34 \cdot 10^{-2}$	375,7	$7,28 \cdot 10^{-2}$	381,7	$1,37 \cdot 10^{-1}$	393,2	$4,54 \cdot 10^{-1}$			
370,7	$4,24 \cdot 10^{-2}$	377,2	$8,80 \cdot 10^{-2}$	386,7	$2,25 \cdot 10^{-1}$	396,2	$6,91 \cdot 10^{-1}$			
373,2	$5,61 \cdot 10^{-2}$	379,2	$1,08 \cdot 10^{-1}$	390,2	$3,53 \cdot 10^{-1}$					
IIIc										
338,7	$1,04 \cdot 10^{-2}$	345,2	$2,60 \cdot 10^{-2}$	351,2	$4,46 \cdot 10^{-2}$	361,2	$1,44 \cdot 10^{-1}$	369,2	$3,40 \cdot 10^{-1}$	
341,2	$1,40 \cdot 10^{-2}$	345,7	$2,73 \cdot 10^{-2}$	355,2	$7,35 \cdot 10^{-2}$	364,2	$2,14 \cdot 10^{-1}$	370,2	$4,19 \cdot 10^{-1}$	
343,7	$1,87 \cdot 10^{-2}$	346,7	$3,05 \cdot 10^{-2}$	357,2	$9,44 \cdot 10^{-2}$	368,2	$3,17 \cdot 10^{-1}$	376,2	$6,44 \cdot 10^{-1}$	
		-			V^d	-				
356,7	$2,84 \cdot 10^{-2}$	362,2	$6,14 \cdot 10^{-2}$	372,2	$1,77 \cdot 10^{-1}$	381,2	$4,27 \cdot 10^{-1}$	390,2	1,42	
359,2	$4,12 \cdot 10^{-2}$	367,2	$9,63 \cdot 10^{-2}$	375,2	$2,59 \cdot 10^{-1}$	384,2	$6,98 \cdot 10^{-1}$	392,2	1,46	
360,7	$4,88 \cdot 10^{-2}$	370,2	$1,37 \cdot 10^{-1}$	378,2	$3,13 \cdot 10^{-1}$	387,2	$9,15 \cdot 10^{-1}$	394,7	2,14	
								398,2	3,10	
IV ^e										
345,7	$3,92 \cdot 10^{-2}$	353,2	$1,00 \cdot 10^{-1}$	358,2	$1,83 \cdot 10^{-1}$	363,7	$3,53 \cdot 10^{-1}$	369,2	$6,\!64 \cdot 10^{-1}$	
349,2	$5,61 \cdot 10^{-2}$	354,2	$1,24 \cdot 10^{-1}$	359,2	$2,10 \cdot 10^{-1}$	366,2	$4,72 \cdot 10^{-1}$	370,2	$7,05 \cdot 10^{-1}$	
351,7	$7,73 \cdot 10^{-2}$	357,2	$1,59 \cdot 10^{-1}$	361,2	$2,52 \cdot 10^{-1}$	367,7	$4,92 \cdot 10^{-1}$	373,2	$8,96 \cdot 10^{-1}$	
VI ^f										
353,2	$1,09 \cdot 10^{-2}$	373,2	$1,33 \cdot 10^{-1}$	387,2	$4,25 \cdot 10^{-1}$	397,2	1,26	406,2	3,08	
365,2	$4,87 \cdot 10^{-2}$	379,2	$2,17 \cdot 10^{-1}$	390,2	$7,02 \cdot 10^{-1}$	399,2	1,83	411,2	4,21	
368,2	$7,41 \cdot 10^{-2}$	381,2	$2,66 \cdot 10^{-1}$	392,2	$7,33 \cdot 10^{-1}$	402,2	2,07			
VII ^g										
302,7	$9,53 \cdot 10^{-2}$	305,7	$1,53 \cdot 10^{-1}$	310,7	$3,09 \cdot 10^{-1}$	313,2	$4,12 \cdot 10^{-1}$	317,7	$8,10 \cdot 10^{-1}$	
303,7	$1,19 \cdot 10^{-1}$	307,2	$1,93 \cdot 10^{-1}$	311,7	$3,60 \cdot 10^{-1}$	315,2	$5,89 \cdot 10^{-1}$	319,2	$9,24 \cdot 10^{-1}$	
304,7	$1,32 \cdot 10^{-1}$	308,2	$2,20 \cdot 10^{-1}$	312,2	$3,75 \cdot 10^{-1}$	316,7	$6,74 \cdot 10^{-1}$			
^a ln(P, Π a) = (36.9 ± 0.8) - (13471 ± 278)/T: σ = 9.09 · 10 ⁻² : r = 0.997: n=14										
^b ln(P, $\Pi a) = (38.2 \pm 0.3) - (15327 \pm 127)/T; \sigma = 4.48 \cdot 10^{-2}$ $r = 0.999$ $n=11$										

