УДК 563.3

ПРИМЕНЕНИЕ ЗОНАЛЬНО-ИТЕРАЦИОННОГО МЕТОДА РАСЧЕТА ДЛЯ АНАЛИЗА ТЕПЛООБМЕНА ИЗЛУЧЕНИЕМ В ПОЛОСТНЫХ СИСТЕМАХ^{*}

С.П. РУСИН

Институт теплофизики экстремальных состояний ОИВТ РАН, Москва

Предложен зонально-итерационный метод расчёта теплообмена излучением для произвольного числа зон (непрозрачных диффузно излучающих и отражающих поверхностей). Этот метод основан на преобразовании исходных интегральных уравнений в эквивалентную систему интегральных уравнений с меньшей нормой ядер и обладает высокой точностью при малом числе зон. Метод был использован для анализа эффективного излучения в изотермической трубчатой полости с продольной пирометрической щелью. В этом случае достаточно было одной зоны, причём одно из частных решений может быть получено аналитически.

введение

При численном исследовании процессов теплообмена излучением в высокотемпературных агрегатах и аппаратах широкое распространение получили зональные методы, когда поверхности и объемы разделяются на произвольное число зон, в которых те или иные характеристики теплого излучения тем или иным способом предварительно усредняются и полагаются постоянными [1-4]. В этом случае интегральное уравнение теплообмена излучением аппроксимируется системой алгебраических уравнений, которая может быть решена стандартными методами. При этом точность такой аппроксимации оценивается сверху и снизу, либо уточняется итерационным методом, т. е. разбиением физической системы на большее число зон. Как правило, применение зонального метода приводит к системе, состоящей из большого числа уравнений. Так, например, при решении двумерной задачи о теплообмене излучением в цилиндрической полости [5] при разбиении диапазона изменения координат на 125 частей имеем систему из 125² алгебраических уравнений с 125² неизвестными. Большой числовой массив требует, в свою очередь, большого объёма оперативной памяти, снижает быстродействие компьютера, а также может привести к значительным погрешностям из-за ошибок округления.

Идея метода заключается в том, что если норма ядра интегрального уравнения не мала, то это ядро может быть представлено в виде суммы двух ядер: малого по норме и вырожденного. Обычно такой подход используется при построении

^{*} Работа выполнена при финансовой поддержке РФФИ (грант 06-08-01561).

решения уравнения Фредгольма второго рода для общего случая [6], а также при численном решении интегральных уравнений итерационным методом [7]. В [8] вырожденное ядро конструируется по тем же правилам, что и в зональных методах расчёта теплообмена излучением.

В настоящей работе дано обобщение зонально-итерационного метода, представленного в [8], на систему тел, состоящую из произвольного числа диффузно излучающих и отражающих тел (непрозрачных поверхностей). Приведен численный пример применения этого метода для анализа теплообмена излучением в неизотермической цилиндрической полости.

1. ОСНОВНЫЕ РАСЧЕТНЫЕ ООТНОШЕНИЯ

Допущения: поверхности непрозрачные, диффузно излучают и отражают; поля температур и оптических параметров (излучательной способности ε и отражательной способности $R = 1 - \varepsilon$) заданы; среда, разделяющая поверхности, прозрачна для излучения. Рассматривается излучение при определенной длине волны λ . Сначала будет проведен анализ теплообмена излучением в системе из двух поверхностей F_1 и F_2 , затем сделано обобщение на систему, состоящую из *m* поверхностей.

1.1. Исходная система интегральных уравнений

Как известно, интенсивность $I_{ef}(M_i)$ излучения, которое покидает элементарную площадку dF_{M_i} , содержащую точку M_i , представляет собой сумму интенсивностей собственного $I_c(M_i)$ и отраженного $I_{ref}(M_i)$ излучений (здесь и далее индекс λ длины волны излучения для краткости опущен):

$$I_{ef}\left(M_{i}\right) = I_{c}\left(M_{i}\right) + I_{ref}\left(M_{i}\right), \quad M_{i} \in F_{i}, \quad i = 1, 2.$$

$$(1)$$

Записывая выражения для $I_{ref}(M_i)$ более подробно (см., например, [9]), получим:

$$I_{ef}(M_i) = I_c(M_i) + R(M_i) \sum_{j=1}^2 \int_{F_j} K(M_i, N_j) I_{ef}(N_j) dF_{N_j}, \qquad (2)$$
$$M_i \in F_i, \quad N_j \in F_j, \quad j = 1, 2,$$

 $K(M_i, N_j) dF_{N_j} = d\varphi(M_i, N_j)$ — элементарный диффузный угловой коэффициент элементарной площадки, содержащей точку M_i , относительно элементарной площадки, содержащей точку N_i .

