УДК 662.741 DOI: 10.15372/KhUR2019154

Термогравиметрическое исследование инертинитовых фракций каменных углей

Н. И. ФЕДОРОВА¹, Л. М. ХИЦОВА¹, З. Р. ИСМАГИЛОВ^{1,2}

¹Институт углехимии и химического материаловедения ФИЦ УУХ СО РАН, Кемерово (Россия)

E-mail: iccms@iccms.sbras.ru

²Институт катализа СО РАН, Новосибирск (Россия)

(Поступила 21.05.19)

Аннотация

В инертной и окислительной среде проведено термогравиметрическое исследование инертинитовых фракций каменных углей различных стадий метаморфизма. Показано, что с повышением степени метаморфизма инертинитовых фракций при их пиролизе в инертной среде в интервале температур 360-900 °C повышается температура начала потери массы, убывает скорость основного периода смоло- и газовыделения, а максимум термохимического разложения угольного вещества на дифференциальной термогравиметрической кривой сдвигается в область более высоких температур. Установлено, что в ряду метаморфизма изученных образцов инертинитов снижается их реакционная способность по отношению к кислороду, о чем свидетельствует повышение температуры возгорания угольных частиц, температуры, при которой достигается максимальная скорость окисления, а также температуры, при которой происходит полное выгорание коксового остатка. Увеличение значений данных параметров связано с ростом степени ароматичности органической массы образцов и пониженным выходом летучих веществ.

Ключевые слова: каменные угли, стадии метаморфизма, петрографический анализ, мацералы угля, инертинит, витринит, термогравиметрический анализ, пиролиз

введение

Ископаемые угли – это сложная композиционная система, состоящая из органических микрокомпонентов в виде мацералов и минеральных включений. Органические мацералы углей по процессу образования и по близким химикотехнологическим свойствам объединены в три группы: гелифицированную (витринит и семивитринит), инертинитовую (фюзинит и семифюзинит) и липоидную (липтинит и альгинит) [1, 2]. Мацеральный состав углей является одним из параметров классификаций и кодификаций углей. Например, в генетической и технологической классификации углей по ГОСТ 25543-2013 категорию угля устанавливают по содержанию фюзенизированных компонентов ($\Sigma O K$, %).

Мацералы углей различаются по химическому составу и технологическим свойствам. В частности, мацералы группы витринита характеризуются повышенным содержанием кислорода, инертинита – углерода, липтинита – водорода. Характерной особенностью витринитовых компонентов, в отличие от минералов группы инертинита, является их способность к переходу в пластическое состояние при нагреве без доступа воздуха. Поэтому при оценке углей, применяемых для коксования, основное внимание уделяют определению количества витринита и его качественным показателям. Инертиниту долгое время столь пристального внимания не уделялось, хотя его содержание в углях различных месторождений колеблется от 10 до 70 %. Например, среднее содержание инертинита в углях Кузнецкого бассейна равно 30-40 %, но иногда может достигать 60 % [1, 3].

Существенное различие структур групп мацералов, слагающих органическую массу углей, обусловливает и разную реакционную способность в химических реакциях с их участием [1, 3]. Это относится как к термическим процессам переработки угля, включая карбонизацию в условиях коксования угольных шихт, так и к различным процессам конверсии под воздействием газообразных реагентов, например при сжигании углей в различных энергетических установках. Эффективность пылевидного сжигания твердых топлив находится в обратной зависимости от содержания инертинита: если оно превышает 50 %, то такие угли в обычных пылеугольных топках сжигать неэффективно [1, 4]. Поскольку мацеральный состав углей определяет их потребительскую ценность, технологические и физико-механические характеристики, то важное значение приобретают сведения о свойствах отдельных групп мацералов, связанные с особенностями их молекулярной структуры.