Температурные зависимости давления насыщенных паров

^a ln(*P*, Πa) = $(36,9 \pm 0,8) - (13471 \pm 278)/T$; $\sigma = 9,09 \cdot 10^{-2}$; r = 0,997; n=14. ^b ln(*P*, Πa) = $(38,2 \pm 0,3) - (15327 \pm 127)/T$; $\sigma = 4,48 \cdot 10^{-2}$; r = 0,999; n=11. ^c ln(*P*, Πa) = $(37,4 \pm 0,5) - (14211 \pm 179)/T$; $\sigma = 6,34 \cdot 10^{-2}$; r = 0,998; n=15. ^d ln(*P*, Πa) = $(41,2 \pm 0,3) - (15967 \pm 100)/T$; $\sigma = 3,70 \cdot 10^{-2}$; r = 0,999; n=16. ^e ln(*P*, Πa) = $(40,5 \pm 0,6) - (15119 \pm 214)/T$; $\sigma = 5,10 \cdot 10^{-2}$; r = 0,998; n=15. ^f ln(*P*, Πa) = $(37,7 \pm 0,6) - (14877 \pm 218)/T$; $\sigma = 6,22 \cdot 10^{-2}$; r = 0,997; n=14. ^g ln(*P*, Πa) = $(41,4 \pm 0,5) - (13231 \pm 147)/T$; $\sigma = 2,98 \cdot 10^{-2}$; r = 0,999; n=14.

Таблица 3

Параметр	Ι	II	III	IV	V	VI	VII
$\Delta G_{ m sub}^{298}$, кДж \cdot моль $^{-1}$	49,3±0,5	61,3±0,4	54,3±0,4	53,9±0,4	59,2±0,1	58,9±0,5	35,9±0,1
ΔH_{sub}^{T} , кДж · моль ⁻¹	111,0±1,3	127,7±0,8	118,2±0,7	125,7±0,8	132,7±0,8	123,0±1,3	110,0±1,0
$C_{p_c}^{298}$, Дж·моль $^{-1}$ ·К $^{-1}$	302,1	292,6	301,2	283,1	291,0	235,8	191,7
$\Delta H_{ m sub}^{298}$, кДж · моль $^{-1}$	115,7±1,3	131,1±0,8	120,9±0,7	128,4±0,8	136,2±0,8	126,0±1,3	110,0±1,0
$T\Delta S_{ m sub}^{298}$, кДж \cdot моль $^{-1}$	66,0±1,3	68,9±0,8	66,9±0,7	74,8±0,8	76,2±0,8	68,0±1,3	74,0±1,0
$\Delta S_{ m sub}^{298}$, Дж·моль $^{-1}$ ·K $^{-1}$	205,0±4,4	194,0±2,7	197,0±2,3	216,0±2,7	213,0±2,7	193,0±4,4	211,0±3,6
$\zeta_{\rm H}, \%^{a}$	63,6	65,4	64,4	63,2	64,0	65,1	59,7
$\zeta_{\text{TS}}, \%^{a}$	36,4	34,6	35,6	36,8	36,0	34,9	40,3
T _{fus} , K	452,6±0,2	478,5±0,2	405,4±0,2	484,3±0,2	503,5±0,2	458,2±0,2	326,1±0,2
$\Delta \boldsymbol{H}_{\mathrm{fus}}^{T}$, кДж \cdot моль $^{-1}$	40,4±0,5	36,5±0,5	26,7±0,5	38,6±0,5	38,7±0,5	39,7±0,5	19,9±0,5
$\Delta H_{ m fus}^{298}$, кДж · моль ^{-1b}	26,6±0,5	22,7±0,5	19,6±0,5	23,8±0,5	22,9±0,5	25,8±0,5	18,2±0,5
ΔS_{fus}^T , Дж · моль ⁻¹ · K ^{-1c}	89,3±2,5	76,3±2,5	65,9±2,5	79,7±2,5	76,9±2,5	86,7±2,5	61,0±2,5