Согласно [6], норма ядер системы (2) может быть определена по соотношению:

$$B = \left(\sum_{i=1}^{2} \int_{F_{i}} \sum_{j=1}^{2} \int_{F_{j}} \left[R(M_{i}) K(M_{i}, N_{j}) \right]^{2} dF_{N_{j}} dF_{M_{i}} \right)^{1/2}.$$

Как следует из этого соотношения, при увеличении отражательной способности *R* норма *B* увеличивается, а сходимость итерационного процесса замедляется.

Поскольку поле температур *T* и оптических параметров ε задано, то поле интенсивностей $I_c(M_i) = \varepsilon(M_i)I_0(\lambda, T)$ также задано (здесь I_0 — интенсивность чёрного излучения). Поэтому соотношения (2) относительно искомых функций $I_{ef}(N_1)$ и $I_{ef}(N_2)$ представляют собой систему из двух интегральных уравнений Фредгольма второго рода.

1.2. Преобразование системы (2) с целью уменьшения нормы ядер

Чтобы уменьшить норму каждого ядра типа $R(M_i)K(M_i, N_j)$, преобразуем подынтегральные выражения в (2) следующим образом:

$$R(M_i) \int_{F_j} \left[K(M_i, N_j) - \varphi(M_i, F_j) / F_j \right] I_{ef}(N_j) dF_{N_j} + R(M_i) \varphi(M_i, F_j) c_j, \quad (3)$$

где $\varphi(M_i, F_j)$ — локальный диффузный угловой коэффициент элементарной площадки, содержащей точку M_i , относительно поверхности F_j ; $c_j = \int_{F_j} I_{ef}(N_j) dF_{N_j} / F_j$ — неизвестный пока постоянный коэффициент. Физиче-

ский смысл коэффициента — это среднеинтегральная величина эффективной интенсивности излучения, покидающего поверхность F_i .

Поскольку из подынтегрального выражения была вычтена и прибавлена одна и та же функция, не зависящая от подынтегральных переменных, это преобразование делает преобразованную систему равносильной исходной, но уже с меньшей нормой ядра, т. е.

$$R(M_i)Q(M_i, N_j) = R(M_i)K(M_i, N_j) - R(M_i)\varphi(M_i, F_j)/F_j.$$

Тогда в преобразованном виде система (2) может быть записана так:

$$I_{ef}(M_{i}) = f_{\Sigma}(M_{i}) + R(M_{i}) \sum_{j=1}^{2} \int_{F_{j}} Q(M_{i}, N_{j}) I_{ef}(N_{j}) dF_{N_{j}}, \qquad (4)$$
$$M_{i} \in F_{i}, \quad N_{j} \in F_{j}, \quad i = 1, 2,$$

где

 $f_{\Sigma}(M_i) = \sum_{k=0}^{2} c_k f_{ik}(M_i)$ — сумма свободных членов *i*-го интегрального

уравнения;

$$f_{i0}(M_i) = c_0 I_c(M_i) = I_c(M_i), \ k = 0; \ f_{ik}(M_i) = R(M_i)\varphi(M_i, F_k), \ k = 1, 2.$$

Коэффициент $c_0 = 1$ не имеет физического смысла и введен для единообразия записи.

Итак, система интегральных уравнений (4) обладает меньшей нормой ядер, чем система (2), имеет две неизвестные функции $I_{ef}(N_1)$ и $I_{ef}(N_2)$, а также два неизвестных коэффициента c_1 и c_2 .