В настоящее время для изучения угольного вещества широкое распространение получило разделение углей в органических жидкостях на фракции по удельному весу [5–7]. Благодаря этому можно выделять концентраты угольных мацералов различного состава с целью изучения их химических и технологических свойств различными инструментальными физико-химическими методами. Один из них – термогравиметрический анализ.

В данной работе приведены результаты термогравиметрического исследования в различных средах инертинитовых концентратов, выделенных из углей разной стадий метаморфизма.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Инертинитовые концентраты выделяли посредством расслоения гумусовых углей различных стадий метаморфизма в смеси тетрахлорметана CCl_4 и бензола C_6H_6 при плотности растворов 1.50, 1.45 и 1.40 г/см³ (ГОСТ 4790-80). Выбор плотностей растворов определялся тем, что максимальное содержание фюзенизированных включений концентрируется во фракциях, осевших в жидкостях плотностью более 1.40 г/см³ [5-8]. Для исследования отбирали фракции угля плотностью 1.40–1.45 г/см³. Аналитическим исследованиям подвергались пробы с размером частиц менее 0.2 мм.

Для расслоения в жидкостях переменной плотности использовали пробы каменных углей различных стадий метаморфизма, отобранные на угледобывающих предприятиях Кузбасса, код образца: 74 – разрез "Задубровский", 69 – предприятие ООО "Инвест-Углесбыт", 50 – шахта "Березовская", 30 – разрез "Черниговский", 36 – разрез "Междуреченский", 48 – разрез "Киселевский", 32 – разрез "Бунгурский".

Технический анализ выделенных фракций проводили стандартными методами. Состав органической массы определяли методами элементного анализа.

Петрографический анализ выполняли на автоматизированном комплексе оценки марочного состава углей системы SIAMS-620 (Россия) в среде масляной иммерсии. Подсчет микрокомпонентов производился автоматически при увеличении в отраженном свете в 300 раз.

Спектры ЯМР ¹³С высокого разрешения в твердом теле регистрировали на приборе Bruker Avance III 300 WB (Германия) с использованием стандартной методики кросс-поляризации с вращением под магическим углом и развязкой от протонов (СРМАЅ) при частоте 75 мГц, время контакта 1500 мкс, накопление 4096 сканов, задержка между сканами 2 с, частота вращения образца 5 кГц. Для получения количественных данных проводилось моделирование спектров при помощи программы Dmfit. На спектрах выделялись диапазоны значений химических сдвигов сигналов ЯМР ¹³С, соответствующие резонансному поглощению следующих групп углеродных атомов, м. д.: 187-171 - атомы углерода карбоксильных групп и их производных (СОО-); 171-148 - атомы углерода ароматических систем, связанные с атомом кислорода (C_{ар}O); 148-93 – атомы углерода ароматических систем с замещенным и незамещенным атомом водорода (C_{ар} + CH_{ар}); 67-51 – атомы углерода метоксильных групп (OCH₃); 51-0 – атомы углерода алкильных фрагментов (С_{алк}). По результатам моделирования рассчитывали степень ароматичности (f_a) по соотношению $f_a = C_{ap} + CH_{ap}$ / $(C_{ap} + CH_{ap} + C_{ank})$ [9].

Термический анализ проводили на синхронном термоанализаторе Netzsch STA 409 (Германия) в следующих условиях: масса образца 35 мг; тигель платиново-иридиевый; нагрев до 1000 °C в инертной атмосфере и до 700 °C со скоростью 10 °C/мин в окислительной среде (смесь азота и кислорода, скорость потока 40 и 10 см³/мин со-

423

ответственно) В ходе анализа регистрировали потерю массы (кривая термогравиметрического анализа (ТГА)), скорость потери массы (кривая дифференциального термогравиметрического анализа (ДТГ)) и тепловой поток (кривая дифференциального термического анализа (ДТА)). Температурный интервал деструкции органической массы образцов в различных средах на кривой ТГА устанавливали методом касательных с помощью программного обеспечения Netzsch Proteus: T₁ – температура начала процесса, Т_{тах} – температура, при которой достигается максимальная скорость процесса, V_{\max} – максимальная скорость в точке перегиба, T_{2} – конечная температура. Потерю массы Δm рассчитывали в интервалах наиболее интенсивного разложения образцов.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Данные технического анализа и элементного состава приведены в табл. 1. Видно, что зольность исследованных образцов составляет менее