Термодинамические параметры сублимации и плавления

^a
$$\zeta_{\rm H} = (\Delta H_{\rm sub}^{298} / (\Delta H_{\rm sub}^{298} + T\Delta S_{\rm sub}^{298})) \cdot 100 \%; \ \zeta_{\rm TS} = (T\Delta S_{\rm sub}^{298} / (\Delta H_{\rm sub}^{298} + T\Delta S_{\rm sub}^{298})) \cdot 100 \%$$

^b $\Delta H_{\rm fus}^{298} = \Delta H_{\rm fus}^{T} - \Delta S_{\rm fus}^{T} \cdot (T_{\rm fus} - 298, 15) [24].$
^c $\Delta S_{\rm fus}^{T} = \frac{\Delta H_{\rm fus}^{T}}{T_{\rm fus}}.$

формационного состояния молекулы, топологии сетки водородных связей и т.д. Достаточно сложно выделить один дескриптор для описания обсуждаемых функций. С другой стороны, поиск многопараметрических уравнений невозможен в силу ограниченного числа изученных соединений данной группы. Поэтому мы попытались найти тенденцию изменения термодинамических параметров сублимации с некоторыми структурными характеристиками кристаллов. Для описания плотности упаковки молекул в кристалле мы выбрали параметр $\beta = V_{\text{free}}/V_{\text{vdw}}$, который показывает, насколько сильно изменяется свободный объем, приходящийся на одну молекулу в кристалле, при увеличении ее ван-дер-ваальсового объема. Очевидно, что это изменение не аддитивно, и такое поведение связано, прежде всего, с конформационной подвижностью молекулы, ее топологией, природой заместителей и т.д. Из рентгеноструктурных экспериментов следует, что все молекулы фенаматов (кроме дифениламина) образуют димеры в кристаллической решетке. Бензольное кольцо с карбоксильной группой, карбоксильная группа и аминогруппа лежат практически в одной плоскости. Такая копланарность стабилизирована резонансными взаимодействиями и внутримолекулярной водородной связью между аминои карбокси-группами [23]. Второе бензольное кольцо в зависимости от наличия объемных заместителей может иметь ограниченную конформационную подвижность. В таких случаях бензольные кольца в молекуле разворачиваются под углом друг к другу, чтобы компенсировать напряжения от стерических помех и минимизировать упаковочную энергию молекул в кристаллической решетке. Таким образом, можно предположить, что именно параметр, описывающий угол α между двумя фенильными фрагментами, будет чувствительным к плотности упаковки молекул в кристалле. На рис. 2 приведена зависимость V_{free}/V_{vdw} от обсуждаемого угла. Нетрудно видеть, что с увеличением угла разворота параметр β увеличивается, что свиде-

60

56

52

48

44

Рис. 2. Зависимость величины $V_{\text{free}}/V_{\text{vdw}}$ от угла α между двумя фенильными фрагментами молекулы

I

сублимации $\Delta G_{\rm sub}^{298}$ от угла α между двумя фенильными фрагментами молекулы

тельствует об уменьшении плотности упаковки молекул. Исключение составляет нифлюмовая кислота, в силу того, что пиридиновый фрагмент стабилизирует плоское конформационное состояние молекулы за счет более сильного взаимодействия со смежными молекулами в кристаллической решетке.