1.3. Представление решения системы (4) в резольвентном виде

Временно будем полагать, что значения коэффициентов c_1 и c_2 известны. Тогда решение системы (4) может быть представлено в резольвентном виде [9]:

$$I_{ef}(M_i) = f_{\Sigma}(M_i) + R(M_i) \sum_{j=1}^{2} \int_{F_j} \Gamma_Q(M_i, N_j) f_{\Sigma}(N_j) dF_{N_j}, \qquad (5)$$
$$M_i \in F_i, \quad N_j \in F_j, \quad i = 1, 2,$$

Формально представление решения системы (4) в резольвентном виде свелось к замене ядер вида $R(M_i)Q(M_i, N_j)$ на разрешающие ядра (резольвенты) вида $R(M_i)\Gamma_Q(M_i, N_j)$ и искомых функций $I_{ef}(N_i)$ на заданные функции $f_{\Sigma}(N_i)$.

Резольвенты вида $R(M_i)\Gamma_Q(M_i, N_j)$ полностью определяются геометрией поверхностей и заданными оптическими параметрами и могут быть представлены с помощью метода последовательных подстановок в виде абсолютно и равномерно сходящихся функциональных рядов итерированных ядер [9]. Физически это означает, что при очередной подстановке в явном виде выделяется очередное отражение излучения в системе. Можно показать, что при стремлении числа отражений к бесконечности, суммы соответствующих функциональных рядов стремятся к $R(M_i)\Gamma_Q(M_i, N_j)$.

Объединяя в (5) члены с одинаковыми коэффициентами C_k в отдельные выражения, имеем:

$$I_{ef}(M_i) = \sum_{k=0}^{2} c_k I_{ef}^{(k)}(M_i),$$
(6)

где

$$I_{ef}^{(k)}(M_i) = f_{ik}(M_i) + R(M_i) \sum_{j=1}^{2} \int_{F_j} \Gamma_Q(M_i, N_j) f_{jk}(N_j) dF_{N_j},$$
(7)

$$M_i \in F_i, N_j \in F_j, i = 1, 2$$

Поскольку коэффициенты C_k на самом деле неизвестны, почленно умножим (6) на dF_{M_i} и проинтегрируем по F_i . Тогда, после почленного деления на F_i , имеем систему линейных алгебраических уравнений относительно искомых коэффициентов:

$$c_i = \sum_{k=0}^{2} I_{ef,i}^{(k)} c_k,$$
(8)

где

$$c_{i} = \int_{F_{i}} I_{ef} (M_{i}) dF_{M_{i}} / F_{i}; \quad I_{ef,i}^{(k)} = \int I_{ef,i}^{(k)} (M_{i}) dF_{M_{i}} / F_{i}.$$

В результате задача сводится к решению системы линейных уравнений вида

$$A\mathbf{c} = \mathbf{b},\tag{9}$$

464

где $a_{ij} = -I_{ef,i}^{(j)}$ при $i \neq j$ и $a_{ii} = 1 - I_{ef,i}^{(j)}$ при i = j — элементы матрицы A, $b_i = c_0 I_{ef,i}^{(0)} = I_{ef,i}^{(0)}$ (т. к. $c_0 = 1$).

Обобщение на систему из *m* интегральных уравнений (и, соответственно, на *m* поверхностей) может быть сделано путем простой замены цифры 2 на *m*.

Сформулируем ряд следствий, которые вытекают из линейности интегральных уравнений Фредгольма второго рода, а также из представления решения системы интегральных уравнений в резольвентном виде.

При умножении свободных членов $f_{ik}(M_i)$ на коэффициент c_k искомые функции $I_{ef}^{(k)}(M_i)$ также изменяются в c_k раз.

Если свободные члены $f_{\Sigma}(M_i)$ представляют собой сумму функций вида $\sum_{i=1}^{m} c_k f_{ik}(M_i)$, то решение системы интегральных уравнений есть сумма частных

решений, т. е. $I_{ef}(M_i) = \sum_{k=0}^{m} c_k I_{ef}^{(k)}(M_i).$

Отметим, что основная трудность решения задачи в резольвентном виде заключается в том, что резольвенты определяются также из системы соответствующих интегральных уравнений вида [9]:

$$\Gamma_{Q}(M_{i}, N_{j}) = Q(M_{i}, N_{j}) + \sum_{q=1}^{m} \int_{F_{q}} \Gamma_{Q}(M_{i}, P_{q}) R(P_{q}) Q(P_{q}, N_{j}) dF_{P_{q}}, \quad (10)$$

$$i, j = 1, 2, ..., m.$$

Причем в этом случае возникают вычислительные трудности даже большие, чем при решении исходной системы уравнений (2). Поэтому в данной работе предлагается, в связи с линейностью интегральных уравнений, общее решение получать в виде суммы решений частных задач.