ТАБЛИЦА 1

Характеристика исследованных образцов инертинитов

10 %. Необходимо отметить, что исходно образцы 36 и 30 после их выделения из каменных углей имели зольность более 15 %. Для корректного проведения петрографического анализа они были подвергнуты деминерализации последовательной обработкой минеральными кислотами (вначале 10 %-й соляной кислотой, затем 10 %-й плавиковой кислотой). Полученные таким образом образцы имели зольность порядка 1 %.

Характеристики петрографического состава исследованных образцов приведены в табл. 2. Как следует из данных, фракции плотностью 1.40–1.45 г/см³ выделены из каменных углей I–V стадий метаморфизма, показатель отражения витринита ($R_{_{0,r}}$) которых изменяется от 0.61 до 2.10 %.

Изучение угольных фракций в отраженном свете позволило определить их петрографические особенности. По углепетрографическому составу исследованные фракции подразделяются преимущественно на двухкомпонентные, с преобладанием группы инертинита. В каждой исследованной угольной пробе его содержание превышает 60 %, максимум определен в образ-

Код	Технич	Технический анализ, %			гный состав,	Атомное	Атомное отношение	
образца	W ^a	\mathbf{A}^{d}	V^{daf}	С	Н	(O + N + S)	H/C	O/C
74	6.6	8.4	36.9	77.5	5.2	17.3	0.81	0.17
69	1.2	2.5	27.7	85.1	4.9	10.0	0.69	0.09
50	0.5	8.3	22.5	89.0	4.6	6.4	0.62	0.05
36	0.5	0.8	21.4	88.6	4.5	6.9	0.61	0.06
30	0.5	1.1	19.6	89.2	4.2	6.6	0.57	0.06
48	1.5	4.9	16.2	89.2	3.6	7.2	0.48	0.06
32	1.0	9.6	9.7	90.7	3.2	6.1	0.42	0.05

Примечание. W^a – влага аналитическая, A^d – зольность, V^{daf} – выход летучих веществ, daf – сухое беззольное состояние образца.

ТАБЛИЦА 2

Петрографический состав исследованных образцов

Код	Петрогра	фические	параметры	ı, %	Показатель отраж	Стадия метаморфизма	
образца	Vt	Sv	Ι	ΣОК	R _{0,r} , %	σ _R	
74	30	4	66	69	0.61	0.045	Ι
69	31	7	62	67	0.85	0.101	II–III
50	23	14	63	73	1.00	0.121	III
36	17	14	69	78	1.27	0.249	IV
30	26	12	62	70	1.38	0.245	IV
48	22	18	60	72	1.60	0.504	IV-V
32	2	1	97	98	2.10	0.705	V

Примечание. Vt – витринит, Sv − семивитринит, I – инертинит, Σ OK – сумма отощающих компонентов, $R_{o,r}$ – показатель отражения витринита, σ_R – стандартное отклонение.

Рис. 1. Микрофотографии поверхности аншлифов (отраженный свет, масляная иммерсия, ув. 300) исследованных инертинитовых концентратов с различными петрографическими мацералами: *a* – зерна фюзинита с сохранившимися стенками клеток в образце 74; б, *s* – фюзинит в образцах 48 и 32 соответственно.