Поскольку структурные характеристики кристаллических решеток чувствительны к изменению угла α между фенильными мотивами, мы попытались проанализировать термодинамические функции сублимации от этого параметра. На рис. 3 и 4 представлены зависимости $\Delta G_{
m sub}^{298}$ и $\Delta H_{
m sub}^{298}$ от величины угла. Нетрудно видеть, что с увеличением α энергия Гиббса сублимации уменьшается. Исключение составляет VII, что, по всей видимости, связано с другой архитектурой кристаллической решетки (молекулы не образуют димеров) по сравнению с оставшимися соединениями (молекулы упакованы в виде димеров). Аналогичная тенденция наблюдается и для энтальпии сублимации. Существенная стабилизация кристаллической решетки мефенамовой кислоты по сравнению с VI и III (молекулы которых имеют приблизительно одинаковые конформационные состояния) может быть связана с дополнительными ван-дер-ваальсовыми взаимодействиями между объемными метильными фрагментами мефенамовой кислоты и фенильными мотивами (Ph2) смежных молекул.

Далее мы попытались проанализировать влияние различных заместителей в молекуле N-фенилантраниловой кислоты на энтальпию сублимации и температуру плавления. Присутствие карбоксильной группы в бензольном кольце обуславливает наличие меж- и внутримолекулярных водородных связей, что значительно повышает значение $\Delta H_{\rm sub}^{298}$ и $T_{\rm fus}$. Так, энергия кристаллической решетки VI на 16.6 кДж моль⁻¹, а температура плавления на 132,1 К выше, чем для VII.

Введение группы — CF₃ в молекулу VI (III) понижает температуру плавления данного соединения на 52,8 К, а энергию кристаллической решетки на 6,0 кДж·моль⁻¹. Однако замена фенильного кольца на пиридиновое незначительно увеличивает значения ΔH_{sub}^{298} на 3,1 кДж·моль⁻¹, а T_{fus} — на 20,3 К. Замена атома углерода в молекуле флюфенамовой кислоты на гетероатом азота (см. рис. 1) приводит к значительным изменениям в энергетике молекулы и кристалла в целом. Дханарадж с соавторами [23], изучая структуры флюфенамовой и нифлюмовой кислот, пришли к выводу, что введение гетероатома азота приводит к исчезновению взаимного отталкивания атомов водорода у соответствующих углеродных атомов в молекуле флюфенамовой кислоты. Это, в свою очередь, отражается на геометрии рассматриваемых молекул. Так, угол между двумя плоскостями бензольных колец в молекуле флюфенамовой кислоты данной модификации составляет 56°, для нифлюмовой кислоты данный угол равен 8,5°.

Рис. 4. Зависимость величины энергии Гиббса сублимации ΔH_{sub}^{298} от угла α между двумя фенильными фрагментами молекулы

Введение метильных групп в молекулу VI (V) увеличивает энергию кристаллической решетки на 10,2 кДж·моль⁻¹, а температуру плавления на 45,3 К. Вероятно, введение электронодонорных заместителей, таких как метильные группы, увеличивает общую электронную плотность молекулы, что способствует увеличению энтальпии сублимации и температуры плавления. Замена метильной группы на хлор в молекуле V (IV) приводит к снижению энергии кристаллической решетки на 7,8 кДж·моль⁻¹ и температуры плавления на 19,2 К. Обратная ситуация наблюдается в случае электроноакцепторных заместителей, таких как — CF₃. Структурное усложнение молекулы VI приводит к повышению степени симметрии упаковки фенаматов. Так, I, III, II и IV имеют моноклинные кристаллические решетки. Исключением является V. Вероятно, вследствие больших стерических затруднений, создаваемых объемными метильными заместителями, V имеет более низкую степень симметрии по сравнению с другими фенаматами.

На рис. 5 показана зависимость величины энтальпии сублимации от температуры плавления изучаемых соединений. Видно, что между этими значениями наблюдается корреляция. Таким образом, можно оценить величину ΔH_{sub}^{298} , если известна температура плавления соединения, принадлежащего к данному классу веществ. Аномальное поведение диклофенака объясняется, вероятно, его структурными отличиями от остальных фенаматов. Карбоксильная группа в диклофенаке соединена с бензольным кольцом через группу CH₂, что увеличивает ван-дерваальсов объем молекулы, а также изменяет геометрию и энергетику внутримолекулярных водородных связей. Все эти факторы оказывают значительное влияние на энергию кристаллической решетки, уменьшая ее абсолютное значение.