1.4. Представление решения системы (4) в виде суммы решений частных задач

Поскольку в (7) резольвенты предварительно не определяются и, следовательно, $\Gamma_Q(M_i, N_j)$ неизвестны, соотношения (7) должны быть заменены системой интегральных уравнений вида:

$$I_{ef}^{(k)}(M_i) = f_{ik}(M_i) + R(M_i) \sum_{j=1}^{2} \int_{F_j} Q(M_i, N_j) I_{ef}^{(k)}(N_j) dF_{N_j}, \qquad (11)$$
$$M_i \in F_i, \ N_j \in F_j, \ i = 1, 2, \quad k = 0, 1, 2,$$

где $I_{ef}^{(k)}$ — искомые функции.

Справедливость такой замены проверяется путем приведения системы (11) к резольвентному виду.

Таким образом, чтобы решить исходную систему (2) из двух интегральных уравнений с ядрами типа $R(M_i)K(M_i, N_j)$ необходимо трижды решить систему

интегральных уравнений (4) с различными свободными членами и ядрами типа $R(M_i)Q(M_i, N_j)$, определить неизвестные величины коэффициентов в соответствии с (9) и получить окончательное решение в соответствии с (6). Это плата за уменьшение нормы ядра и эффективное применение метода простой численной итерации. Важно отметить, что на каждой из поверхностей, согласно (11), свободные члены выбираются при одних и тех же значениях k.

Обобщение полученных соотношений для системы из *m* поверхностей, осуществляется заменой цифры 2 на *m*.

1.5. Исключение слабой особенности ядра типа $R(M_i)Q(M_i, N_i)$

При $M_i = N_j$ ядро $R(M_i)Q(M_i, N_j) = R(M_i)K(M_i, N_j) - R(M_i)\varphi(M_i, F_j)/F_j$ имеет слабую (интегрируемую) особенность, поскольку слабую особенность имеет ядро вида $R(M_i)K(M_i, N_j)$.

В данной работе исключение слабой особенности ядра $R(M_i)Q(M_i, N_j)$ осуществлялось тем же способом, что и в [9], т. е. путем прибавления и вычитания функции $I_{ef}(M_i)$ под знаком интеграла. Тогда в результате преобразований имеем:

$$\int_{F_j} Q(M_i, N_j) I_{ef}(N_j) dF_{N_j} = \int_{F_j} Q(M_i, N_j) \Big[I_{ef}(N_j) - I_{ef}(M_i) \Big] dF_{N_j} + I_{ef}(M_i) \int_{F_j} Q(M_i, N_j) dF_{N_j} = \int_{F_j} Q(M_i, N_j) \Big[I_{ef}(N_j) - I_{ef}(M_i) \Big].$$
(12)

Здесь $\int_{F_j} Q(M_i, N_j) dF_{N_j} \equiv 0$ в силу выбора функции $\varphi(M_i, F_j)$.

1.6. Частный случай: температуры и оптические параметры постоянны по каждой поверхности

В ряде случаев, например, при оценке совершенства модели черного тела, полагается, что температура и оптические параметры на каждой F_i поверхности постоянны.

Покажем, что при данных предположениях, решение для $I_{ef}^{(0)}$ может быть получено аналитическим путем. Для этой цели воспользуемся представлением решения системы интегральных уравнений в резольвентном виде. Тогда для k = 0 на основании (7) имеем:

$$I_{ef}^{(0)}(M_i) = I_{c,i} + R_i \sum_{j=1}^m I_{c,j} \int_{F_j} \Gamma_Q(M_i, N_j) dF_{N_j}.$$
 (13)

В свою очередь, почленно умножая систему уравнений (10) на dF_{N_j} и интегрируя по F_i , получаем:

$$\int_{F_j} \Gamma_Q(M_i, N_j) dF_{N_j} = \int_{F_j} Q(M_i, N_j) dF_{N_j} +$$

$$+\sum_{q=1}^{m} R_{q} \int_{F_{q}} \Gamma_{Q} \left(M_{i}, P_{q} \right) \left(\int_{F_{j}} Q\left(P_{q}, N_{j} \right) dF_{N_{j}} \right) dF_{P_{q}} = 0$$
(14)

в связи с тем, что $\int_{F_j} Q(M_i, N_j) dF_{N_j} = 0$ и $\int_{F_j} Q(P_q, N_j) dF_{N_j} = 0.$

Тогда из (13) следует, что

$$I_{ef}^{(0)}(M_i) = I_{ef,i}^{(0)} = I_{c,i}$$
(15)

и число систем интегральных уравнений, которые необходимо решать численно методом простой итерации, сокращается на единицу.