ТАБЛИЦА 3

Параметры фрагментарного состава исследованных образцов (данные спектров ЯМР $^{13}\mathrm{C})$

Код	$R_{0,r}, \%$	Распределение атомов углерода по структурным группам, отн. %							
образца		CH ₃	CH ₂	CH ₃ O	С _{алк} О	$C_{ap}H + C_{ap}$	C _{ap} O	СООН	$f_{\rm a}$
		Диапазон з	начений хиг	мических сд	вигов резон	ансного поглоще	ния, м. д.		
		0-25	25-51	51-67	67-93	93-148	148-171	171-187	
74	0.61	3.31	22.56	2.17	1.15	67.56	2.00	1.25	0.72
69	0.85	4.23	16.41	0.77	0.41	72.76	4.86	0.56	0.78
50	1.00	5.12	11.44	2.31	0.13	77.30	3.42	0.28	0.82
36	1.27	5.45	7.17	1.47	0.25	80.56	4.59	0.51	0.86
30	1.38	4.81	6.90	1.26	0.28	83.33	3.01	0.41	0.88
48	1.60	3.38	3.99	1.16	1.39	85.21	3.13	1.74	0.92
32	2.10	2.33	2.84	0.18	0.12	93.20	0.76	0.57	0.95

Примечание. $f_{\rm a}$ – степень ароматичности, равная $\rm C_{ap}+$ $\rm C_{ap}H/(C_{ap}+$ $\rm C_{ap}H+$ $\rm C_{ank}).$

ТАБЛИЦА (4						
Результаты	термогравиметрического	анализа	образцов	инертинитов,	проведенного в	инертной	среде

Код образца	V_{max} , % /min	Температур	ные границы	основного раз	Δm , мас. %, в температурном	интервале, °C	
		T_1	$T_{\rm max}$	T_2	$\Delta t = T_2 - T_1$	$T_{2}^{} - T_{1}^{}$	900-260
74	1.67	384	438	545	161	24.0	31.1
69	1.45	421	467	566	145	19.2	24.1
50	1.08	424	482	526	146	14.6	19.1
30	0.54	443	504	647	204	9.0	14.8
36	0.61	448	505	656	208	10.2	13.7
48	0.32	414	580	798	384	8.4	13.6
32	0.22	551	733	831	182	5.3	7.6

Примечание. T_1 – температура начала основного разложения; T_{\max} – температура максимального разложения; T_2 – конечная температура основного разложения, Δt – температурная область основного разложения, V_{\max} – максимальная скорость потери массы в интервале температур основного разложения; Δm – потеря массы в соответствующем температурном интервале.

це 32 (до 97 %). Из мацералов группы инертинита в исследованных образцах наиболее часто и в значительном количестве встречаются фюзинит и семифюзинит, склеротинит фиксируется в пробах реже и в меньших количествах [10]. Фюзинит характеризуется наличием клеточной структуры различной степени сохранности (рис. 1, *a*) и встречается в виде обломков линз или вытянутых участков различной ширины. Цвет его в отраженном свете изменяется от желтовато-белого до желтого (см. рис. 1, *б*, *в*).

Из данных табл. 1 видно, что с ростом показателя отражения витринита в исследованных образцах снижается выход летучих веществ (V^{daf}), содержание углерода возрастает, а содержание кислорода и гетероатомов в органической массе снижается.

Анализ данных ¹³С ЯМР-спектроскопии (табл. 3) показал, что с ростом стадии метаморфизма (увеличение показателя $R_{o,r}$) степень ароматичности f_a изученных образцов возрастает от 0.72 для образца 74 до 0.95 для образца 32. Это связано с уменьшением количества алифатического углерода в структурных фрагментах, характеризующихся значениями химических сдвигов в диапазоне 0–51 м. д., в основном, за счет фрагментов CH₂ в диапазоне 25– 51 м. д. (см. табл. 3). Доля CH₂-групп снижается от 22.56 % в наименее метаморфизованном образце 74 до 2.84 % в образце 32 при $R_{o,r} = 2.10$ %.

На первом этапе работы проведен термогравиметрический анализ инертинитовых концентратов в инертной атмосфере. Характер тер-

Рис. 3. Взаимосвязь между потерей массы в интервале температур 260–900 °С (Δm) и стадией метаморфизма ($R_{o,r}$) витринитов (1) и инертинитов (2).