ЗАКЛЮЧЕНИЕ

Методом переноса инертным газом-носителем были получены температурные зависимости давления паров и рассчитаны термодинамические функции процессов сублимации для семи молекулярных кристаллов фенаматов. Методом дифференциальной сканирующей калориметрии изучены процессы плавления выбранных веществ. Проанализированы рентгеноструктурные литературные данные от монокристаллов и проведена сравнительная характеристика с полученными нами термодинамическими и термофизическими параметрами процессов сублимации и плавления. Обнаружена корреляция между значениями энтальпии сублимации при стандартных условиях и температурой плавления.

Работа была поддержана грантом Российского фонда фундаментальных исследований № 06-03-96304.

СПИСОК ЛИТЕРАТУРЫ

- 1. Giordano F., Rossi A., Pasqua I. // J. Therm. Anal. Calorim. 2003. 73. P. 509.
- 2. Adam A., Schrimpl L., Schmidt P.C. // Drug Dev. Ind. Pharm. 2000. 26, N 5. P. 477.
- 3. Pinvidic J.J., Gonthier-Vassal A., Szwarc H. // Therm. Acta. 1989. 15. P. 37.
- 4. Kim V.A., Sine L. // J. Chem. Soc. 1989. 58. P. 1443.
- 5. Китайгородский А.И. Молекулярные кристаллы. М.: Наука, 1971.
- 6. Perlovich G.L., Zielenkiewicz W., Wszelaka-Rylik M. // J. Therm. Anal. Cal. 1999. 57. P. 225.
- 7. Cox J.D., Pilcher G. Thermochemistry of organic and organometallic compounds. UK, London: Academic Press, 1970.
- 8. Chickos J.S., Acree W.E. Jr. // J. Phys. Chem. Ref. Data. 2002. 2. P. 537.
- 9. Pascual-Ahuir J.L., Silla E. // J. Comp. Chem. 1990. 11. P. 1047.
- 10. Castellari C., Ottani S. // Acta Crystallogr. 1997. C53. P. 794.
- 11. Jaiboon N., Yos-in K., Ruangchaithaweesuk S. // Anal. Sci. 2001. 17. P. 1465.
- 12. Perlovich G.L., Surov A.O., Hansen L.Kr. // J. Pharm. Sci. 2007. 96, N 5. P. 1031.
- 13. McConnell J.F. // Cryst. Struct. Commun. 1973. 3. P. 459.
- 14. Murthy H.M., Bhat T.N., Vijayan M. // Acta Crystallogr. 1982. B38. P. 315.
- 15. Hu Y., Liang J.K., Myerson A.S. // Ind. Eng. Chem. Res. 2005. 44. P. 1233.
- 16. Kim Y.B., Chung U.T., Park I.Y. // Arch. Pharm. Res. 1996. 19, N 2 P. 160.
- 17. Murthy H.M., Vijayan M. // Acta Crystallogr. 1979. B35. P. 262.
- 18. Sbit M., Dupont L., Dideberg O. // Acta Crystallogr. C: Cryst. Struct. Commun. 1987. 43. P. 926.
- 19. Rodriguez M.A., Bunge S.D. // Acta Crystallogr. E: Struct. Rep. Online. 2003. 59. P. 1123.
- 20. McConnell J.F., Company F.Z. // Cryst. Struct. Commun. 1976. 5. P. 861.
- 21. Romero S., Escalera B., Bustamante P. // Int. J. Pharm. 1999. 178. P. 193.
- 22. Etter M.C. // Acc. Chem. Res. 1990. 23. P. 120.
- 23. Dhanaraj V., Vijayan M. // Acta Crystallogr. 1988. B44. P. 406.
- 24. Verevkin S.P., Schick C. // Therm. Acta. 2004. 415. P. 35.