2. ЧИСЛЕННЫЙ ПРИМЕР

Температура является важным теплофизическим параметром состояния вещества. При теплофизических исследованиях для определения температуры по тепловому излучению с помощью модели черного тела часто используется тонкостенная металлическая трубка, которая нагревается электрическим током. Обычно предполагается, что трубка имеет одну и ту же температуру и достаточную длину для компенсации тепловых потерь через открытые торцы. Кроме того, полагается, что размеры отверстия (смотрового "окна") в стенке таковы, что это отверстие, не нарушает поля "черного" излучения внутри центральной части трубчатой полости. Вместе с тем, поле излучения внутри трубчатой полости, на практике, искажается, как той или иной неизотермичностью полости, так и наличием отверстий.

В данной работе рассматривается изотермическая полость, стенки которой излучают и отражают диффузно, среда, заполняющая полость, прозрачна для излучения. Как известно, пирометр регистрирует эффективную интенсивность излучения, покидающего площадку визирования. При этом происходит осреднение интенсивности излучения в пределах телесного угла, величина которого зависит от расстояния пирометра до визируемой площадки и определяется углом охвата [10]. В качестве иллюстративного примера используются расчётные данные, полученные для изотермической цилиндрической трубки с продольной пирометрической щелью и представленные в [5]. Продольная щель моделировалась поверхностью, которая не излучает (имеет нулевую температуру) и ничего не отражает (отражательная способность равна нулю). В такой постановке полость имеет только одну зону. Поэтому, согласно (2), исходное интегральное уравнение записывалось в виде:

$$I_{ef}(M_1) = I_c(M_1) + R(M_1) \int_{F_1} K(M_1, N_1) I_{ef}(N_1) dF_{N_1}, \qquad (16)$$

или

$$\varepsilon_{ef}\left(M_{1}\right) = \varepsilon\left(M_{1}\right)g\left(M_{1}\right) + R\left(M_{1}\right)\int_{F_{1}} K\left(M_{1}, N_{1}\right)\varepsilon_{ef}\left(N_{1}\right)dF_{N_{1}},\tag{17}$$

где

 $\varepsilon_{ef} = I_{ef}(\lambda)/I_0(\lambda, T_0)$ — локальная эффективная излучательная способность, T_0 — предполагаемая температура стенок полости (в K), $\lambda = 0,65$ мкм; $g_T(M_1) = I_0(\lambda, T(M_1))/I_0(\lambda, T_0)$ — температурная функция.

Как следует из сделанных предположений, при выбранных значениях излучательной способности ε материала стенок полости, функции ε , ε_{ef} и g не зависят

от λ и имеют разрыв первого рода при переходе от поверхности стенки полости на продольную щель. Измерение температур по излучению обычно проводятся при $\lambda = 0,65$ мкм, а в качестве материала для трубок используется фольга из металлов типа вольфрама, тантала, циркония, наименьшее значение излучательной способности которых, в используемом диапазоне температур, $\varepsilon \approx 0,4$ [11]. Однако, при $\varepsilon = 0,4$ и безразмерной длине полости $\eta_L = L/r = 12$ (L и r — размерная длина и радиус полости соответственно) непосредственное решение уравнения (17) на компьютере типа Pentium PC методом простой итерации приводило к расхождению последовательных приближений. Поэтому для уменьшения нормы ядра согласно (4) было проведено преобразование уравнения (17) с последующим разделением его на два независимых интегральных уравнения:

$$\varepsilon_{ef}^{(0)}(M_1) = \varepsilon(M_1)g(M_1) + R(M_1) \int_{F_1} Q(M_1, N_1) \left[\varepsilon_{ef}^{(0)}(N_1) - \varepsilon_{ef}^{(0)}(M_1) \right] dF_{N_1}, \quad (18)$$

$$\varepsilon_{ef}^{(1)}(M_1) = R(M_1)\varphi(M_1, F_1) + R(M_1) \int_{F_1} Q(M_1, N_1) \Big[\varepsilon_{ef}^{(1)}(N_1) - \varepsilon_{ef}^{(1)}(M_1)\Big] dF_{N_1}, \quad (19)$$