могравиметрических кривых для изученных образцов идентичен, и термическое разложение характеризуется несколькими стадиями. На начальном этапе нагрева (до 140 °C) отмечается потеря массы образцов, связанная с удалением гигроскопической влаги. При более высоких температурах (свыше 350 °C) происходит основная потеря массы, обусловленная деструкцией углерод-углеродных связей с выделением летучих продуктов и формированием твердого карбонизованного остатка.

Результаты обработки кривых ТГА приведены в табл. 4. Анализ данных показывает, что

Рис. 2. Взаимосвязь между максимальной скоростью основного периода потери массы (V_{\max}) и стадией метаморфизма ($R_{o,r}$) витринитовой (1) и инертинитовой (2) фракциями.

Рис. 4. Взаимосвязь между температурой максимума ($T_{\rm max}$) потери массы на кривой ДТГ и стадией метаморфизма ($R_{_{\rm o,r}}$) витринитов (1) и инертинитов (2).

Рис. 5. Кривые проведенного в окислительной среде ТГА образцов инертинита различных стадий метаморфизма (см. табл. 1): 74 (*a*), 69 (*b*), 50 (*b*), 30 (*c*), 36 (*d*), 48 (*e*), 32 (*ж*). 1 – кривая потери массы ТГ; 2 – скорость потери массы ДТГ; 3 – кривая ДТА.

по мере повышения зрелости исследуемых образцов убывает скорость термической деструкции их органической массы (V_{max}), повышается температура максимума в точке перегиба на кривой ДТГ ($T_{\max})$ и наблюдается тенденция уменьшения потери массы образцами в интервале температур 260-900 °C. Сопоставление полученных результатов термогравиметрического анализа образцов инертинитов с литературными данными подобного анализа угольных витринитовых концентратов [7] показывает, что витриниты (при $R_{
m or}$ < 1.41 %) при термическом воздействии обладают меньшей термостойкостью органического вещества. Для их термических превращений характерны большая скорость разложения при пиролизе (рис. 2) и большая потеря массы в интервале температур 260-900 °С (рис. 3).

Следует отметить, что $T_{\rm max}$ для образцов витринитовых и инертинитовых концентратов до $R_{\rm o,r} < 1.41~\%$ имеют очень близкие значения (рис. 4). Существенное увеличение данного показателя для инертинитовых образцов наблюдается при $R_{\rm o,r} > 1.5~\%$. Выявленные различия указывают на то, что инертинитовые компоненты при увеличении их генетической зрелости обладают более конденсированной структурой органической массы, что подтверждается данными спектроскопии ЯМР 13 С (см. табл. 3).

Кривые ТГА образцов инертинитовых концентратов, проведенного в окислительной атмосфере, представлены на рис. 5. Видно, что при нагревании всех образцов до температуры порядка 150 °С фиксируется потеря массы, связанная с выделением гигроскопической влаги. В области температур 185–330 °С для всех образцов отмечается прирост массы навески: от 1 % для образцов 74 и 69 и до 3 % в образцах 30, 36, 48, что обусловлено процессом хемосорбции кислорода на поверхности твердой угольной матрицы. В интервале температур 300-650 °С происходит основная потеря массы образцами. Кривые ДТГ в области интенсивного окисления имеют характерную форму (см. рис. 5). Начало окисления характеризуется увеличением скорости потери массы, которая стабилизируется при последующем увеличении температуры и незначительно изменяется до полного сгорания органического вещества угольного материала.