Поскольку норма ядра уравнения (18) и (19) мала, эти уравнения решались методом простой итерации до совпадения двух последовательных приближений в четвертой значащей цифре. Окончательные результаты вычислялись в соответствии с (9) и (6):

$$\varepsilon_{ef}(M_1) = \varepsilon_{ef}^{(0)}(M_1) + c_1 \varepsilon_{ef}^{(1)}(M_1), \qquad (20)$$

где

$$c_{1} = \frac{b_{1}}{1 - a_{11}} = \frac{\int_{F_{1}} \varepsilon_{ef}^{(0)}(M_{1}) dF_{M_{1}} / F_{1}}{1 - \int_{F_{1}} \varepsilon_{ef}^{(1)}(M_{1}) / F_{1}}$$

Численные результаты в графической форме представлены в [5]. Все геометрические размеры полости были отнесены к ее радиусу. При относительной длине полости $\eta_L = 12$ число разбиений n_η по η_L было 75, при $\eta_L = 20$ величина n_η составляла 125. Вторая координата изменялась от 0 до 360°, и число разбиений n_ϑ для двух длин полостей было 250 и 125 соответственно. Интегрирование проводилось по правилу средних прямоугольников. Как и следовало ожидать, в соответствии с (15), во всех случаях $\varepsilon_{ef}^{(0)}(M_1) \equiv \varepsilon(M_1)$. Таким образом, интегральное уравнение (18), при данной постановке задачи, не требует численного решения и может быть найдено аналитическим путём.

выводы

1. Для системы нагретых тел, разделенных оптически прозрачной средой, предложен способ расчета, который позволяет оптимально сочетать достоинства зонального и итерационного методов расчета теплообмена излучением при использовании аппарата интегральных уравнений Фредгольма второго рода.

 На примере анализа результатов расчета эффективного излучения в трубчатой полости продемонстрированы преимущества данного подхода.

3. Показано, что для изотермической системы нагретых тел одно из частных решений может быть получено аналитическим путем.

СПИСОК ЛИТЕРАТУРЫ

- 1. Адрианов В.Н. Основы радиационного и сложного теплообмена. М.: Энергия, 1972. 464 с.
- 2. Невский А.С. Лучистый теплообмен в печах и топках. М.: Металлургия, 1971. 440 с.
- **3.** Рубиов Н.А. Теплообмен излучением в сплошных средах. Новосибирск: Наука, Сиб. отд-ние, 1984. 277 с.
- 4. Зигель Р., Хауэлл Дж. Теплообмен излучением. М.: Мир, 1975. 934 с.
- 5. Русин С. П., Пелецкий В. Э. Характеристики теплового излучения цилиндрических изотермических полостей с продольной пирометрической щелью // Теплофизика высоких температур. 1999. Т. 37, № 3. С. 452–457.
- 6. Интегральные уравнения / Забрейко П.П., Кошелев А.И., Красносельский М.А., Михлин С.Г., Раковщик Л.С., Стеценко В.Я. М.: Наука, 1968. 448 с.
- 7. Положий Г.Н., Чаленко П.И. Решение интегральных уравнений методом полос // Вопросы математической физики и теории функций. — Киев: Изд-во АН УССР, 1964. Вып. 1. — С. 124–144.
- **8.** Русин С.П. О зонально-итерационном методе расчета теплообмена излучением // Труды 2-ой Рос. нац. конф. по теплообмену. М.: МЭИ, 1998. Т. 6. С. 358–361.
- 9. Русин С.П., Пелецкий В.Э. Тепловое излучение полостей. М.: Энергоатомиздат, 1987. 152 с.
- Паскачей А.А., Русин С.П. Измерение температур в электротермических установках. Методы и приборы. — М.: Энергия, 1967. — 111 с.
- **11. Латыев Л.Н., Петров В.А., Чеховской В.Я., Шестаков Е.Н.** Излучательные свойства твердых материалов: Справочник / Под ред. А.Е. Шейндлина. М.: Энергия, 1974. 472 с.

Статья поступила в редакцию 28 апреля 2006 г.