Интенсивная убыль массы во всех экспериментах сопровождается значительным выделением тепла. На кривой ДТА имеются два экзотермических пика: первый максимум отмечается в интервале температур 300-350 °C, температура максимума второго экзотермического пика увеличивается с ростом степени метаморфизма угольных образцов и определяется в интервале температур 400-520 °С. Эти эффекты предположительно связаны с различными этапами взаимодействия кислорода с угольным веществом. В первом случае - с деструкцией углерод-кислородных комплексов кислородсодержащих функциональных групп и с прямым взаимодействием окислителя с боковыми цепями макромолекул угольного вещества, а также с возгоранием выделяющихся летучих веществ. Следует отметить, что с ростом стадии метаморфизма уменьшается выход летучих веществ V^{daf} в образцах инертинитов (см. табл. 1), и за счет этого снижается интенсивность экзотермического пика в области 300-350 °С (см. рис. 5, е, ж). Высокотемпературные максимумы (интервал температур 400-520 °C) на кривых ДТА, вероятно, обусловлены термоокислительной деструкцией ядерной (конденсированной) части макромолекул органического вещества.

ТАБЛИЦА 5

Результаты ТГА исследованных инертинитов, проведенного в окислительной среде

Код образца	$V_{max}^{}, \% /min$	Темпера	турные грани	цы основного	о разложения, °С	$\Delta m~(T_2^{}-T_1^{})$, мас. %
		T_1	$T_{\rm max}$	T_2	$\Delta t = T_2 - T_1$	
74	4.47	304	360	504	200	80.5
69	4.51	389	488	589	200	84.8
50	4.51	405	508	614	209	82.5
30	4.14	415	510	627	212	87.9
36	4.62	417	519	621	204	87.6
48	4.08	430	552	645	215	84.9
32	4.67	450	550	636	186	84.7

Примечание. T_1 – температура возгорания угольных частиц; T_{\max} – температура достижения максимальной скорости окисления; T_2 – конечная температура, при которой происходит выгорание коксового остатка; V_{\max} – максимальная скорость окисления при T_{\max} ; Δt – температурная область окисления; Δm – потеря массы в соответствующем температурном интервале.

Рис. 6. Зависимость температурных границ термоокислительной деструкции инертинитовых концентратов от степени ароматичности f_a их органической массы: T_1 – температура возгорания угольных частиц (*a*); $T_{\text{мах}}$ – температура, при которой достигается максимальная скорость окисления (*б*); T_2 – конечная температура окисления (*в*).

В табл. 5 представлены данные ТГА, проведенного в окислительной атмосфере. Видно, что в ряду метаморфизма изученных образцов инертинитов снижается их реакционная способность по отношению к кислороду: повышаются значения температур окислительного процесса (температура возгорания угольных частиц (T_1), температура, при которой достигается максимальная скорость окисления ($T_{\rm max}$), и температура, при которой происходит полное выгорание коксового остатка (T_2). Увеличение значений данных параметров связано с ростом степени ароматичности f_a их органической массы (см. рис. 6).

Известно, что выход летучих веществ отражает термостойкость органической массы углей (ОМУ), зависящую от доли алифатических и ароматических составляющих макромолекул ОМУ [3–5, 11, 12]. Из-за высокой ароматичности органической массы исследованных образцов инертинитов сужается температурный интервал их термоокислительной деструкции, амплитуда которого не превышает 215 °С (см. табл. 5). Наименьший температурный интервал (186 °С) определен для образца 32 с минимальным выходом летучих веществ (см. табл. 1), максимальной степенью ароматичности f_a и минимальным значением углерода в алифатических структурных фрагментах (0–51 м. д.) (см. табл. 3) в их органической массе. На рис. 7 приведены интервалы термоокислительной деструкции (T_2-T_1) для ис-

Рис. 7. Взаимосвязь температурного интервала окислительной термодеструкции $(T_2 - T_1)$ и степени ароматичности f_a органической массы образцов витринита (1) и инертинита (2).

следованных инертинитовых образцов и витринитовых концентратов, данные ТГА которых приведены в работе [12]. Видно, что температурный интервал окислительной деструкции витринитов больше практически на 50 °C.

ЗАКЛЮЧЕНИЕ

Проведено ТГА-исследование в инертной и окислительной среде семи образцов инертинитовых концентратов, выделенных из углей различных стадий метаморфизма. Показано, что по мере повышения степени метаморфизма инертинитовых фракций при их пиролизе в инертной среде в интервале температур 360-900 °С возрастает температура начала потери массы, убывает скорость основного периода смоло- и газовыделения, а максимум термохимического разложения угольного вещества на кривой ДТГ сдвигается в область более высоких температур.

Определены температурные границы (температура возгорания частиц T_1 и температура T_2 , при которой происходит полное выгорание коксового остатка) термической деструкции в окислительной среде органической массы исследованных инертинитов. Установлено, что с ростом стадии метаморфизма закономерно возрастают температурные параметры окислительного процесса, максимумы скорости деструкции сдвигаются в область более высоких температур.

Достаточно высокая ароматичность органической массы и пониженный выход летучих веществ в исследованных образцах инертинитов способствуют сужению температурного интервала их термоокислительной деструкции, который не превышает 215 °C.

Полученные результаты в целом важны и могут стать теоретической основой прогнозирования свойств и технологических параметров твердых горючих ископаемых с целью расширения сферы их практического применения, как в процессах термической переработки, так и при их сжигании. Знание мацерального состава углей важно при определении условий их оптимального и экологически безопасного использования в энергетике.

Работа выполнена с использованием оборудования Кемеровского центра коллективного пользования ФИЦ УУХ СО РАН.

Авторы выражают благодарность сотрудникам ИУХМ ФИЦ УУХ СО РАН за помощь в выполнении и обсуждении результатов анализов: Н. А. Грабовой (петрографический анализ), Т. Г. Вычиковой (элементный состав), С. Ю. Лырщикову (ЯМР-спектроскопия).

СПИСОК ЛИТЕРАТУРЫ

- 1 Артемьев В. Б., Еремин И. В., Гагарин С. Г. Петрография углей и их эффективное использование. М.: Недра коммюникейшенс ЛТД, 2000. 334 с.
- 2 Гюльмалиев А. М., Головин Г. С., Гагарин С. Г. Классификация горючих ископаемых по структурно-химическим показателям и основные пути использования ископаемых углей. М.: НТК "Трек", 2007. 152 с.
- 3 Еремин И. В., Арцер А. С., Броновец Т. М. Петрология и химико-технологические параметры углей Кузбасса. Кемерово: Притомское, 2001. 399 с.
- 4 Еремин И. В., Гагарин С. Г. // Химия тв. топлива. 1998. № 4. С. 68–78.
- 5 Гагарин С. Г., Головин Г. С., Гюльмалиев А. М. // Химия тв. топлива. 2006. № 1. С. 12–39.
- 6 Федорова Н. И., Семенова С. А., Исмагилов З. Р. // Химия тв. топлива. 2013. № 4. С. 51–56.
- 7 Федорова Н. И., Хицова Л. М., Малышева В. Ю., Исмагилов З. Р. // Химия уст. разв. 2017. Т. 25, № 3. С. 321–326.
- 8 Шпирт М. Я., Рубан В. А., Иткин Ю. В. Рациональное использование отходов добычи и обогащения углей. М.: Недра, 1990. 224 с.
- 9 Федорова Н. И., Лырщиков С. Ю., Исмагилов З. Р. // Химия уст. разв. 2016. Т. 24. № 3. С. 393-397.
- 10 Федорова Н. И., Заостровский А. Н., Грабовая Н. А., Исмагилов З. Р. // Кокс и химия. 2018, № 10. С. 4–9.
- 11 Мирошниченко Д. В., Кафтан Ю. С., Десна Н. А. // Кокс и химия. 2016. № 8. С. 2–7.
- 12 Федорова Н. И., Хицова Л. М., Исмагилов З. Р. // Химия уст. разв. 2018. Т. 26, № 2. С. 217–224.